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Abstract

Virtual and augmented reality (VR/AR) are expected to revolutionise entertainment, healthcare, communication and the manufac-
turing industries among many others. Near-eye displays are an enabling vessel for VR/AR applications, which have to tackle
many challenges related to ergonomics, comfort, visual quality and natural interaction. These challenges are related to the
core elements of these near-eye display hardware and tracking technologies. In this state-of-the-art report, we investigate the
background theory of perception and vision as well as the latest advancements in display engineering and tracking technologies.
We begin our discussion by describing the basics of light and image formation. Later, we recount principles of visual perception
by relating to the human visual system. We provide two structured overviews on state-of-the-art near-eye display and tracking
technologies involved in such near-eye displays. We conclude by outlining unresolved research questions to inspire the next
generation of researchers.

1. Introduction

Near-eye displays are an enabling head-mounted technology that
immerses the user in a virtual world (VR) or augments the real world
(AR) by overlaying digital information, or anything in between on
the spectrum that is becoming known as ‘cross/extended reality’
(XR). Near-eye displays respond to head motion and allow for object
manipulation and interaction. Having recently flooded the market,
near-eye displays have the power to create novel experiences that
potentially revolutionise healthcare, communication, entertainment
and the manufacturing industries among others.

Two notable reviews of VR technologies in the 1990s by two
pioneers in the field, Stephen R. Ellis and Frederick P. Brooks,
outlined the fundamental challenges that existed back then, which,
if solved, would enable the commercial success of XR technolo-
gies [Ell94, Bro99]. Although many of these challenges have been
addressed, including low display cost, high resolution, low latency,
6-DoF tracking, complex rendering capability in real time and indus-
try leaders entering the field, still, displays suffer from ergonomic,
comfort, visual quality and interaction issues. Content for AR/VR
is difficult and expensive to produce, and not yet abundant to the
average non-technical consumer. As Ellis stipulated, because of
unresolved display issues, VR had not yet found the ‘spreadsheet’
or ‘killer’ application, which would enable thousands of users to
find solutions to previously intractable problems [Ell94]. What does

it take to go from VR ‘barely working’ as Brooks described VR’s
technological status in 1999, to technologies being seamlessly inte-
grated in the everyday lives of the consumer, going from prototype
to production status?

The shortcomings of current near-eye displays stem from both im-
perfect tracking technologies as well as the limitations of the display
hardware and rendering algorithms that cannot generate light that
is perceived identically to naturally occurring light patterns. This
is often the cause of conflicts in the human visual system. The ma-
jor difference between traditional computer graphics and near-eye
displays, is that whereas in computer graphics we often strive for
photo-realism – aiming to render like a camera would capture – in
near-eye displays, we aim for a physically correct retinal image,
i.e., natural images or perceptual realism. On the bright side, the
human visual system is also limited, allowing us to exploit these
limitations to engineer displays that are perceptually effective, i.e.,
use visual perception as the optimising function for hardware and
software design. Such an endeavour demands a multidisciplinary ef-
fort to develop novel near-eye display technologies, involving vision
scientists, perceptual engineers, as well as software and hardware
engineers.

In this state-of-the-art report, we analyse new advancements in
display engineering that are driven by a broader understanding of
vision science, which has led to computational displays for near-eye
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displays. Today, such displays promise a more realistic and com-
fortable experience through techniques such as light-field displays,
holographic displays, always-in-focus displays, multiplane displays
and varifocal displays. New optical layouts for see-through compu-
tational near-eye displays are presented that are simple, compact,
varifocal and provide a wide field of view with clear peripheral
vision and large eyebox. Novel see-through rear-projection holo-
graphic screens and deformable mirror membranes enabled progress
towards achieving more faithful visual cues. Fundamental trade-offs
are established between the quantitative parameters of resolution,
field of view and the form factor of the designs – opening an intrigu-
ing avenue for future work on accommodation-supporting near-eye
displays.

We begin our discussion by reviewing principles of visual per-
ception, acuity and sensitivity. We then describe the basics of light
generation, image formation, wave and geometric optics, and then
recall fundamental measures such as brightness, contrast, colour,
angular/spatial/temporal resolution and dynamic range. We then
contribute two structured overviews: First an examination of basic
display types (transmissive, reflective, emissive) and near-eye dis-
play technologies (varifocal, multiplane, light-field displays, and
holographic). We then review the tracking technologies involved for
near-eye displays (mechanical, magnetic, inertial, acoustic, optical,
hybrid) as well as tracking modalities such as head, eye, face/body,
hands, multimodal and environment tracking. We conclude by out-
lining unsolved problems and challenges for future research.

2. Background

In this section, we provide the necessary background knowledge
on human visual perception, light generation, optics and image
formation relevant to the design of near-eye displays. We discuss
tracking technologies and modalities as well as their applications
relevant to near-eye displays in Section 4.

2.1. The Human Visual System

In this section, we describe the main principles of the human vi-
sual system (HVS). A visual stimulus in the environment passes
multiple stages of the HVS before each of these stages determines
how a stimulus is perceived by the user. Briefly, the HVS can be
described as an iterative perceptual process (Figure 1) [Gol10b].
The process begins with a stimulus enters our eyes, constituting
two visual fields, which enables us to process stereoscopic imagery
over a field of view that encompasses zones with different stimuli
sensitivities [WSR∗17]. The optical system focuses the stimuli onto
the retina (the ‘sensor’), which is connected to the visual pathways.
This connection transports signals from the eye to the visual cortex
in the brain, where the retinal signals are processed. The following
steps, perception and recognition of the neural signals, allow us to
finally understand what we see. Interestingly, perception (seeing
something) and recognition (seeing a house) may happen at the same
time or in reversed order [Gol10b]. Finally, the recognized stimulus
results in an action, e,g. approaching the house. In the following, we
briefly discuss physiological and perceptual properties of the HVS
as well as relevant limitations of vision and perception.

More detailed information on exploiting the HVS for accelerated
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Figure 1: High-level model of the iterative perceptual process. After
Goldstein [Gol10b].

rendering is given in the recent survey by Weier et al. [WSR∗17].
Excellent information about human vision from a physiological
point of view can be found in the book by Adler et al. [LNH∗11].

2.1.1. HVS – Optical Properties

The HVS is characterised by several unique optical qualities that are
a result of both the position and shape of the eyes. With binocular vi-
sion and both eyes looking straight ahead, humans have a horizontal
field of view (FoV) of almost 190°. If eyeball rotation is included,
the horizontal FoV extends to 290° [HR95, p. 32]. While the hu-
man eye will receive visual stimuli over the full extent of the FoV,
the way stimuli are processed in different parts of the visual field
is highly affected by the spatially varying properties of the retina.
There are striking differences between central vision in comparison
to the near and far periphery [CSKH90].

The distance between the pupils, the interpupillary distance (IPD),
results in two streams of visual stimuli from slightly different per-
spectives, which are combined in the brain by a process called stere-
opsis and enables perception of depth also referred to as stereo
vision [Pal99]. Depth perception is additionally enabled by vi-
sual cues such as parallax, occlusion, colour saturation and object
size [CV95, HCOB10].

The spatial acuity of the HVS is limited by the eye’s optics. It is
known from sampling theory that aliasing occurs if a signal contains
frequencies higher than the observer’s Nyquist frequency [Sha49].
In human vision, this undersampling effect occurs for spatial fre-
quencies higher than approximately 60 cycles per degree (cpd).
Each cycle, also known as line-pair, denotes one black/white line
pair taken together [Wan95, p. 24]. However, the eye’s optics in
the cornea and lens act as a low-pass filter with a cutoff frequency
around 60 cpd. This way, the signal that cannot be properly sampled
and reconstructed is effectively removed through optical prefiltering.

The pupil is an additional important factor. With its adjustable
diameter of 2 to 8 mm [Gol10a], it serves as an aperture. This adjust-
ment mostly affects the sharpness of the image, as only about one
magnitude of light intensity difference (1 log unit) can be controlled
by the pupil. The eye’s adaptation to differences in brightness sensa-
tion (dark and light adaptation) mostly takes place on the retina.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.
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Figure 2: Retinal photoreceptor distribution. Image adapted from
Goldstein [Gol10b, p. 51].

2.1.2. HVS – Receptor Processes

Light that enters through the eye is projected onto the retina, the
photosensitive layer of the eye. This layer consists of two types
of photoreceptors: 6 · 106 cones and approximately 20 times as
many rods [Gol10b, p. 28]. Rods consist of only one type of light-
sensitive pigment and are responsible for the brightness sensation
in lower-light conditions (scotopic vision) by providing monochro-
matic feedback. Cones are divided into three types for different wave-
lengths, namely L-cones (long wavelengths), M-cones (medium
wavelengths) and S-cones (short wavelengths). They are respon-
sible for sensing colour and details in bright conditions (photopic
vision). Photoreceptors of different types follow the distribution
pattern shown in Figure 2. The central area of the retina, the fovea
(approx. 5.2° around the central optical axis), consists entirely of
cones. Cone density drops significantly with increasing eccentric-
ities (the angular distance to the optical axis) [CSKH90] past the
parafovea (approx. 5.2° to 9°) and perifovea (approx. 9° to 17°).
These inner parts constitute central vision, while areas further away
are referred to as peripheral vision. The highest density of rods is
approximately 15–20° around the fovea. Their density drops almost
linearly. Just as the rods and cones have different densities across the
retina, they have different spatial sampling distributions and follow a
Poisson-disc distribution pattern [Yel83, Wan95, ch. 3]. The density
of cones is related to visual acuity, the “keenness of sight”. The
visual acuity of the eye drops significantly outside the small foveal
region, where humans are able to generate a sharp image (acuity
is already reduced by 75% at an eccentricity of 6°). Visual acuity
can be expressed as minimum angle of resolution (MAR). Normal
vision corresponds to 1 MAR, a measure describing that a feature
size of 0.5 minutes of arc is still visible [LNH∗11, p. 627]. This
minimal feature size relates to a spatial frequency of a sinusoidal
grating pattern of alternating black and white spaces at 60 cpd.

There are further factors influencing this keenness of sight. Vi-
sual acuity also depends on the contrast of the stimuli. The acuity
limit is usually measured using a high-contrast image or a letter
under photopic luminance conditions, which corresponds to typical
daylight and display use cases. Moreover, the reduction of acuity
depends on the overall lighting. Under dimmed light, the perceivable
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Figure 3: Contrast Sensitivity as a function of spatial frequency (left)
and luminance (right). The plot is based on Barten’s model [Bar04].

spatial detail is reduced. The highest perceivable spatial frequency
of a sinusoidal grating pattern reduces from ~60 cpd at photopic
levels down to ~2 cpd for scotopic vision. In addition, contrast per-
ception is affected [BSA91]. The eye’s sensitivity to contrast can
be described by a contrast sensitivity function (CSF). The CSF
describes the change in sensitivity as a function of stimulus size,
background luminance, spatial frequency, orientation and temporal
frequency. The CSF separately describes achromatic (luminance)
and chromatic mechanisms ([L-M] and [S-(L+M)]). The CSF is
defined as the reciprocal of the smallest visible contrast. The mea-
surements are usually performed using sinusoidal grating patterns
at different contrast levels. Figure 3 shows the variation in spatial
frequency as a function of spatial frequency and luminance, respec-
tively. The region under the curve is commonly called the window
of visibility [LNH∗11, pp. 613–621]. The resolvable acuity limit of
(60 cpd) corresponds to the lowest contrast sensitivity value. Very
high (>60 cpd) and very low frequencies (<0.1 cpd) cannot be per-
ceived at all. While the upper limit can be explained by the cone
spacing and optical filtering, the lower limit cannot be directly de-
rived from the eye’s physiology [LNH∗11, pp. 613–621]. Contrast
sensitivity depends on the number of neural cells responding to the
respective grating pattern [RVN78]. From the fovea to the periphery,
sensitivity decreases significantly at all frequencies. The decrease is
fastest for high frequencies [RVN78].

The varying distributions of rods and cones also affect the sen-
sitivity to colours in different parts of the visual field [NKOE83].
The fovea is dominated by the cones sensitive to long and medium
wavelength and capable of distinguishing between red and green
colours. In contrast, only about 9% of our cones are responsible
for the perception of short wavelengths, but they are more spread
outside the fovea. This leads to a relatively higher sensitivity to blue
colours in the periphery. Hence, contrast sensitivity also depends
on the chromaticity of the stimulus. Blue/yellow and achromatic
stimuli result in a less-pronounced decrease in terms of contrast
threshold [Mul85]. The sensitivity to red–green colour variations
decreases more steeply toward the periphery than the sensitivity
to luminance or blue-yellow colours. Besides the different densi-
ties of the cones, neural processes are also of importance in this
context [HPG09].

Retinal photoreceptors have the ability to adapt to stark changes
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in light intensity. While adaptation to bright lighting can occur
very rapidly, adapting to low lighting conditions takes considerably
longer [Ade82,Bak49]. Adaptation influences the performance of
the HVS, such as colour perception, spatio-temporal contrast sensi-
tivity and the amount of perceivable detail [VMGM15, LSC04]. It
enables humans to perceive visual information robustly over seven
orders of magnitude of brightness intensities. However, we are not
able to see equally well at all intensity levels: At lower light levels,
due to rod-vision, acuity is reduced. During daytime, contrast sensi-
tivity is lower, but visual acuity and colour vision excel. Similar to
the drop of acuity with eccentricity that can be observed in stereopsis,
depth perception is significantly reduced in the periphery [PR98].

2.1.3. HVS – Motor

Our eyes are constantly in motion. Six external muscles (the ex-
traocular muscles) allow precise and fast changes of the horizontal
and vertical orientation of the eye as well as torsional movements
that bring the top of the eye toward the nose (intorsion) or away
from the nose (extorsion). The primary goal of moving the eyes is to
move the projection of the object of interest onto both foveæ, so that
the focused object is perceived with high detail. The most impor-
tant types of motion are saccades, fixations, vestibulo-ocular reflex,
smooth pursuit eye motion, and coupled vergence–accommodation
motion. An excellent survey on the properties and effects of human
eye motion from a psychophysical point of view is provided by
Kowler [Kow11].

Saccades are the result of eye motion rapidly jumping from one re-
gion of interest to another. During a saccade, peak angular speeds of
up to 900°/s [FR84] can be reached. Preceding the beginning of eye
movement, there is a dramatic decline in visual sensitivity, which is
referred to as saccadic suppression [VRWM78,WDW99,RMGB01].
As a result, during saccadic eye movements, accurate visual infor-
mation cannot be acquired. In contrast, fixations describe the state
and duration in which visual information is perceived while our
gaze remains close to an object of interest. Fixation durations typi-
cally vary between 100 milliseconds and 1.5 seconds [WDW99]. It
is assumed that the duration of a fixation corresponds to the rela-
tive importance and visual complexity of an area in the visual field.
When viewing a typical natural scene, the HVS triggers around
two to three saccades per second, and the average fixation time
is about 250 milliseconds [KFSW09]. The spacing between fixa-
tions is, on average, around 7° of viewing angle. The unconsciously
triggered tracking reflex when a moving object attracts our gaze
is called smooth pursuit eye motion (SPEM). This motion enables
the observer to track slow-moving targets so that the object is fix-
ated onto the fovea. Interestingly, small eye movements up to 2.5°/s
have hardly any effect on visual acuity [LNH∗11]. However, the
success rate depends on the speed of the target and decreases sig-
nificantly for angular velocities in excess of 30°/s. Saccades are
generally driven by position error, and smooth pursuit, generally,
by velocity error. Both types of movements are generally binocular
and involve both eyes rotating in the same direction. The eye is not
a camera; the visual percept of a stable surround visual world is
a perceptual construction of very small high-resolution snapshots
and is due to a large degree to pervasive unconscious perceptual
filling-in processes.

Stereopsis is highly entangled by vergence and accommodation.

In order to fixate an object, both eyes are required to simultane-
ously rotate in opposite directions (vergence). Accommodation is
the mechanical ability of the eye to change the shape of the lens
so one can focus at different distances [How12]. When the ciliary
muscles at the front of the eye tighten, the curvature of the lens
and, correspondingly, its focusing power is increased. Accommo-
dation describes the natural counterpart of adjusting a camera lens
so that an object in the scene is set into focus. Importantly, this
process happens unconsciously and without any effort in less than a
second at photopic illumination levels [Gol10a, p. 289]. Typically,
stereoscopic displays drive vergence by providing binocular dispar-
ity cues using a separate image for each eye. Yet, as the images
are shown on the screen, the eyes focus on the screen’s distance.
This can result in a conflict, known as the vergence–accommodation
conflict [Gol10a, p. 1040]. Accommodation and vergence motions
are coupled with the fixation process for binocular vision so that
both eyes’ gaze aims at the same point at which they focus.

2.1.4. HVS – Cortical processing

Retinal stimuli processing is followed by neural information pro-
cessing in the visual cortex of the brain. Corresponding to the drop
in the density of rods and cones, over 30% of the primary visual
cortex are responsible for the central 5° of the visual field, while
the periphery is under-represented [HH91]. Cognitive processing of
images and perceptual differences between central and peripheral
vision have been targeted by perception research. Thorpe et al. have
shown that peripheral vision provides a rich source of information,
crucial to the perception and recognition of contrast features, objects
and animals [TGFTB01]. Furthermore, the HVS makes extensive
use of contextual information from peripheral vision, facilitating
object search in natural scenes [KKK∗14]. Thereby, pre-processing
of visual stimuli probably occurs. There is evidence that basic vi-
sual features (such as object size, colour and orientation) are pre-
processed before actual attention is placed on the object by moving
it into central vision [WB97]. Besides the process of stereopsis, the
ability to interpret depth cues in the visual input to improve stereo
vision and the sense of spatial localisation is highly entangled in the
visual cortex.

Finally, vision is affected by cross-modal effects. In particular,
VR systems often provide non-visual cues such as audio, vibration
or even smell. These effects have been studied in psychological
experiments on various interplays between cues [SS01, Pai05, SS03,
WP04]. When sensory channels are substituted or combined, some
implications occur: sensory channels are no longer seen as separate
channels, but may affect each other through integration of sensory
signals inside multimodal association areas in the brain [Pai05,
LN07, Sut02, pp. 36–64].

2.1.5. HVS – Memory and Attention

The processing of visual information is highly dependent on knowl-
edge and patterns stored in memory [KDCM15]. How such knowl-
edge is stored is still a topic of fundamental research [SK07].

While attention is still not fully understood, research indicates
that it has three components: (1) orienting to sensory events, (2)
detecting signals for focused processing, and (3) maintaining a vig-
ilant or alert state [PB71]. Attention is important for processing
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visual stimuli and search behaviour [TG80]. It involves the selection
of information for further processing and inhibiting other informa-
tion from receiving further processing [SK07, p. 115]. Attention
can occur in information-processing tasks in various ways [WC97]:
selective attention is the choosing of which events or stimuli to
process; focused attention is the effort in maintaining processing
of these elements while avoiding distraction from other events or
stimuli; divided attention is the ability to process more than one
event or stimulus at a given point in time.

Being aware of the limitations of the human visual system enables
us to avoid under- or over-engineering near-eye displays. In the
following sections, we explore the theory that drives design choices
in near-eye displays.

2.2. Light Generation

In this section, we examine the basic properties of light that con-
tribute to image formation. Light can be modelled either as an
electromagnetic wave or a stream of photons. In this state-of-the-art
report, we focus on the wave nature of light that is more relevant
to near-eye displays. When modelled as an electromagnetic wave,
most forms of light generation relate to rapidly moving electrical
charges consequently generating electromagnetic waves. Electro-
magnetic waves are self-propagating waves of intermittent electric
and magnetic fields that carry energy, cyclically exchanged between
the electric and magnetic components [YFF07]. The rate of ex-
change is the light frequency. A select range of frequencies, called
the spectrum, can be perceived by the human eyes and is known
as visible light. The wavelength λ of these frequencies relates to
frequency via the equation λ = c/ f , where c is the speed of light in
vacuum and f is frequency. Visible light ranges from wavelengths
of 380–780 nm or frequencies in the 1015 Hz range. Wavelength
and amplitude of the light wave correspond to perceived colour and
intensity, respectively [Pal99].

Forms of light generation include single charges, such as elec-
trons, giving birth to photons. Electrons that change orbits in an
atom release the positive energy difference as photons. This happens
in semiconductors, such as light-emitting diodes (LEDs), where ma-
terial properties define specific energy levels (bands) between which
the electrons jump, generating light of specific wavelengths [MS08].
Another form of light emission is thermal emission, caused by
the motion of atoms in solids, liquids and gases. Thermal emis-
sion usually contains photons spanning a wide range of energies,
e.g., tungsten lamps [Pla13]. In the majority of VR/AR headsets,
the modulated light is generated using LEDs and OLEDs (organic
LEDs) [HB16].

LEDs are semiconductor chips selectively enriched with other
material impurities (doped) to create a p–n junction, i.e., an interface
between two types of semiconductors: one positive (p-side) and
one negative (n-type) [MS08]. The p-side contains an excess of
electron holes, while the n-side contains an excess of electrons
enforcing the electrical current to pass through the junction only in
one direction. Electron holes and electrons flow into the junction and
when an electron meets a hole, the electron falls into a lower energy
level, thus releasing energy in the form of a photon. LEDs are used
both as a display backlight, in headsets that employ transmissive

liquid-crystal displays (LCDs), or directly integrated into silicon as
individually addressable LED pixels in micro-LED displays [HB16].
Contrary to LEDs, OLEDs employ a thin film of organic compound
that directly emits light in response to an electric current running
through the electroluminescent layer [DF04]. Both micro-LED and
OLED-based displays are expected to become affordable in the
years to come.

2.3. Optics Principles

To make use of light in the context of a display, it has to be formed
by optics. Depending on the phenomenon that we try to explain or
exploit, we can formulate light travel and interactions as a wave in
wave optics or simpler, as rays travelling in space using geometric
optics.

Wave Optics Light as a wave is characterised by a particular
wavelength, amplitude and phase [Goo17]. If two waves of the same
frequency are in phase they are called coherent. Light consisting
of one wavelength is called monochromatic. A consequence of that
is that coherent light must also be monochromatic. Points of equal
phase form a surface which is called a wavefront. The wavefront
is spherical if waves are emitted from a point. If light is emitted
from an infinite number of points on a plane, the wavefront consists
of infinite planes that are orthogonal to the propagation direction,
and is called a planar wavefront. Any complex wavefront can be
formed from a collection of multiple virtual point sources and their
spherical wavefronts. When a wavefront encounters an obstacle,
the virtual point sources next to the obstacle’s border transmit light
behind the obstacle, a phenomenon known as diffraction [Luc06].
Diffraction depends on wavelength, as larger wavelengths diffract
more [YFF07].

Geometric Optics When image points are far larger than the wave-
length of light, geometric optics is typically considered. Geometric
optics provide an abstraction that formulates light as travelling along
straight lines (a.k.a. ray tracing), ignoring its wave nature. Geomet-
ric optics can describe simple optical elements, such as lenses, and
geometric phenomena, such as reflection. Depending on material
properties, light can be reflected, refracted, scattered, absorbed or
diffracted by matter. For the purpose of this report, we will briefly
discuss refraction and reflection. We refer the curious reader to more
advanced books on the topic [YFF07, HB16].

Light changes direction when passing a border between two me-
dia of different optical densities due to the difference in speed of
travel through these media, a phenomenon that is known as refrac-
tion. Let us consider a beam whose wavefront is perpendicular to
the way of travel. When that beam of light meets the border of two
different optical media, the edge of the wavefront that first enters
the second medium and experiences a delay until the second edge
also enters the medium, which causes a change in the wavefront
angle, similarly to when a car moving from a pavement to mud at an
angle, will rotate along its vertical axis. This happens because the
first wheel will spin slower till the second wheel also reaches the
mud. The amount of refraction depends on wavelength. The angle
of deflection can be estimated using Snell’s law for geometric op-
tics [YFF07]. Short wavelengths travel slower in denser media, and
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as such experience stronger diffraction – a phenomenon explaining
why a glass prism disperses light into its spectral components. On
the border of two materials, not all light is refracted. Some of it
is always reflected and is polarised perpendicularly to the deflec-
tion angle. This partial light reflection at media boundaries can be
calculated using the Fresnel equations [HB16].

The principles of most optical-image generation that is happen-
ing in near-eye displays heavily rely on geometric optics phenom-
ena, such as refraction and reflection. For explaining holograms,
though, a wave representation is needed. A detailed image forma-
tion model for the setting of holographic projection displays has
been derived [PDSH17]. A model that includes diffractive light
propagation and wavelength-dependent effects has also been pro-
posed [SDP∗18].

2.4. Image Formation

In this section, we explain fundamental display measures such as
spatial, angular and temporal resolution, intensity, contrast and dy-
namic range. Most near-eye displays update information that is
displayed in a raster-scanning fashion, reproducing pictures as a
matrix of pixels arranged on a rectangular grid [HB16]. The image
is formed by setting these pixels to different colours and intensities.
The number and size of pixels in a given area of the screen deter-
mines the amount of information that can be displayed. The pixel
size, and consequently pixel density, restricts the maximum size a
display can have before its pixels can be individually discerned.

The viewing angle a single pixel occupies denotes the angular res-
olution of the display, which is of particular importance for near-eye
displays. Human visual acuity can reach up to 60 cpd [Pal99], i.e.,
120 pixels would be needed per degree of visual angle for them to be
indiscernible. The temporal resolution of the display (refresh rate)
denotes how many times per second a new image is drawn on the
display. For near-eye displays, a refresh rate of ~90 Hz is desirable
to eliminate flickering, especially in the periphery [TFCRS16].

Another essential display parameter is peak luminance, which is
measured in cd/m2. The perceived brightness of a display depends
on the energy emitted, the emission spectrum and the size of the
image, among others. As the human visual system adapts to the
overall intensity of a scene, display intensity levels should be at
least as high as the display surroundings. If not, the image will
appear faint and lacking contrast. In the real world, intensity levels
span from 10−6 cd/m2 up to 108 cd/m2, a dynamic range of 14
orders of magnitude [MDMS05]. In headsets, display intensities
usually span two to three orders of magnitude due to technical
limitations, light reflections inside the headset or over the lens,
etc. Dynamic range is especially problematic when liquid-crystal
displays (LCDs) are employed, as the polarisers used in them always
leak a small amount of light coming from the backlight [HB16].
High dynamic range (HDR) displays increase the span of displayable
intensities, often by employing multiple spatial light modulators
(SLM) stacked in series. For example, stacking an addressable LCD
over an addressable LED display, usually of much lower resolution,
allows for double modulation of light, increasing the bit depth of
the output and achievable contrast [MMS15].

Most current headsets use 8-bit displays, which corresponds to

256 greyscale levels. Insufficient colour bit-depth often leads to visi-
ble brightness steps that are known as banding/contouring artefacts
in areas that should otherwise appear smooth, an effect accentuated
by the eyes’ inherent contrast enhancement mechanisms [Rat65].
Displays’ colour reproduction capabilities can be measured by defin-
ing their colour gamut [TFCRS16]. By marking the red, green and
blue colour primaries used in a display on a chromaticity diagram
and then joining those primary locations, the achievable colour
gamut can be visualised [HB16]. Achieving wide colour gamuts
requires narrow-band primaries (spectral) near the edges of the
chromaticity diagram [TFCRS16].

2.5. 2D Spatial Light Modulators

The core component of any electronic display is a spatial light
modulator (SLM), which controls the amount of light transmitted
or emitted at different spatial positions and at a given instance of
time. Here, we focus on SLMs that are commonly used in VR/AR
displays: liquid-crystal displays (LCDs), liquid crystal on silicon
displays (LCoS), and active-matrix organic light-emitting diode
displays (AMOLED) [HB16].

While VR/AR tracking sensors often operate at 1000 Hz, the
display refresh rates and response times are often much lower. For
that reason, the most critical display characteristics in AR/VR are
its temporal response and the quality of reproduced motion. The
main types of artefacts arising from motion shown on a display can
be divided into: (1) non-smooth motion, (2) false multiple edges
(ghosting), (3) spatial blur of moving objects or regions, and (4)
flickering. The visibility of such artefacts increases for reduced
frame rate, increased luminance, higher speed of motion, increased
contrast and lower spatial frequencies [DXCZ15]. To minimise
motion artefacts, VR/AR displays often operate at higher frame
rates and lower peak-luminance levels, and incorporate techniques
that mask some of the motion artefacts.

LCDs rely on a transmissive SLM technology, in which a uniform
backlight is selectively blocked to produce an image. The name of
the technology comes from nematic liquid crystals, which form
elongated molecules and can alter the polarisation of the light. The
liquid-crystal molecules are trapped inside a sandwich of layers
consisting of glass plates and polarisers. When an electric field
is applied to the sides of the glass, the molecules change their
alignment and alter the polarisation of the light, so that more or
less light passing through the display is blocked by the polarisers.
LCD is the dominant display technology at the moment, which has
branched into numerous sub-types, such as twisted nematic (TN),
multidomain vertical alignment (MVA), or in-plane switching (IPS).
Those sub-types compete with each other in price, the quality of
colour reproduction, viewing angles and dynamic range.

LCoS is another important technology based on liquid crystals,
which can be found in projectors, but also some AR displays, such
as the Microsoft HoloLens or the Magic Leap One. In contrast to
LCDs, which modulate transmitted light, LCoS displays modulate
reflected light. This is achieved by giving a reflective surface to a
CMOS chip, which is then layered with liquid crystals, an electrode
and a glass substrate. The light is typically polarised with a polar-
ising beam-splitter prism, and colour is produced by sequentially
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Figure 4: (a) Delayed response of an LCD, driven by a signal with
overdrive. The plot is for illustrative purposes and does not represent
measurements. (b) Measurement of an LCD (Dell Inspiron 17R
7720) at full brightness and when dimmed, showing all-white pixels
in both cases. (c) Measurement of an HTC Vive display showing
all-white pixels. Measurements taken with a 9 kHz irradiance sensor.

displaying images (fields) of different colours. Compared to LCD
technology, LCoS SLMs are easier to manufacture, can achieve
higher resolutions and can be made smaller. These are all desirable
properties for any wearable near-eye display.

The liquid crystals found in the recent generation of LCDs and
LCoS chips have relatively short response times and offer refresh
rates of 120–240 Hz. However, liquid crystals still require time
to switch from one state to another, and the desired target state
is often not reached within the time allocated for a single frame.
This problem is partially alleviated by over-driving (applying higher
voltage), so that pixels achieve the desired state faster, as illustrated
in Figure 4(a).

AMOLED displays are SLMs that emit light themselves when
a voltage is applied. This brings many advantages, such as very
high contrast (dynamic range), highly saturated (pure) colours, wide
viewing angles, fewer components and thinner displays, as there is
no need for a backlight or other light source. One of the remaining
problems is the difficulty in driving AMOLED displays at high
brightness when pixels are small (due to peak-current tolerance).
They also tend to be more expensive to manufacture. However, the
biggest advantage of AMOLED displays in VR/AR applications
is their instantaneous response time. For that reason, AMOLED is
the technology of choice for high-quality VR headsets, including
HTC Vive and Oculus Rift, but also smartphones supporting Google
Daydream headsets.

2.6. Motion Quality

While it may seem that fast response times should ensure good
motion quality, response time accounts only for a small amount of
the blur visible on LCD and AMOLED screens. Most of the blur
is attributed to eye motion over an image that remains static for
the duration of a frame [Fen06]. When the eye follows a moving
object, the gaze smoothly moves over pixels that do not change
over the duration of the frame. This introduces blur in the image
that is integrated on the retina – an effect known as hold-type blur.

Hold-type blur can be reduced by shortening the time pixels are
switched on, either by flashing the backlight [Fen06], or by inserting
black frames (BFI). These techniques are known in the context of
VR/AR displays as a low-persistence mode, in which pixels are
switched on for only a small portion of a frame. Figure 4(c) shows
the measurements of the temporal response for an HTC Vive headset,
which indicates that the display remains black for 80% of a frame.
The low-persistence mode also reduces the lag between the sensors
and the display, as it shows only the first few milliseconds of a frame,
for which the head-pose estimation is the most accurate. It should
be noted that all techniques relying on rapidly switching the display
on and off reduce the peak luminance of the display, and may also
result in visible flicker.

See-Through Screens Researchers have explored see-through
screen designs based on classical optical components. Hedili et
al. [HFU13] describe a see-through microlens array for a heads-
up display application. Soomro and Urey [SU16] report a see-
through screen based on retro-reflectors for a head-mounted projec-
tion display application. Neither of these approaches has yet been
redesigned for near-eye displays, nor for the expected diffraction
effects accompanying that miniaturisation. Using silver nanoparti-
cles and a front projector, Hsu et al. [HZQ∗14] create a transparent
screen that backscatters light at specific wavelengths. Yamamoto et
al. [YYN∗16] also describe a different approach to a wavelength-
selective front-projection transparent screen using cholesteric liquid-
crystal dots.

Curved and Freeform Screens Researchers have explored
desktop-sized static, curved displays [WVSB10, HWC∗17, BWB08,
BKV11, KM15] and large-format, immersive, static curved dis-
plays [KLT∗09, HKMA07, BW10, TNSMP17]. These displays are
typically cylindrical or spherical in their surface profile. The work
of Brockmeyer et al. [BPH13] demonstrated a static desktop-sized
display. Researchers have also shown manually configurable flex-
ible displays that use organic LEDs [YJK∗10], thin electrolumi-
nescent films [OWS14], and electronic-ink [GHM∗06]. Recently,
a dynamically shape-changing display was demonstrated by Lei-
thinger et al. [LFOI15]. For a more exhaustive survey on non-
planar displays, we refer interested readers to the following pa-
pers: [ARS∗18, LKKC17, RPPH12].

3. Immersive Near-Eye Display Technologies

Augmented reality and virtual reality using optical near-eye displays
(NEDs) promise to be the next breakthrough mobile platform, pro-
viding a gateway to countless AR applications that will improve
our day-to-day lives [BKLP04, vKP10]. Although most emerging
consumer products are being advertised for gaming and entertain-
ment applications, near-eye display technology provides benefits for
society at large by providing a next-generation platform for educa-
tion, collaborative work, teleconferencing, scientific visualisation,
remote-controlled vehicles, training and simulation, basic vision
research, phobia treatment, and surgical training [HS14]. For exam-
ple, immersive VR has been demonstrated to be effective at treating
post-traumatic stress disorder (PTSD) [DH02], and it is an integral
component of modern, minimally invasive surgery systems, such
as the da Vinci surgical system. Eye movement desensitization and
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reprocessing has been shown by systematic clinical trials to also be
effective for the treatment of PTSD, often combined with immer-
sive VR [CLvdHE16]. We first review near-eye display optics in
Section 3.1, in which we introduce the necessary optics terminology
in Section 3.1.1, and also review optical designs both for VR and
AR applications in Section 3.1.2 and Section 3.1.3, respectively. We
dedicate Section 3.2 to accommodation-supporting near-eye display
technologies. As an important emerging problem, we also provide
a detailed overview of foveated displays in Section 3.3, and an
overview of vision correction for near-eye displays in Section 3.4.

3.1. Near-Eye Display Optics

To fulfill the promise of immersive and natural-looking scenes,
as described by Kress and Sterner [KS13b], designers of AR and
VR NEDs need to solve difficult optical design challenges, includ-
ing providing sufficient resolution levels, eyebox and field of view
(FoV). A major impediment to achieving natural images, and a
key cause of discomfort, is the vergence–accommodation conflict
(VAC) [HGAB08, JPK∗16, KBBD17], which is caused by a mis-
match between the binocular disparity of a stereoscopic image and
the optical focus cues provided by the display (see discussion in
Section 2.1.3). Mainstream strategies [Hua17] for tackling these
challenges involve dynamic display mechanisms that can generate
accurate visuals at all possible optical depths, which greatly in-
creases the complexity of the NED design problem. Other obstacles
to widespread adoption of AR NEDs include providing affordabil-
ity, requiring a reasonable amount of computation and power, and
providing a thin and lightweight form factor suitable for daily use.
All of these problems are still waiting to be solved and even small
steps towards a possible solution require a massive effort.

3.1.1. Near-Eye Display Optics Terminology

To provide a base for our review on optical NED technologies,
we first summarise common optics terminology. The location of
a depth plane (virtual image) generated by a near-eye display is
typically reported in diopters, D, which corresponds to the recip-
rocal of the focus distance in meters (D = 1

meters ). Many standards
exist for reporting binocular FoV, including starting from a specific
point inside a person’s head or starting from a “cyclopean eye” be-
tween the user’s eyes (e.g., [WDK93]). Especially in the case of
accommodation-supporting NEDs, the differing assumptions lead to
widely varying estimates of the binocular FoV, and so we report only
the well-understood measure of monocular FoV, which is typically
reported in degrees. Resolution of a NED is quantified using cycles
per degree (cpd). For a specific depth plane and visual field (por-
tion of a FoV), typically cpd is reported in arcmins, which is 1/60
degrees. The eyebox of a NED can be defined either as a volume
or a plane, where the user’s eye can be located in front of a NED.
Eyebox dimensions are typically reported in millimetres.

3.1.2. Near-Eye Display Optics for Virtual Reality

In the early 1800s, David Brewster introduced a hand-held stereo-
scope [Bre56] using a pair of photographs and a pair of magnifying
glasses. Following Brewster’s optical layout, today’s most common
commercially available near-eye displays employ a small screen
and an optical relay to project light from the screen onto the user’s

Figure 5: Diagrams showing various optical layouts for near-eye
displays.

retinas, creating a magnified virtual version of the screen at a fixed
depth. Some of these displays are made to be video see-through AR
systems by displaying a view of the real world captured through an
on-board camera [RF00]. In the next section, we review the optics
of see-through near-eye displays that are illustrated in Figure 5.
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3.1.3. See-Through Near-Eye Display Optics

Sutherland [Sut68] introduced see-through NEDs using a beam
combiner near the eye of a subject to superimpose the direct view
of the real world and computer-generated images. Optical systems
relying on flat combiners have progressed greatly as described by
Rotier [Rot89] and Cakmakci and Rolland [CR06]. The geometry
of flat beam combiners along with the lenses used in optical NEDs
dictates a strict trade-off: a large FoV quickly leads to a bulky form
factor. Droessler and Rotier [DR90] propose a tilted catadioptric
(reflecting and refracting) system to overcome FoV limitations by
tilting the optics with respect to a flat combiner, and using a curved
combiner as the final relay surface, which provides up to 60° of
rotationally symmetrical monocular FoV. Tilted catadioptric systems
are fundamentally limited in light efficiency, depend on a complex
polarised optical system, and produce a bulky form factor. Gilboa
proposes an off-axis single-element curved beam combiner [Gil91],
and explores the associated optical design space. Today, modern
variants of off-axis single-element curved beam combiners (e.g.,
Wang et al. [WLX16]) are deployed in military applications and
consumer-level prototypes (e.g., Meta 2). Major limitations in off-
axis single-element curved beam combiners come into play while
extending FoV in horizontal directions when lit vertically; these
combiners are known to provide poor imaging characteristics with
eccentricity, and require a larger screen with a larger FoV demand.

Another family of see-through NEDs is based on waveguides.
Cheng et al. [CWHT09] propose a waveguide-based NED design
that fuses curved beam combiners and waveguides into a single
free-form prism. They describe a tiling strategy of these prisms to in-
crease limited FoV, which requires multiple displays per prism. Flat
combiners have been converted into thin cascaded waveguides as a
see-through NED prototype (e.g., Lumus); however, FoV-related is-
sues are still a major problem in practice. As described by Kress and
Shin [KS13a], holographic methods simplify designing waveguides
through holographic out-coupling and in-coupling of light. Today,
such displays are present as consumer-level see-through NED pro-
totypes (e.g., Microsoft HoloLens, Magic Leap One, Sony Smart
Eye), which only report a maximum of 45° diagonal binocular FoV.
Holographic optical elements (HOEs) can function as a complete
reflective and diffusive beam combiner, as demonstrated by Li et
al. [LLJ∗16] and Maimone et al. [MGK17], with a small eyebox.

Retinal scanning displays propose to address each cell on a user’s
retina with a beam of light. Johnston et al. [JW95] first proposed
a retinal-scanning NED by using laser light sources with a Micro-
Electromechanical System (MEMS) scanner, which was later com-
mercialized as well (Microvision Nomad). The eyebox generated by
a retinal scanning NED is proportional to the size of the used mir-
ror in the scanner, which therefore typically limit this aspect. Most
recent developments in retinal NEDs were reviewed by Rolland et
al. [RTB∗16].

3.2. Accommodation-Supporting Near-Eye Displays

Accommodation-supporting NEDs [Hua17, Kra16] address the ver-
gence–accommodation conflict (VAC) by matching the binocu-
lar disparity of virtual objects with correct optical focal cues for
various depth planes. Figure 6 compares the optical layouts of

accommodation-supporting NEDs and Table 1 provides a compari-
son of their characteristics.

Varifocal Displays A simple solution for solving the VAC is a
varifocal display, which dynamically changes the optical properties
of the display. Although varifocal displays offer large computation
benefits, they require precise gaze tracking. Liu et al. [LCH08] used
a tunable lens system combined with a spherical mirror, demon-
strating 28° of diagonal FoV with 10–14 cpd, which switches depth
from 8 D to infinity (~0.1 D) within 74 ms. Another study by Kon-
rad et al. [KCW16] also took advantage of an electrically tunable
lens system, and demonstrated 36° diagonal FoV. Their solution
allowed depth switching from 10 D to infinity (~0.1 D) within 15 ms,
and provided 5–6 cpd resolution. Dunn et al. [DTT∗17] provided
a monocular FoV beyond 60° and a fast varifocal mechanism of
300 ms that switches depth from 5 D to infinity (~0.1 D). Most re-
cently, Akşit et al. proposed using holographic optical elements as
a part of an AR varifocal NED system [ALK∗17a], offering a FoV
of 60° with 18 cpd; however, the varifocal mechanism is still too
slow at (410 ms) when switching from 5 D to infinity (~0.1 D). An
evaluation of the effect of different HMD display configurations on
discomfort can be found in Koulieris et al. [KBBD17].

Multiplane Displays Early on, Akeley et al. [AWGB04] demon-
strated the benefits of a fixed-viewpoint volumetric desktop display
using flat multiplanes, which allowed them to generate near-correct
focus cues without tracking the eye position. Recently, such displays
have been revisited with improved scene decomposition and gaze-
contingent varifocal multiplane capabilities [NAB∗15, MSM∗17].
However, such displays have large power and computational de-
mands, and require a complex hardware that would be difficult to
miniaturise. These constraints limit their usefulness to perceptual
experiments identifying the needs of future near-eye display designs.
The work of Hu et al. [HH14] demonstrated a time-multiplexed
multiplane display in the form of a wearable AR NED with a narrow
field of view (30°×40°). Lee et al. [LCL∗18] proposed a compact
multiplane AR NED composed of a waveguide and a holographic
lens, which demonstrated a FoV of 38°×19°. Zhang et al. [ZLW18]
proposed a stack of switchable geometric phase lenses to create
a multiplane additive light-field VR NED, providing approximate
focus cues over an 80° FoV. Both the works of Lee et al. [LJY∗18]
and Hu et al. [HH14] demonstrated time-multiplexed multiplane
AR NEDs with FoVs of 30° to 40°, respectively. Unlike all other
previous work in multiplane approaches, most recently, Chang et
al. [CKS18] demonstrated a fast-paced, (sub millisecond) multifocal
display with an unprecedented 40 depth layers over a wide depth
range (0.2–7 D) with 45° FoV.

Light-Field Displays Light-field NEDs promise nearly correct op-
tical accommodative cues, but this comes at the cost of significant
resolution loss. Lanman and Luebke [LL13] introduced a VR near-
eye light-field display (NELD) that uses microlenses as the relay
optics, showing a prototype with a FoV of 29.2°×16.0°, leading to a
resolution of 2–3 cpd. Huang et al. [HCW15] developed VR NELDs
further, demonstrating a prototype with a diagonal binocular FoV of
110°, leading to a resolution of 3–4 cpd. Akşit et al. [AKL15] created
a VR NELD using a pinhole mask in front of an AMOLED dis-
play, and demonstrated full-colour images with a diagonal binocular
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Display technique Focus mechanism See-through FoV Resolution Eyebox Form factor Compute overhead Gaze tracking
Pinlight displays [MLR∗14] light fields yes wide low small thin high no
Freeform optics [HJ14] light fields yes narrow high moderate moderate high no
HOE [JBM∗17] light fields yes moderate low large moderate high yes
HOE [MGK17] holographic yes wide moderate small N/A high yes
Focus tunable light engine [LCH08] varifocal yes narrow moderate small bulky moderate yes
Multifocal plane display [HH14] multifocal yes narrow moderate moderate bulky high yes
Membrane [DTT∗17] varifocal yes wide low large bulky low yes
Varifocal HOE [ALK∗17b] varifocal yes wide moderate large moderate low yes
Multifocal display [LCL∗18] multifocal yes narrow low large thin high no
Focal-surface display [MFL17] focal Surface no narrow moderate narrow moderate high no
Application-adaptive foveated display [ACR∗19] focal surface yes wide moderate large moderate low no

Table 1: A comparison of see-through accommodation-supporting near-eye displays, including the virtual reality near-eye display imple-
mentation of Matsuda et al. [MFL17]. This table is modelled after those in Dunn et al. [DTT∗17], Akşit et al. [ALK∗17b] and Matsuda et
al. [MFL17]. Note that, in our chart, a moderate FoV is defined as 40–60°, moderate resolution is defined as 10–20 cpd, and a moderate
eyebox is defined as 5–10 mm. Moderate values are adapted from [CR06, MFL17].

FoV of 83° with 2–3 cpd. By using a see-through sparse backlight
mechanism, Maimone et al. [MLR∗14] introduced a single-colour
prototype with a diagonal FoV of 110° and a resolution of 2–3 cpd.

Static and Dynamic Holographic NEDs Holography promises
an accurate representation of four-dimensional (4D) light fields;
however, the limitations of such displays include a small eyebox,
large computational demand, long calibration times, and the design
trade-off between limited resolution or a bulky form factor. Static
holograms encoded into HOEs have been used in various NED types
as optical combiners [JBM∗17, MGK17, LCL∗18] or projection sur-
faces [ALK∗17a], although the static holograms in these displays do
not provide 4D light fields. On the other hand, dynamic holographic
VR NEDs can be achieved using phase-only spatial light modulators,
which can encode holograms [SHL∗17, MGK17, MFL17], enabling
a glasses-like form factor and a wide FoV (~80°).

3.3. Foveated Displays

To match 20/20 acuity across the full field of view, a near-eye
display would need to provide 400 megapixel resolution [SM16].
However, driving a display at this resolution requires too much
bandwidth, power and computation to be feasible. The retinal cone
distribution of the human eye leads to high spatial sensitivity only in
the fovea (see Section 2.1.2). By combining a low-resolution image
in the user’s periphery with a high-resolution inset in the fovea, a
foveated display can better match the display’s output to the human
visual system’s performance, thus reducing bandwidth, power and
computation requirements substantially.

Foveated NEDs promise a major increase in simplicity while
relying on gaze trackers. We start by reviewing optical hardware
in the foveated display literature. The earliest example of a gaze-
contingent visual stimulus was presented by Reder in 1973 [Red73],
paving the way for further research into foveated imagery. Later on,
the first proposal for foveated display hardware appeared in the work
of Baldwin et al. [Bal81] as a variable resolution transparency mag-
nified by large concave mirrors. A year later, Spooner et al. [Spo82]
showed another style of desktop foveated hardware, which combines
two different displays to provide high-resolution images at the fovea,
and low-resolution images in the periphery. To our knowledge, the
work of Shenker et al. [She87] is the first to realise the concept of

combining two different displays in a near-eye display configura-
tion, in the form of a steerable foveal inset with 20 cpd resolution
created using fiber-optics and pancake-type optical relays. Later, the
work of Howlett et al. [How92] followed the path of combining two
different displays in an NED configuration to build a complete telep-
resence system with cameras. Rolland et al. [RYDR98] combined
two displays using a beam splitter in a NED setting. In their de-
sign, a high-resolution inset with 24 cpd resolution is relayed to the
fovea of the eye using microlenses with a FoV of 13.30°×10.05°,
while a lower-resolution display at 6 cpd spans across a FoV of
50°×39° through a magnifier lens. Godin et al. [GMB06] describe
a dual projector layout in order to realise a stereoscopic desktop-
sized display with a fixed foveal region. Mauderer et al. used gaze-
contingent depth of field blur (gcDOF) to reproduce dynamic depth
of field on regular displays, providing an alternative way of con-
veying depth [MCNV14]. Recently, Lee et al. [LCL∗18] proposed
a compact AR NED comprised of a waveguide and a holographic
lens that combines two displays. Their design has a FoV of 38°×19°
and eliminates the needs for gaze-tracking hardware. Most recently,
Akşit et al. [ACR∗19] demonstrated that printed optical components
can be used to create static focal surfaces with fixed and dynamic
foveation support for near-eye displays with 12 cpd, spanning across
a FoV of 55°×30°. There is undoubtedly a clear hardware benefit in
foveation; we refer curious readers to the following set of papers for
the discussion of detailed perceptual and computational benefits of
foveation in computer graphics: [PN02, PSK∗16, KSH∗17].

3.4. Vision-Correcting Near-Eye Displays

For users who need corrective lenses in their everyday lives (i.e.,
‘near-sighted’ or ‘far-sighted’), the situation is even more com-
plex, because these users already have to deal with the vergence–
accommodation conflict (VAC) even without AR or VR [SHL∗17].
Consider a ‘near-sighted’ user who can comfortably verge and ac-
commodate to, say, 0.5 m, but needs corrective lenses to focus clearly
on objects at 10 m. When they first use the corrective ‘distance’
lenses, an object at 10 m appears in focus (because to their eyes,
it is at 0.5 m, but they will verge to 0.5 m, giving ‘double vision’).
Only after many hours, days or even weeks of wear, does the vision
system gradually adapt to verging at 10 m, while still accommo-
dating to 0.5 m. Some users never become adapted to such a large
VAC [AKGD17]. Over generations, opticians have empirically stud-
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Figure 6: Diagrams comparing generic optical layouts for vari-
ous different types of accommodation-supporting near-eye displays
with a traditional Brewster-style near-eye display layout [Bre56].
Accommodation-supporting near-eye displays can be classified as
varifocal/multifocal, multiplane, focal surface, and holographic
near-eye displays.

ied the range of VACs (‘zone of clear single binocular vision’, ‘zones
of comfort’ [DM64, Fry39]), which are tolerable and to which most
users can adapt.

When donning a near-eye display, users requiring vision correc-
tion still need to wear their corrective lenses. A few AR displays,
such as the Lumus DK-32, provide a physical space between the
user’s eyes and the display for fitting prescription lenses. For presby-
opes (people over about 40 years of age), who account for about 40%

of US population, this does not solve the problem because the user’s
range of focus is restricted by the focus range of the lenses being
worn at any moment – for instance “reading” glasses or “driving”
glasses. Installing bifocals, trifocals, or progressive lenses merely
puts a particular distance in focus at one vertical angle, forcing the
user to tilt their head up or down to bring into focus a real-world
object that is at a particular distance. Even the most recent offerings
require the user to turn a focus knob on the lens (e.g., Alvarez lens)
to adjust the depth of the focal plane – an unacceptably awkward
requirement for most users.

We envision a future in which high-quality mixed-reality experi-
ences can be realised for all users, regardless of prescription, in an
efficient, cost-effective way. This requires to accessibility technolo-
gies, such as corrective lenses, to be more tightly integrated into the
display.

Recently, a very promising body of work has become available
on prescription correction in near-eye displays [CDAF18, PKW18,
LHG∗18]. These methods allow for automating per-user image mod-
ifications using all or some of the following hardware: (1) a pair of
focus-changing optical layouts for partially or globally changing the
optical power of the real world [MN15], (2) a gaze-tracking mecha-
nism to predict where a user is looking at, and (3), a depth sensor
or a pair of conventional cameras to interpret real-world depths in
front of the user, increasing the accuracy of gaze estimations.

Another camp on tackling vision correction is through convolu-
tional methods [MGDA∗15, HWBR14]. This approach has been
heavily researched in the most recent years [IK15, IAIK16], and
found to be requiring a large calibration effort with respect to focus-
changing optical layouts.

Another vision correction methodology that is important for near-
eye displays is along the axis of colour correction, which colourblind
people can take advantage of. A body of work has investigated
colour correction in augmented reality using transparent spatial
light modulators [LSZ∗18, WHL10] and projectors [ABG10]. Such
additions to near-eye displays require a rethinking of optical design;
therefore, a combination of all previous efforts are still yet to be
researched.

4. Tracking Methods for Near-Eye Display Technologies

Sherman and Craig [SC18] define the four key elements of virtual
reality (which for them encompasses augmented and mixed reality)
to be:

1. Virtual world comprises the virtual content of a given medium.
2. Immersion is the replacement of perception with virtual stimuli.
3. Sensory feedback based on the user’s physical position in space.
4. Interactivity is responding to the user’s actions.

Providing correct sensory feedback therefore requires measuring, or
tracking, the location and orientation of the head-mounted display
relative to a known reference frame, so that the VR system can
respond by rendering the correct images to be displayed to the user.
Figure 7 illustrates this standard input–output cycle of VR and AR
systems. To provide meaningful interactivity, it is not only necessary
to track the head-mounted display, but it is also necessary to track
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Koulieris, Akşit, Stengel, Mantiuk, Mania & Richardt / Near-Eye Display and Tracking Technologies for Virtual and Augmented Reality

The user

The system

Tracking (input)

Application

Rendering

Display (output)

Figure 7: The VR/AR system input–output cycle according to Jerald
[Jer09]. The user’s motion is tracked, the application reacts to the
motion and renders visual content for immediate display.

the user, their motion and their environment, so that their actions
can trigger appropriate responses.

In this section, we are therefore considering the full range of
tracking techniques, from head tracking for determining the head-
set’s pose, to tracking of the user’s body pose, their hands, facial
expressions and eye gaze, as well as the environment. We first
briefly look at the underlying tracking technologies in Section 4.1
and discuss their pros and cons, including their accuracy and la-
tency, as well as their suitability for different tasks. See recent
surveys [BCL15, MUS16] for a more detailed account. We further
discuss recent progress across different tracking modalities in Sec-
tion 4.2, and how this informs the design of state-of-the-art VR and
AR systems in Section 4.3.

4.1. Tracking Technologies

Convincing and immersive virtual or augmented reality requires the
real-time tracking of the user’s head-mounted display as well as their
interaction with the world [BCL15]. Over the last few decades, many
tracking approaches have been proposed, based on different tracking
technologies as well as combinations of multiple technologies (see
examples in Figure 8). Each approach needs to find a trade-off
between key performance criteria [WF02], such as accuracy, update
rate, latency, jitter, noise and drift, and other considerations such
as visibility requirements, contact-based versus contact-free, and
active versus passive methods.

Figure 9: 6 degrees of freedom.

One important property of
tracking approaches is how
many degrees of freedom, or
DoF, they can measure. The
position and orientation of an
object can be uniquely speci-
fied using six degrees of free-
dom (see figure to the right): 3
DoF for translation (left–right,

up–down, forward–backward)
and 3 DoF for rotation (pitch,
yaw, roll), for a total of 6 DoF.
Some approaches only recover
the three rotational DoF, so that a viewer can look around a vir-
tual world from a fixed viewpoint. Only 6-DoF tracking allows the
viewer to move in the virtual world like in the real world.

Mechanical Tracking is one of the oldest approaches that has
been used at least since Ivan Sutherland’s ground-breaking head-
mounted display [Sut68]. Using a mechanical arm with sensors
at the joints, position and orientation can be measured with high
accuracy and low jitter and latency. The main limitation is that the
mechanical arm needs to be physically connecting the object of
interest to a fixed reference frame, such as connecting Sutherland’s
display to the ceiling, or a joystick to a desk. This limits the range
of possible motions to the fixed location at which the system is
installed. However, this may be acceptable or even desirable in
certain application scenarios such as location-based entertainment.

Magnetic Tracking measures the magnetic field vector using
three mutually orthogonal magnetometers or electromagnetic coils
[RBSJ79]. Magnetometers measure static magnetic fields, such as
the Earth’s natural magnetic field, which provides a 3-DoF orien-
tation measurement. Electromagnetic coils can be used to measure
the current induced by an active source, and three sources are suf-
ficient for full 6-DoF pose estimation. Another main benefit of
magnetic tracking is that no line of sight is required, which is why it
is for example used by the Magic Leap One AR headset and con-
troller [BLW∗17]. However, magnetic tracking tends to be sensitive
to metal as well as fairly noisy and expensive. Recently, centimetre-
level accuracy has been demonstrated using only commodity WiFi
infrastructure [KK17, ZLAA∗18].

Inertial Tracking relies on accelerometers and gyroscopes to esti-
mate velocity and orientation. This functionality is often grouped
into inertial measurement units (IMUs), which have become pop-
ular since the introduction of microelectronic mechanical systems
(MEMS) that offer a cheap and small package with a high update
rate. The biggest weakness of inertial tracking is drift, as measure-
ments need to be integrated once to obtain orientation and twice to
obtain position, which leads to significant drift over time. In practice,
MEMS IMUs often also include magnetometers to reduce rotational
drift, e.g., as used in the Oculus Rift development kit [LYKA14] or
Google’s Daydream headset, which both only support 3-DoF ori-
entation tracking. Many practical implementations combine IMUs
with other tracking techniques (see ‘hybrid tracking’) to manage
drift while benefitting from the high update rate.

Acoustic Tracking measures distances using time-of-flight or
phase-coherent ultrasound waves [Sut68]. Devices are generally
small and cheap, but suffer from low accuracy and refresh rates, and
require line-of-sight while only providing 3-DoF orientation. For
these reasons, acoustic tracking is becoming less common, although
it is still being used for room-scale environments [SAP∗16].

Optical Tracking uses one or more cameras in the visual or in-
frared spectrum to reconstruct the position and/or orientation of
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Figure 8: Example uses of the tracking technologies discussed in Section 4.1: (a) Sutherland’s ‘Sword of Damocles’ mechanical tracker
(1968) [Sut68]; (b) the Magic Leap One Controller (2018) uses magnetic tracking [BLW∗17]; (c) Google Daydream View (2017) uses
inertial tracking for 3-DoF localisation of headset and controller; (d) ultrasonic tracking for room-scale 6-DoF localisation [SAP∗16]; (e)
marker-based optical tracking using ARToolkit [KB99]; (f) model-based optical tracking using Vuforia; (g) SLAM-based tracking using direct
sparse odometry [EKC18]; (h) depth-based tracking using BundleFusion [DNZ∗17]; and (i) visual-inertial odometry [LLB∗15] as a hybrid
technique combining optical and inertial tracking.

objects relative to the camera or, alternatively, the camera’s pose
relative to the environment as used in AR [BCL15, MUS16]. A
huge range of different optical tracking approaches and technolo-
gies have been proposed in recent years. They all rely on image
processing and computer vision to interpret the captured images
or videos. (1) Marker-based tracking approaches look for known
artificial markers, such as retro-reflective spheres used for tradi-
tional motion capture (e.g., Vicon), or 2D fiducial markers like
ARToolkit [KB99] that enable 6-DoF camera pose estimation. (2) If
the geometry of the scene, or objects in it, is known, it can also be
used for model-based tracking. A special case of this is the tracking
of a planar surface, as it simplifies the pose estimation based on esti-
mated homographies [MUS16]. (3) SLAM-based tracking performs
simultaneous localisation and mapping in previously unknown envi-
ronments. SLAM techniques have been covered thoroughly in two
recent surveys [CCC∗16, SMT18]. (4) Depth-based tracking uses
depth maps acquired from infrared-based depth sensors that have be-
come widespread over the last decade. Such sensors usually operate
using the active stereo [Zha12] or time-of-flight [KBKL10] principle
(e.g., Microsoft Kinect and Kinect One, respectively). Overall, most
optical tracking approaches are usually very accurate, reasonably
cheap, immune to metal and work over long ranges. However, they
do require a line of sight, some techniques require specific markers,
and update rates can be low (10s of Hz).

Hybrid Tracking combines multiple tracking technologies to over-
come the limitations of each one, as no single tracking technology
provides a silver bullet [WF02]. A common combination is visual-
inertial SLAM [LLB∗15], which fuses SLAM-based tracking (high
accuracy, but low update rate) with inertial tracking (high update
rate, but long-term drift) to reduce latency and increase accuracy
and robustness. This is for instance used by the Microsoft HoloLens
and Windows Mixed Reality HMDs [ESS∗16], as well as Apple’s
ARKit and Google’s ARCore AR APIs. Valve’s Lighthouse system
is another hybrid tracking technology that combines optical tracking
(using a swept infrared laser) for high-accuracy positioning with in-

ertial tracking for low-latency tracking [YS16]. Hybrid systems have
shown the best overall tracking performance, but are necessarily
more complex and expensive than any single technology.

4.2. Tracking Modalities

Tracking the user and their interaction with the real and virtual
worlds comes in many flavours. Now that we have looked at the
arsenal of tracking technologies that are at our disposal, we will
next explore some recent advances in specific tracking modalities
(see examples in Figure 10). We start with head and eye tracking,
which both provide invaluable information about what imagery
to show to the user. Next, we expand the tracking of the user by
tracking their full body, hands and face. Finally, we are taking
a quick look at current techniques for reconstructing static and
dynamic environments, with which the user may be interacting
while wearing a near-eye display.

Head Tracking In the beginning, there was only head tracking
[Sut68], although Sutherland proposed both a mechanical and an
ultrasound-based head tracker. This early work clearly demonstrated
how important knowing the head pose is for rendering images that
appear fixed in 3D space. Great advances in tracking technology
over the last 50 years have led to widely available commercial near-
eye displays that have head tracking built in, such as the Oculus Rift,
which relies on IMUs [LYKA14] in combination with infrared-based
optical tracking. Recent research prototypes have also successfully
experimented with using a cluster of rolling-shutter cameras for
kilohertz 6-DoF visual tracking [BDF16], using a single RGB-D
camera [TTN18] or most simply a standard RGB camera [RCR18].

Eye Tracking aims to estimate the gaze direction of a user – ide-
ally for both eyes, so that the 3D point at which both eyes are
verging can be determined [WPDH14]. Eye trackers can be desk-
mounted [WPDH14], laptop-mounted [ZSFB19], head-mounted
[SB15] or using the front-facing camera of mobile phones and
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Figure 10: Examples of the tracking modalities discussed in Section 4.2: (a) head tracking with five pairs of rolling shutter cameras at kilohertz
frequencies [BDF16]; (b) image-based head tracking [RCR18]; (c) desk-mounted eye tracker below the display [WPDH14]; (d) head-mounted
eye tracking [SB15]; (e) phone-based eye tracking using deep learning [KKK∗16]; (f) egocentric inside-out motion capture [RRC∗16]; (g)
live motion capture from a single video camera [MSS∗17]; (h) performance capture from monocular video [XCZ∗18]; (i) egocentric hand
tracking from an RGBD camera [MMS∗17]; (j) tracking multiple interacting hands for VR [TTT∗17]; (k) head-mounted face tracking using
measure sensors [LTO∗15]; (l) face tracking from a RGBD camera [TZS∗18]; (m) performance capture of full bodies and hands [RTB17];
(n) static environment reconstruction by KinectFusion [NDI∗11]; (o) annotated 3D scene reconstruction [DCS∗17]; (p) non-rigid motion
tracking and surface reconstruction [GXW∗18]; and (q) real-time volumetric non-rigid reconstruction [IZN∗16].

tablets [KKK∗16, KAB18]. Near-eye input avoids the problems
of head pose and eye-region estimation, and allows use of high-
resolution images of the eye. Most eye trackers work in the infrared
spectrum as dark irises appear brighter in it and the corneal reflec-
tion can be filtered out by an infrared bandpass filter, resulting in
stronger contrast to the black pupil that is used for gaze estimation.

In the following, we briefly summarise the history and state-of-
the-art approaches for video-based eye tracking. We ignore other
invasive eye tracking technologies such as scleral coil trackers.
Duchowski’s book on eye tracking methodology [Duc17] provides
more practical information for the interested reader. In addition, cu-
rious readers can read a detailed up-to-date survey of gaze-tracking
systems and gaze-estimation algorithms in the work of Holmqvist
et al. [HNA∗11] and Kar and Corcoran [KC17].

Feature-based gaze-estimation methods locate the pupil and then
map the pupil location to a screen location using user-specific cali-
bration. The most recent pupil detection algorithms are discussed
in this section. The Starburst algorithm [LWP05] iteratively locates
the pupil center as the mean of points which exceed a differential lu-

minance threshold along the rays extending from the last best guess.
In the SET method [JHB∗15], the convex hull segments of thresh-
olded regions are fit to sinusoidal components. Świrski et al. [SD14]
and Pupil Labs [KPB14] both start with coarse positioning using
Haar features. Świrski et al. then refine by k-means clustering the
intensity histogram and a modified RANSAC ellipse fit, while Pupil
Labs use ellipse fitting on connected edges. ExCuSe [FKS∗15],
ElSe [FSKK16], and PuRe [SFK18] use morphological edge filter-
ing followed by ellipse fitting. PuRe is capable of selecting multiple
edges for the final fitting and edge selection. ExCuSe and ElSe
provide alternative approaches for cases when edge detection is not
applicable. Recently, Fuhl et al. [FGS∗18] presented circular binary
features (CBF) to learn conditional distributions of pupil positions
for the datasets on which they test. These distributions are indexed
by binary feature vectors and looked up at inference time.

Due to the success of deep learning methods in many areas
of computer vision, the state-of-the-art algorithms are mostly
based on convolutional neural networks (CNNs) [SMS14, WBZ∗15,
GWW∗16, HKN∗16, KKK∗16, WBM∗16, MBW∗17, PZBH18,
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PSH18,KSM∗19]. Networks with more layers generally outperform
shallower ones, and VGG16 [SZ15] is emerging as a consensus
architecture to be wrapped with preprocessing or context-aware
layers [ZSFB19]. Kim et al. propose a network architecture for low-
latency and robust gaze estimation and pupil localization [KSM∗19].
PupilScreen measures the pupil diameter with a CNN from sin-
gle smartphone photo of the eye [MBW∗17] Additionally, other
approaches differing from the aforementioned ones are appearance-
based methods, which directly compute the gaze location from the
eye image [WBZ∗15, ZSFB15, TSSB17].

Related work on remote gaze tracking includes training across
multiple cameras [ZHSB18], using the screen as a glint source
[HLNL17], using corneal imaging for fixation extraction and activ-
ity detection [LK18], and machine learning for calibrating track-
ers [SFK17]. Tonsen et al. [TSSB17] explore gaze tracking using
combinations of multiple low-resolution and low-power miniature
cameras, which is a favourable condition for mobile hardware.

Full-Body Tracking estimates human body pose in terms of a
kinematic skeleton, which comprises rigid bones that are connected
at joints with varying degrees of freedom [MHKS11]. Most com-
mercial motion-capture systems use optical tracking with multiple
cameras, either using markers (e.g., Vicon, OptiTrack) or markerless
(e.g., The Captury, iPi Soft), while some systems use IMUs (e.g.,
Xsens, Neuron), which are not constrained to a fixed capture volume.
Motion capture has also been demonstrated using a single consumer
depth camera, such as the Microsoft Kinect [WZC12, SGF∗13],
which has the benefit of being largely invariant to the colour of
clothing being worn. Approaches that use body-mounted cameras
overcome the restricted capture volumes of previous approaches
[SPS∗11] and also enable motion capture in space-constrained en-
vironments [RRC∗16] that were previously infeasible for optical
tracking approaches. Most recently, deep learning applied to large
datasets has enabled monocular motion capture from a single cam-
era [ZZP∗18], even live and in real time [MSS∗17, XCZ∗19]. In
contrast to motion capture, performance capture aims to reconstruct
the surface geometry of humans, not just their skeletons [TdAS∗10];
this surface reconstruction is more desirable for virtual reality ap-
plications, as this would enable one to see their own body in the
virtual world. Recent monocular approaches have shown convinc-
ing results with a depth sensor [DDF∗17] or just a standard video
camera [XCZ∗18].

Hand Tracking aims to reconstruct the pose of hands and fin-
gers, which are crucial for our everyday interaction with the real
world. Hand tracking is a challenging problem because fingers
look very similar and tend to occlude each other. Most hand-
tracking approaches use optical tracking, as it works from a dis-
tance with line-of-sight. The wrist-worn Digits sensor uses a custom
infrared projector-camera system [KHI∗12], but most approaches
use commodity hardware instead, particularly consumer depth cam-
eras. The colour channel is sometimes used for hand segmenta-
tion [OKA11], but many approaches only use the depth chan-
nel [SMOT15, TBC∗16, TPT16], as it is invariant to skin colour
and illumination, which makes colour-only hand tracking more
challenging [MBS∗18]. Egocentric approaches use body-mounted
RGB-D cameras instead [RKS∗14, MMS∗17] to recover hand pose

from the user’s viewpoint. While most work focuses on track-
ing a single hand, a few approaches specialise in tracking multi-
ple interacting hands [TTT∗17, TBS∗16] or interaction with ob-
jects [SMZ∗16, TA18].

Face Tracking is important for social applications such as video
conferencing and telepresence. Two recent surveys provide an
up-to-date overview and evaluation of techniques for face recon-
struction, tracking and applications [CAS∗18, ZTG∗18]. However,
head-mounted near-eye displays create new challenges for face
tracking because they occlude a large part of the face. Occlusion-
aware techniques [HMYL15] partially address this problem, while
other approaches integrate pressure sensors into the edge of the
head-mounted display to directly measure the deformation of the
face [LTO∗15]. When combined with in-headset eye tracking, the
reconstructed facial models become more expressive, which en-
ables high-fidelity facial and speech animation [OLSL16] as well as
gaze-aware facial reenactment [TZS∗18].

Multimodal Tracking is an emerging area, which simultaneously
tracks multiple modalities to obtain a more comprehensive recon-
struction of the user. Such approaches for example combine tracking
of bodies and hands [RTB17] or bodies, hands and faces [JSS18].

Environment Reconstruction is required to understand how a
user interacts with the real world, and hence also the virtual world.
Recent surveys provide an excellent introduction to and overview
of 3D reconstruction using RGB-D cameras [ZSG∗18], as well as
simultaneous localisation and mapping (SLAM) in static [CCC∗16]
and dynamic environments [SMT18]. Most 3D reconstruction ap-
proaches assume static environments and integrate multiple depth
maps from a moving camera using a truncated signed distance
function, e.g. the pioneering KinectFusion approach [NDI∗11].
Subsequent work expanded the supported capture volume using
voxel hashing [NZIS13], added support for colour video cameras
[PRI∗13], achieved high performance on mobile devices [KPR∗15],
and integrated loop-closure optimisation with surface re-integration
[DNZ∗17]. More recent work goes beyond reconstructing just ge-
ometry and also estimates part labels to help understand real-world
environments [ZXTZ15, DCS∗17]. Most environments, however,
are not entirely static and require non-rigid reconstruction and mo-
tion tracking [ZNI∗14, NFS15], deformation of integration vol-
umes [IZN∗16], dense visual SLAM [WSMG∗16] or L0 motion
regularisation [GXW∗18].

4.3. Tracking Applications

In this section, we review a select set of tracking applications in
VR/AR: gaze tracking to speed up rendering while maintaining
visual fidelity, and gesture/gaze tracking to control user interfaces.

Gaze-Aware Displays Being able to detect and to adapt to the
gaze direction facilitates many new ways to enhance digital displays.
The notion of gaze-contingent or gaze-aware display devices dates
back at least two decades. In the following, some of the most recent
key contributions of the field are presented. Excellent review articles
on gaze-contingent techniques and applications include those of
Reingold [RLMS03], O’Sullivan [OHM∗04], Duchowski [DCM04,
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DÇ07], Dietrich [DGY07], Bartz et al. [BCFW08], Masia et al.
[MWDG13] and Stengel et al. [SM16].

Another application for eye tracking in HMDs is foveated ren-
dering [GFD∗12, SGEM16, PSK∗16, WRK∗16], which we briefly
touched on in Section 3.3. The rapid fall-off in acuity from our
foveal to our peripheral field of vision is exploited to allocate ren-
dering and video processing resources more efficiently. Stengel
et al. present a perception model for adaptive image-space sam-
pling [SGEM16]. In this work, the scene is rendered and displayed
in full detail only within a small circle around the gaze direction,
and the rendered image resolution decreases continuously with in-
creasing angular distance from the foveal field of vision. Weier
et al. present a perception-based foveation scheme using ray trac-
ing [WRK∗16, WRHS18]. In recent work, Mauderer et al. created
a model for simultaneous contrast perception [MFN16]. The ap-
proach modulates the colour of the scene in the periphery according
to the gaze direction, which results in more saturated colour per-
ception. The authors plan to use the effect to create a new form
of high dynamic range images with increased perceivable gamut
size [MFN16]. Patney et al. show that the level of foveation can be
increased if the local contrast is boosted and therefore perceptually
maintained [PSK∗16]. In follow-up work, Sun et al. have presented
foveation for light-field displays [SHK∗17]. Lungaro et al. present a
fast foveation scheme for reducing bandwidth requirements during
video transmission [LSV∗18].

Dedicated measurements to determine acceptable latency for
gaze-contingent displays have been conducted in several studies
[EMAH04, LW07, RJG∗14, APLK17]. The measured end-to-end la-
tency comprises the full gaze capture, rendering and display pipeline,
starting with capturing the frame for eye-tracking and ending with
the reception of the photons emitted by the display by the photore-
ceptors in the retina. Loschky et al. observed that the display has
to be refreshed after 5 ms to 60 ms following a saccade for an im-
age update to go undetected. The acceptable delay depends on the
task of the application and the stimulus size in terms of induced
peripheral degradation. Beyond that time delay, detection likeli-
hood rises quickly [LW07]. It is therefore important to decide if
the intended task is concerned with perceptual fidelity or visual
performance. Albert et al. present latency requirements for a variety
of VR scenarios [APLK17].

Under normal circumstances, attention is guided by visual fea-
tures and the task of the user, which is exploited for passive gaze
prediction [KDCM14]. Strategies for gaze guidance are aiming for
steering attention to a specified target location, which can signif-
icantly differ from the natural fixation location. Therefore, gaze
guidance requires altering the visible scene content. McNamara
and Bailey introduced a more subtle, yet effective gaze guidance
strategy [MBS∗12, BMSG09]. The authors apply image-space mod-
ulations in the luminance channel to guide a viewer’s gaze through
a scene without interrupting their visual experience. The principle
has been successfully applied to increase search task performance
as well as to direct gaze in narrative art [MBS∗12]. Hence, the
technique may support understanding of a painting in a gallery or
a related use case, but may also be useful for gaze guidance in
simulators and training, pervasive advertising or perceptually adap-
tive rendering [BMSG09]. Grogorick et al. explored subtle gaze

direction for wide field of view scenarios in immersive environ-
ments [GSEM17]. Recently, Sun et al. successfully apply subtle
gaze guidance for redirected walking in VR [SPW∗18]. Along simi-
lar lines, Langbehn et al. exploit blink-induced suppression for the
same redirected walking task [LSL∗18].

Gesture-Driven User Interfaces 3D gestural interaction provides
an intuitive and natural way of 3D interaction, often providing
a detailed representation of hands and fingers visualised in a 3D
spatial context, while using a near-eye display [LaV13, KPL17].
Accurately recognising detailed 3D gestures, especially involving
subtle finger movement is paramount, so that interaction appears
seamless. One of the key devices for hands/finger recognition, which
provides low-latency, immediate interaction with 3D space is the
Leap Motion device. Because of its low cost, it became available
to a wide range of users of entertainment as well as XR training
applications [Car16, NLB14]. The Leap Motion is a small device
connected via USB, which is often mounted onto a near-eye display.
Using two monochromatic infrared (IR) cameras and three IR LEDs,
the device recognises gestures within approximately 1 metre. The
LEDs generate pattern-less IR light and the cameras capture at
around 200 Hz, synthesising 3D position data for fast hand tracking.
The smaller range of recognition and higher resolution of the device
differentiates Leap Motion from the Kinect, which is more suitable
for full-body tracking in a space the size of a room [GB18,TSSL15].
Although advances in gestural recognition hardware are rapid and
3D gesture interfaces are now widely adopted, the technologies are
not yet stable, especially in relation to full-body motion capture so
that the ecological validity of immersive experiences is guaranteed
[VPK17].

Gaze-Driven User Interfaces Gaze-based interaction is intu-
itive and natural as tasks can be performed directly in the spa-
tial context without having to search for an out-of-view keyboard
or mouse [Duc18]. Past research as early as the 1980s investi-
gated eye-tracking-based interfaces to interact with 2D user inter-
faces [HWM∗89], as well as gaze input for people with disabili-
ties [YF87]. Using gaze as an interaction metaphor for attentive
user interfaces is intuitive for search tasks, but also turns out to
be ambiguous and error-prone when being used for selecting or
triggering commands [Jac91]. Special graphical user interfaces re-
duce ambiguities for gaze writing tasks, but have not been able to
reach interaction bandwidths that are competitive to established in-
put devices such as the keyboard [WRSD08, PT08, MHL13]. Under
normal conditions, the eye is used to gain information about the en-
vironment, but not to trigger commands. However, different studies
have shown the gain in task performance if gaze is combined with
other modalities, such as touch or head gestures [SD12, MHP12].
Recently, gaze-based interaction has been employed for Locked-In
Syndrome (LIS) patients combining eye movement and electroen-
cephalogram (EEG) signals confirming or cancelling gaze-based
actions [HLZ∗16].

A common issue when using an eye-tracked interface as an input
device is known as the ‘Midas touch’ problem. Eye movements are
involuntary and accidental interface activation is frequent. Fixation
time could last from 450 ms to 1 second when a gaze-based inter-
face is initially used, but has been shown to become faster with
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experience to around 300 ms in the case of gaze typing [MAŠ09].
Faster fixation times, however, when requested as part of a formal
experimental design are stressful to the users. Speech recognition
has been used in the past to signify an event as a solution to the
Midas touch issue, requiring accurate synchronisation of gaze and
speech data streams in order to be reliable [KTH∗03].

Eye tracking has been utilised for interaction in near-eye dis-
plays, showing performance improvements compared to finger point-
ing [TJ00]. Recently, various companies incorporate eye tracking
in novel near-eye displays, such as the FOVE and Magic Leap,
or providing add-ons for near-eye displays such as for the Oculus
Rift and HoloLens [vdMKS17]. Eye-tracked interfaces for immer-
sive viewing, covering commonly operated actions of everyday
computing such as mail composing and multimedia viewing, have
demonstrated less typing errors while operating the eye-controlled
interface compared to using the standard keyboard, while invok-
ing stronger enjoyment and satisfaction associated with the eye-
tracked 3D interface [SKM15]. The Midas touch issue in gaze-
driven near-eye displays is dealt with by employing an additional
mechanical input (switch) to signify a selection in the immersive
environment [SKM15], or a method in which users perform a distinc-
tive two-step gaze gesture for object selection [MGFY18]. Recent
research explored natural gaze-based interaction techniques in im-
mersive environments, such as eye-gaze selection based on eye gaze
and inertial reticles, cluttered object selection that takes advantage
of smooth pursuit, and head-gesture-based interaction relying on the
vestibulo-ocular reflex [PLLB17]. Gaze-based interaction is shown
to improve user experience and can demonstrate, in some cases,
comparable performance to standard interaction techniques.

5. Future Work

In this section, we discuss the variety of open problems and research
challenges that remain unsolved.

The Vergence–Accommodation Conflict is one of the most sig-
nificant ergonomic issues related to viewer fatigue. The conflict
is common for most young users of modern consumer-grade im-
mersive near-eye displays, when viewing stereoscopic 3D con-
tent [KBBD17]. The conflict is caused because the plane of focus
(i.e., the screen) is fixed, whereas eye vergence movements occur
continuously when fusing stereoscopic content [HGAB08]. For ex-
ample, in a VR gaming scenario, when the player is in control of
the view, fast-moving collisions with buildings or objects will result
in excessive disparities which, for the vast majority of users, cause
visual strain and jeopardise the quality of the overall gaming experi-
ence. Symptoms range from slight discomfort that can cause major
eye strain to visually-induced dizziness, and lead to significantly
reduced depth perception. The level of discomfort increases with
the exposure time to 3D content which is not calibrated for comfort-
able viewing. High disparities force the eyes to rotate unnaturally in
relation to each other.

Software-based solutions to the vergence–accommodation con-
flict include the stereo-grading process, i.e., altering the depth struc-
ture of a scene by drawing objects in a user’s comfortable disparity
range, also known as the comfort zone of the observer, have demon-
strated enhanced viewing comfort [KDCM16, KDM∗16]. Recent

stereo grading advances for 3D games improve perceived quality
based on the available gaze information, applying localised disparity
management, for objects predicted to be attended or on areas based
on the current task [KDCM16]. Such approaches smoothly relocate
the perceived depth of attended objects/areas into the comfort zone,
maintaining a rich sense of depth. However, stereo-grading solu-
tions are software-based and rather limited, suffering from local or
global card-boarding effects, often modifying depth and speed of
objects and are not suitable for truly real-time arbitrary disparity
manipulations [OHB∗11]. Recently, it has been shown that accom-
modation can be driven quite effectively when significant optical
aberrations of the human eye are taken into account when rendering
for VR, in particular using chromatic aberration [CLS∗17]. A com-
bination of optical solutions, eye tracking and rendering techniques
are now driving the development of consumer-driven near-eye dis-
plays. These methods, based on the focus-adjustable-lens design
that drives accommodation effectively, truly have the potential to
resolve the vergence–accommodation conflict in the near future.

Gaze Tracking is a mandatory technology for many of the pro-
posed display concepts and therefore has to become an industry
standard. Along these lines, Khronos OpenXR [Khr18] has become
the most promising attempt to establish low-latency eye tracking as
an open and cross-platform standard in the virtual reality and mixed
reality software ecosystem. Augmented reality glasses introduce
additional constraints in terms of power consumption and physical
size of the tracking hardware. Reaching this goal requires more
research on mobile, small-scale, low-power, robust and accurate
eye-tracking technology. Although attempts using multiple minia-
ture cameras or photo diodes are promising [TSSB17,LLZ17], these
approaches are not yet suitable for accurate tracking under arbi-
trary lighting conditions and longer periods of time. Gaze prediction
methods [ATM∗17, KDCM15] and other specialised signal filters
can be expected to reduce latency issues or high sampling rates.

The tracking equipment shifting over time with respect to the
head also usually introduces errors in gaze estimation. Eye location
estimation from camera frames facilitates drift compensation, but
usually requires high-resolution data and is therefore only viable
for VR or desktop scenarios. Eye trackers within AR devices have
to solve this problem in new ways and might require additional
low-power sensors measuring the head pose with respect to the AR
device. With the advent of broadly used gaze tracking, we can expect
new applications enabled by the user’s gaze [SGE∗15] as well as
new usages of gaze data. Games and VR experiences will greatly
benefit from gaze information to enable enhanced user interfaces,
more social interaction through eye contact [SWM∗08] and reduced
computation efforts in rendering [PSK∗16, SGEM16]. Multimodal
saliency and attention models [EZP∗13] could greatly improve the
accuracy of user behaviour understanding and related applications,
such as for foveated rendering.

In addition, user customisation and automated device calibration,
user profiling and user-friendly identification will be enabled when
biometric eye data can be acquired on the fly [FD00]. However, secu-
rity and privacy of the individual user has to be maintained to prevent
identity theft. Recently, eye tracking for medical rehabilitation has
been shown to be feasible [YWL∗17, ŽHH∗17], e.g., to cure lazy
eyes by learning to see 3D in VR, and then in reality. Blink rate, pupil
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size and saccade measurements allow for cognitive state, behaviour,
fatigue and emotion analysis in real time [AAGW14, ZS82, SS00].
Each of these components constitutes a great research field by itself.
What is missing is an efficient way to acquire ground-truth data for
the development of machine-learning-based methods.

User and Environment Tracking are crucial for achieving con-
vincing and immersive virtual and augmented reality experiences
[BCL15]. Research in these areas has made great progress in recent
years, as witnessed by the wealth of techniques and approaches sur-
veyed in Section 4. However, tracking is far from a solved problem.
In our opinion, the four main remaining challenges that need to
be addressed are robustness, speed, efficiency and availability. (1)
Robustness is needed for real-world applications that go beyond the
proof-of-concept stage demonstrated by current research prototypes.
(2) Speed is a necessity, as the user and their environment need to
be tracked in real time with minimal latency and high update rate to
avoid disorientation and discomfort. (3) Efficiency is required when
tracking needs to be performed within the limited resources of stand-
alone devices, including limited computation, memory and power
budgets. (4) Availability of state-of-the-art tracking implementations
is currently limited as most are proprietary; freely available and
generously licensed open-source implementations will facilitate the
development of a larger range of future display devices, as it lowers
the barrier of entry into the market. It is worth noting that not all
areas of tracking face all of these challenges. Head tracking, for
example, is arguably solved sufficiently robustly, quickly and effi-
ciently in state-of-the-art consumer-level VR and AR head-mounted
displays, but these implementations are proprietary and, to the best
of our knowledge, there are no comparable free solutions.

6. Conclusion

In this state-of-the-art report, we summarised the established and
recent work in the area of near-eye displays and tracking technolo-
gies. We first covered relevant background such as optics and human
visual perception, and then described the most fundamental but also
the most recent advances in immersive near-eye display and tracking
technologies. However, despite decades of research and progress,
a variety of open problems and research challenges delineated in
the previous section, such as the vergence–accommodation conflict
and user and environment tracking, remain unsolved. One of the
leading drivers of future headset innovations will be advancements
in optics technology. Significant progress in focus-adjustable lens
assemblies is expected to provide a much more comfortable HMD
experience. In future headset designs it may also be necessary to
measure accommodation in situ. Pivotal improvements in wavefront
accommodation sensing such as the Hartmann-Shack sensor will
allow the development of practical systems for widespread use.

We hope that our discussion of these challenges will inspire
research on future directions needing further investigation. We look
forward to these advances.
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Appendix A: Acronyms

AMOLED Active-Matrix Organic Light-Emitting Diode
AR Augmented Reality
BFI Black Frame Insertion
CBF Circular Binary Features
CPD Cycles Per Degree
CSF Contrast Sensitivity Function
DoF Degree of Freedom
EEG Electroencephalogram
FoV Field of View
HDR High Dynamic Range
HMD Head-Mounted Display
HOE Holographic Optical Element
HVS Human Visual System
IMU Inertial Measurement Unit
IPD Interpupillary Distance
IPS In-Plane Switching
IR Infrared
LCD Liquid Crystal Display
LCoS Liquid Crystal on Silicon
LED Light Emitting Diode
LIS Locked-In Syndrome
MAR Minimum Angle of Resolution
MEMS Micro-Electro-Mechanical Systems
MVA Multidomain Vertical Alignment
NED Near-Eye Display
NELD Near-Eye Light-field Display
OLED Organic Light Emitting Diode
SLAM Simultaneous Localisation And Mapping
SLM Spatial Light Modulator
SPEM Smooth Pursuit Eye Motion
TN Twisted Nematic
VAC Vergence-Accommodation Conflict
VR Virtual Reality
XR Cross/Extended Reality
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Koulieris, Akşit, Stengel, Mantiuk, Mania & Richardt / Near-Eye Display and Tracking Technologies for Virtual and Augmented Reality

[PRI∗13] PRADEEP V., RHEMANN C., IZADI S., ZACH C., BLEYER M.,
BATHICHE S.: MonoFusion: Real-time 3D reconstruction of small scenes
with a single web camera. In ISMAR (2013), pp. 83–88. 15

[PSH18] PARK S., SPURR A., HILLIGES O.: Deep pictorial gaze estima-
tion. In ECCV (2018). 14

[PSK∗16] PATNEY A., SALVI M., KIM J., KAPLANYAN A., WYMAN C.,
BENTY N., LUEBKE D., LEFOHN A.: Towards foveated rendering for
gaze-tracked virtual reality. ACM Trans. Graph. 35, 6 (2016), 179:1–12.
10, 16, 17

[PT08] PORTA M., TURINA M.: Eye-S: a full-screen input modality for
pure eye-based communication. In ETRA (2008), pp. 27–34. 16

[PZBH18] PARK S., ZHANG X., BULLING A., HILLIGES O.: Learning
to find eye region landmarks for remote gaze estimation in unconstrained
settings. In ETRA (2018), pp. 21:1–10. 14

[Rat65] RATLIFF F.: Mach bands: quantitative studies on neural networks.
Holden-Day, 1965. 6

[RBSJ79] RAAB F. H., BLOOD E. B., STEINER T. O., JONES H. R.:
Magnetic position and orientation tracking system. IEEE Trans. Aerosp.
Electron. Syst. 15, 5 (1979), 709–718. 12

[RCR18] RUIZ N., CHONG E., REHG J. M.: Fine-grained head pose
estimation without keypoints. In CVPR Workshops (2018). 13, 14

[Red73] REDER S. M.: On-line monitoring of eye-position signals in
contingent and noncontingent paradigms. Behavior Research Methods &
Instrumentation 5, 2 (1973), 218–228. 10

[RF00] ROLLAND J. P., FUCHS H.: Optical versus video see-through
head-mounted displays in medical visualization. Presence: Teleoperators
and Virtual Environments 9, 3 (2000). 8

[RJG∗14] RINGER R. V., JOHNSON A. P., GASPAR J. G., NEIDER
M. B., CROWELL J., KRAMER A. F., LOSCHKY L. C.: Creating a
new dynamic measure of the useful field of view using gaze-contingent
displays. In ETRA (2014), pp. 59–66. 16

[RKS∗14] ROGEZ G., KHADEMI M., SUPANČIČ III J. S., MONTIEL J.
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