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Abstract
Banding is a type of quantisation artefact that appears when

a low-texture region of an image is coded with insufficient bit-
depth. Banding artefacts are well-studied for standard dynamic
range (SDR), but are not well-understood for high dynamic range
(HDR). To address this issue, we conducted a psychophysical ex-
periment to characterise how well human observers see band-
ing artefacts across a wide range of luminances (0.1 cd/m2–
10,000 cd/m2). The stimuli were gradients modulated along three
colour directions: black-white, red-green, and yellow-violet.
The visibility threshold for banding artefacts was the highest at
0.1 cd/m2, decreased with increasing luminance up to 100 cd/m2,
then remained at the same level up to 10,000 cd/m2. We used the
results to develop and validate a model of banding artefact detec-
tion. The model relies on the contrast sensitivity function (CSF)
of the visual system, and hence, predicts the visibility of banding
artefacts in a perceptually accurate way.

Introduction
Digitally representing colour requires the conversion of

continuous values into discrete ones. If an insufficient number
of bits are used to represent the digital value, human observers
may see edges in the quantised image (Fig. 1), called banding
or contouring artefacts. Such artefacts occur in low texture re-
gions of the image where the pixel values vary smoothly, as in
the sky or the ocean. Banding artefacts are aggravated by edge-
enhancing and contrast-normalizing mechanisms in the early hu-
man visual system, which amplify the perceived brightness and
colour difference at the banding edges and lead to illusions such
as the Chevreul illusion [1].

However, there is a trade-off: minimising the appearance
of banding artefacts requires encoding with higher bit-depth, but
higher bit-depth necessarily results in more data. This is undesir-
able, as there is an immense amount of visual content that is cre-
ated, stored, and streamed daily; indeed, high-definition stream-
ing is only possible with lossy video coding [2]. On the other
hand, encoding with insufficient bit-depth results in unattractive
banding, and for some applications, such as medical imaging,
illusory bands may even result in incorrect diagnosis [3].

Thus, it is useful to develop a model that accurately de-
scribes how banding artefacts are detected by a human observer,
in order to better understand the trade-off between bit-depth and
image quality. However, existing models have been designed
for standard dynamic range (SDR) displays, with a typical peak
luminance of 200 cd/m2. With increasing adoption of high dy-
namic range (HDR) displays, it is important to develop a model
that encompasses the wide range of luminance levels that can be
shown in HDR, from mesopic (e.g., highway at night) to high
photopic (e.g., sunny day).

In this paper, we develop and validate a perceptually moti-
vated model of banding artefact visibility that spans a wide range
of luminance levels. Our model improves upon Denes et al.’s
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Figure 1: Sample stimuli. The stimuli were 2D gradients mod-
ulated along the three axes of the DKL colour-opponency space
[6]. Values in DKL are linear combinations of L-, M-, and S-
cone responses.

[4] Fourier-based, analytic formulation of banding artefacts, in-
corporating a contrast sensitivity function (CSF) for stimuli at
luminance levels between 0.0002 cd/m2to 10000 cd/m2[5]. Our
model also operates on physical units of luminance and con-
trast, rather than relative pixel values, and is therefore device-
and content-independent.

Related Work
A Google Patents search shows that hundreds of patents

have been filed for debanding or decontouring algorithms for
printed media and digital displays. However, few studies have
looked at building a model of banding detection, and even fewer
have developed perceptually motivated ones. Below, we review
some models of banding that rely on some intuition about what
may be perceptually important.

Banding Detection in SDR
The majority of banding detection algorithms [7, 2, 8, 9]

rely on finding groups of pixels that share the same pixel value
and identifying the boundaries between the grouped regions. If
RGB values of the grouped regions only have a small difference,
the pixel groups may represent quantised zones of a gradient,
meaning that edge between the groups is a candidate banding
artefact. Then, it is a matter of determining whether the candidate
artefact is likely to be visible to the human observer.

Some of those models use banding artefact size as a mea-
sure of visibility. Bhagavathy et al.’s [7] multi-scale method is
an early example that incorporated the role of size by checking
for candidate artefacts at multiple neighbourhood sizes. Baugh
et al.’s [2] method indirectly incorporates the role of size by find-
ing a distribution of pixel groups, since heavily quantised im-
ages have an uneven distribution of groups due to large swaths
of homogeneous regions. Baugh et al. also propose the Band-
ing Index, where BI < 0.9 is reported to be a reasonably good
threshold for identifying badly quantised images or frames. This
method works with H.264/AVC video coding [10], and is thus
appropriate for detecting artefacts in HD streamed video. Wang



et al.’s [9] method emphasizes the length of the candidate band-
ing artefact. In addition, this method considers the coherence of
the candidate artefact. If the candidate artefact is sharp and clean
(coherent), then it is more likely to be visible. Notably, Wang
et al. validated their method with a subjective study, measuring
mean opinion scores (MOS).

Other methods depend on edge detection. Tu et al. [11] pro-
posed BBAND (Blind Banding Artefact Detector). This method
does not rely on an initial pixel grouping step, but rather, edge
detection with the Sobel filter. Then, the algorithm computes the
visibility of that edge. The edge is less likely to be visible when
surrounded by high-luminance regions and high-texture regions.
The edge is more likely to be visible when it is long. The authors
also validated their method using the MOS dataset from Wang et
al. [9]. In another work, Lee et al. [8] first detect non-smooth
regions by reducing the bit-depth. Edges are then detected using
a directional contrast feature measuring how much the intensity
of a pixel differs from its 8 neighboring pixels in four horizontal,
vertical, diagonal and anti-diagonal directions. A content-based
empirical threshold is used to categorize edges as natural (larger
than the threshold) or visible banding artefacts (smaller than the
threshold).

While the above studies have incorporated some intuitive
knowledge of what contributes to banding artefacts, very few
studies have incorporated a model of the early visual system.
Daly and Feng [12] is an exception, relying on the spatio-
temporal characteristics of the CSF. An important contribution
is the Fourier analysis of the banding artefact by treating it as the
error between the quantised and the continuous images. In par-
ticular, the authors note that a key determinant of banding visi-
bility is the fundamental frequency of the error signal. Denes et
al. [4] follow Daly and Feng’s analysis, extending the work to
chromatic components. Importantly, Denes et al. approximate
the error signal with a saw-tooth function. The Fourier transform
of the saw-tooth function has a simple closed-form solution and
can be rapidly evaluated, making the method appropriate for the
authors’ intended application to Virtual Reality (VR).

Banding Detection in HDR
Compared to SDR, banding detection in HDR images and

videos remains less investigated. In a series of psychophysical
experiments, Boitard et al. [13] identified the minimum bit-depth
that is required per colour component to represent HDR colour
pixels without introducing any banding artefacts. However, a
detection model was not provided and the maximum luminance
level evaluated was 50 cd/m2.

In another study, Song et al. [14] address the banding arte-
facts that are visible in HDR frames generated by inverse tone
mapping SDR video frames. The frames are compressed using
legacy video encoders such as HEVC [15]. Banding artefacts
are detected using residual banding level ratios, which are the
ratios between the highest quantisation step before and after fil-
tering a picture region. The Mean Squared Error (MSE) between
12-bit inverse tone mapped and reference HDR video frames is
also used to detect banding artefacts as the goal of the method
is to make quantisation steps of an inverse tone mapped 12-bit
HDR video frames similar to those of the reference 12-bit HDR
video frames. The MSE ensures that only banding artefacts are
smoothed and that edges in the original image are preserved. The
banding detection metric in [14] requires a quantised HDR signal
for which quantisation steps do not yield visible banding.

Su et al. [16] proposed a banding detection metric referred
to as False Contouring Detection (FCD) which returns the num-
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Figure 2: We model banding detection as a question of detecting
the error signal [12, 4]. The error is well-approximated by a saw-
tooth function. The fundamental frequency carries most of the
energy of the Fourier spectrum, and therefore is the key determi-
nant of artefact visibility. For error signals of the same amplitude,
a shallow gradient results in a lower fundamental frequency than
a steeper one.

ber of potential visible banding artefacts in a picture or picture
area. The metric detects the contouring edges using median fil-
tering and then evaluates each edge as visible if their contrast is
higher than its visible contrast threshold calculated using a CSF,
and as invisible otherwise. For each visible contouring edge that
is detected in a picture the FCD is incremented by one in value.

Azimi et al. [17] treated visible banding artefacts in HDR
colour pixels as visible colour differences between quantised
HDR pixels using 10-bit per colour channel and continuous ref-
erence pixels. Such visible colour changes were measured us-
ing CIE DE2000 [18] colour difference metric. It was shown
in [17] that while colours that are closer to the white point of
the Rec.2020 gamut require more code-words than 1024 (10-bit
range) to represent colours without visible changes, colours at the
border of the gamut (more saturated colours) can be represented
with fewer bits.

Our Work
We extend Daly and Feng [12] and Denes et al. [4] to HDR,

using Fourier analysis to predict the visibility of the error sig-
nal. For a colour image I(x,y,c) and its quantised counterpart
Iq(x,y,c), the quantisation error is

E(x,y,c) = I(x,y,c)− Iq(x,y,c) (1)

where x and y are the location in the image and c is the colour
channel (Fig. 2).

E(x,y,c) is the colour difference, or the contrast, between
I(x,y,c) and Iq(x,y,c). Banding detection can be framed as a
question of the sensitivity to this error. In particular, it can be
framed as a question of whether E(x,y,c) exceeds the contrast
detection threshold of the human observer. By definition, error
signal below the contrast threshold is unlikely to be detected can
be safely ignored.

Contrast thresholds are a function of colour [19], luminance
[20], and spatial frequency [21]. This dependence is modelled
by the CSF, which describes the inverse of the amplitude needed
for threshold detection; it shows the sensitivity of the human vi-
sual system to a particular spatial frequency at the given colour
and luminance. Having an accurate CSF is therefore important
for reliably modelling banding detection. Here, we use a CSF ca-
pable of predicting contrast thresholds between 0.0002 cd/m2and
10,000 cd/m2, 0.125 and 32 cycles per degree (cpd), and for any
arbitrary colour direction [5], which was made possible by com-
bining multiple datasets [22, 23, 24, 25, 26].



Experiment
We conducted an experiment to investigate banding detec-

tion thresholds across a wide range of luminances, from mesopic
(0.1 cd/m2) to high photopic (10,000 cd/m2), for banding arte-
facts modulated along three opponent-colour directions: achro-
matic, red-green, and yellow-violet.

Methods
Apparatus

The experiment was conducted on a custom-built HDR dis-
play with a peak luminance of 37,000 cd/m2. The display con-
sisted of an LCD panel extracted from an iPad 3/4 retina display
(9.7”, 2048 × 1536 px; product code: LG LP097QX1) and a
DLP projector (Optoma X600,1024× 768 px). The display had
a maximum contrast ratio of 1,000,000:1 and an effective reso-
lution of 2048× 1536 px. Each channel and each display could
reproduce 10 bits: 8 bits via display and 2 additional bits via
spatio-temporal dithering. More details on the display can be
found in [24].

The viewing distance was 91 cm, such that the display occu-
pied the central 12.4 ◦× 9.3 ◦of the visual field, with an angular
resolution of 165 ppd (pixels per visual degree). The experiment
room was completely dark, eliminating direct or reflected source
of light falling on the screen. The room conditions were compli-
ant with the recommendations in BT.500.

Stimuli
The stimuli were coloured 2D gradients (Figure 1) defined

in the Derrington-Krauskopf-Lennie (DKL) colour-opponency
space [6] with D65 white point. The DKL colour space is lin-
ear transformation of the LMS colour space, putting the origin at
the white point and modulating along achromatic, red-green, and
yellow-violet directions:

∆DKL=


∆A

∆R

∆V

=


1 1 0

1 − LD65

MD65
0

−1 −1
LD65 +MD65

SD65




∆L

∆M

∆S

 (2)

where LD65, MD65, SD65, were D65 white point in LMS coor-
dinates using CIE 2006 cone fundamentals [27]. ∆L,∆M,∆S
were the gradient modulations in LMS space, and ∆DKL =
[∆A, ∆R, ∆V ] were the modulations in DKL space, correspond-
ing to modulations along the achromatic, red-green, and yellow-
violet directions, respectively. Using the DKL colour space al-
lowed us to define the gradients in a device-independent, physi-
ologically accurate opponent colour space.

The relative gradient was defined as:

G(x,y,c) =


(

xs
r l
− l

2

)( y
r l

)
c = csel

0 otherwise
, (3)

where x and y were the pixel coordinates, and c was one of
the three colour components (achromatic, red-green, or yellow-
violet) selected by csel, the colour component for which the gra-
dient was generated. r was the angular display resolution in pix-
els per degree, and l was the width and height the the stimulus in
degrees. In our experiment, we used r = 165px/ ◦, l = 4.5 ◦ for
all stimuli. We used s = 0.3556,0.0889, and 0.4444 for achro-
matic, red-green and yellow-violet components, respectively.

Then, the gradient was added to D65 background of the de-
sired luminance Y :

I(x,y,c) = Y (WD65(c)+G(x,y,c)) , (4)

where WD65 = [1, 0, 0 ] was the chromaticity of D65 white point
in DKL space. The gradient was quantised directly in the DKL
colour space:

Gq = round
(

G
t

)
t , (5)

where t was the quantisation step.

Observers
Four observers (1 female, 3 males; mean age = 35.25) from

the University of Cambridge participated in the experiment. All
observers had optically corrected 20/20 vision. All had normal
colour vision, tested using Ishihara colour plates. Two of the
observers were authors; the others were naı̈ve to the experiment
procedure. All observers were familiar with the concept of quan-
tisation and banding artefacts.

Procedure
The experiment consisted of three colour directions (achro-

matic, red-green, yellow-violet) presented at six luminances (0.1,
1, 10, 100, 1000, and 10,000 cd/m2), for a total of 12 condi-
tions. Pilot experiments did not reveal influence of condition
order; thus, we presented the conditions in increasing order of
luminance, in order to spare the time required for dark adaptation
between conditions. Within a luminance level, the trials for dif-
ferent colour directions were presented in randomly interleaved
order.

Each condition consisted of 25 to 35 4-alternative forced
choice (4AFC) trials. In each trial, observers saw four randomly
oriented gradients in a 2×2 arrangement. Three of the four gra-
dients were displayed without quantisation; the fourth was quan-
tised. The task was to identify the quantised gradient. The stimuli
remained visible on the display until observer made a response.

We used QUEST, an active sampling procedure for psy-
chophysical experiments [28], to sample the quantisation levels.
A psychometric function was fitted to the 4AFC responses to es-
timate the detection threshold. Each observer completed the ex-
periment in 1.5 hours.

Results
Fig. 3 shows the results. The detection threshold for band-

ing was s a function of both luminance and colour direction of the
gradient. A lower threshold means that the banding was harder to
see. On average, the detection threshold was the lowest for red-
green, followed by achromatic, and the highest for yellow-violet.
This is consistent with what we know about the CSF: red-green
contrast sensitivity is much higher than the achromatic, which is
in turn more sensitive than yellow-violet.

In addition, there was an effect of stimulus luminance. At
mesopic to low photopic levels (0.1–10 cd/m2), detection thresh-
olds decreased as a function of increasing luminance. However,
at medium to high photopic levels (≥10 cd/m2), the detection
thresholds stayed constant as a function of luminance.

This is interesting, because Wuerger et al. [24] found that
the achromatic CSF has a noticeable U-shape as a function of lu-
minance, with the threshold at 10,000 cd/m2, being much higher
than at 100 cd/m2. However, CSFs are defined for detecting
wavelet-like stimuli, which consist of a single spatial frequency.



Thus, our results suggest that the CSF alone is insufficient for
predicting detection in images that contain multiple spatial fre-
quencies, as in banding artefacts. In comparison, red-green and
yellow-violet CSFs saturate with increasing luminance, which is
qualitatively consistent with the detection thresholds for banding.

Using these results, we developed a model of banding de-
tection that decomposes the error signal into its frequency com-
ponents while also handling a wide range of luminances. Our
findings significantly extend Denes et al.’s work [4], as they only
tested luminance up to middle photopic levels (22 cd/m2).

Modelling
Our model imitates the physiological process of detection

by simulating opponent colour channels and multiple spatial fre-
quency channels. First, the model transforms the gradient into
DKL opponent colour space. Then, in each colour channel, the
model decomposes the quantisation error E(x,y,c) into its spa-
tial frequency components. Rather than numerically transform
E(x,y,c) into the Fourier domain, we follow Denes et al. [4]
and represent E(x,y,c) as a saw-tooth function (Fig. 2), whose
Fourier transform has an analytical solution. For a single line y
and a colour channel c, the Fourier transform of the quantisation
error is

F (E(x,y,c)) =
1
2
− 1

π

∞

∑
k=1

h
k

sin
(

kπx
w

)
(6)

where w is the width, or the period, of the saw-tooth (visual de-
grees) and h is the height of each saw-tooth step. h is determined
by the quantization step t,

h = t Y (7)

See also Eq. 5. Therefore, the amplitude of the kth frequency
component is

αk =−
h

kπ
, k = 1,2, ... (8)

and its frequency (in cycles per degree) is

ωk =−
k
w
, (9)

where w is the period in pixels. We found that the accuracy of the
prediction does not improve beyond the first five Fourier com-
ponents. For a given slope s of the gradient, the period of the
sawtooth can be computed as

w =
h

Y s
(10)

It should be noted that the slope s changes across the 2D gradi-
ent stimulus (Fig. 1) and we do not know at what slope triggers
banding detection in human observers. This issue is discussed
later.

The model then uses the CSF [5] to compute the probability
of detecting the error signal at that frequency and colour channel.

Pc,k = 1− exp
(

ln(0.5)
CSF(αc,k,ωc,k)

)
(11)

where CSF(·) returns the inverse of the detection threshold,
1− exp(·) is the psychometric function for converting contrast
thresholds into probability of detection, and ln(0.5) sets the con-
trast threshold at P = 0.5 at the detection threshold.
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Figure 3: Results of the experiment (n=3). The gradients were
defined along three opponent colour directions of the DKL colour
space (achromatic, red-green, yellow-violet).
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Figure 4: Banding detection model. The error signal is trans-
formed into the Fourier domain resulting in the spatial frequen-
cies (ωc,k) and amplitudes (αc,k) of the banding artefacts. We
find the detection threshold using a CSF, which we convert into
detection probability.

To find the overall probability of detection, we combine the
probability of detection per channel,

P = 1 − ∏
c∈{CA,CR,CV}

kmax

∏
k=1

Pc,k (12)

where kmax = 5 in our implementation.
To find the banding detection threshold, we run a binary

search on CSF(·) simultaneously across all colour and spatial
frequency channels to find the quantisation step t that yields
P = 0.5.

Results
In Fig. 5, we plot the model predictions with the data. The

data are plotted in green, as are the model predictions that assume
the same slopes that we used in the experiment. The model qual-
itatively reproduces the detection thresholds: the model predicts
that banding artifacts in the red-green direction are more visible
than in the achromatic direction, which is in turn more visible
than yellow-violet. Within each colour direction, the model also
reproduces the qualitative behaviour of thresholds decreasing be-
tween 0.1 cd/m2and 10 cd/m2, then staying about the same from
10 cd/m2to 10000 cd/m2.

However, the data are consistently below the model predic-
tions for the same slope, meaning that human observers are able
to see banding artefacts better than predicted by the model. For
the achromatic direction, the data align well with the model pre-
diction for s = 0.1778. This is interesting: although the gradients
in our experiment were defined to have a slope of s = 0.3556
on one edge, the slope becomes gradually shallower towards the
other edge and reaching zero (Fig. 1), such that the slope was
s = 0.1778 near the centre of the stimulus. Indeed, for quantisa-
tion errors of the same amplitude, shallower gradient slopes re-
sult in a lower fundamental frequency (Fig. 2). As the visual sys-
tem is better at detecting lower frequencies than higher frequen-
cies, this means that quantisation errors are easier to detect for
shallower gradients. Similarly, the red-green and yellow-violet
predictions are also more consistent with the data when we as-
sume a shallower slope. However, whereas the red-green data
are well-captured by assuming a shallower slope (s = 0.0222),

the predicted detection threshold for yellow-violet is higher than
the data at lower luminances.

Conclusions
Banding artefacts pose a greater problem in HDR than SDR,

due to the wider luminance range. We investigated banding de-
tection for a wide range of luminance (mesopic to high photopic),
and for three opponent colour directions (achromatic, red-green,
yellow-violet). This allowed us to develop a perceptually moti-
vated model of banding detection for HDR images and for any
arbitrary colour direction. While Wang et al. [9], Tu et al. [11],
and Su et al. [16], also developed perceptually motivated models,
ours has the advantage that it deals specifically with luminance
coding, operating on physical units of luminance and contrast,
rather than relative pixel values. Denes et al.’s [4] model also
operates on physical units, but our model has the advantage of
using a more recent, more perceptually accurate CSF capable of
predicting banding detection in a much larger dynamic range,
and therefore, is more reliable for HDR colour changes. While
more work remains to be done, our model provides a first step to
a more rigorous approach to banding detection in HDR.
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