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Abstract—Viewing distance and display resolution have ar-
guably a significant impact on perceived image quality; images
seen on a mobile phone with high pixel density reveal fewer
distortions than the same images seen on a large TV from a close
distance. However, only a few image and video quality metrics
account for the effect of viewing distance and resolution. Those
that do, typically rely on contrast sensitivity functions (CSFs)
of the visual system. Other metrics can be potentially adapted
to different viewing distances by rescaling input images. In this
paper, we investigate the performance of such adapted metrics
together with those that natively account for viewing distance.
The results for three testing datasets indicate that there is no
evidence that the metrics based on the CSF outperform those that
rely on rescaled images. Moreover, we found that both methods
are not successful to account for the changes in quality introduced
by the change in viewing distance. We conclude that accounting
for viewing distances requires better models.

Index Terms—Image/Video Quality Assessment, Viewing Dis-
tance, Effective Resolution, Contrast Sensitivity function (CSF)

I. INTRODUCTION

When assessing perceptual image and video quality, it is
desirable to account for the resolution, physical dimensions
of the display and the viewing distance. Those can differ
substantially between display devices. For example, a 6.3
smartphone display with the resolution 1080x2400px and
seen from 40 cm has an effective resolution (pixel density) of
116 pixels per visual degree (ppd). But a 47” FullHD TV set
seen from the recommended distance of three display heights
has about half of that resolution, at 57 ppd. VR headsets feature
much lower resolution between 17 and 35 ppd. When a high-
frequency image distortion is introduced, its visibility will
differ between these devices [1]], [2]. Yet, few metrics account
for the effect of display resolution and viewing distance by
design. Nevertheless, it is possible to adapt any metric to this
scenario simply by rescaling the input images to maintain the
effective resolution in pixels per degree.

In this work, we compare metrics that natively account for
the viewing distance with those that do not but are instead
provided with resized images. The comparison is performed on
three publicly-available datasets, which provide subjective rat-
ings collected at multiple viewing distances. The fourth dataset
is used for training to determine what is the best effective
resolution for each quality metric. The main contribution of
this work is a benchmark study on the performance of the
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adapted quality metrics and the metrics that natively account
for the viewing distance.

II. RELATED WORK
A. The effect of viewing distance on perceptual quality

Previous works have explored the effect of viewing distance
on the assessment of quality degradation due to distortions
such as compression, upscaling, and others. When measuring
the quality degradation due to image distortions (DMOS), a
larger viewing distance reduces the effect (the visibility) of
distortions [3]], [4]. However, when the quality of the reference
image/video is measured alone, the overall quality (MOS)
decreases with larger viewing distances [1]], [5]]. Additionally,
Sugito et al. [6] studied the effect of both screen size and
viewing distance on compressed and upscaled videos. They
found that the distortions have a larger effect on quality at
smaller viewing distances, as reported in other studies, and for
larger screen sizes. Mikhailiuk et al. [[7]] measured the visually
lossless thresholds, at which JPEG and WebP image com-
pression distortions become invisible. The measurements were
done for different viewing distances and display luminance
levels. The results showed that the effect of viewing distance
is content-dependent and does not follow a consistent pattern.
For most content, distortions were less noticeable at longer
distances, but for some, there was no change or the effect was
reversed. Authors in [8], [9] explored a different but related
problem: the effect of viewing distance on the perception of
UHD and HD videos. Both studies concluded that there is
no noticeable difference between UHD and HD videos when
viewed from distances that are larger than the recommended
viewing distance of 1.5 the display height.

In contrast to these works, we do not collect a new dataset.
Instead, gather information from all publicly available datasets
C 110, 130, 41, [7D) and use them to investigate how well
the existing quality metrics account for the effect of viewing
distance. We had to exclude the datasets from [6], [9] as
those are not publicly available, from [8] because it contained
only relative quality scores between HD and UHD, and from
[5] because we lacked information on the screen size and
resolution, which was essential to our study.

B. Quality assessment metrics at varying viewing distances

The metrics which consider the viewing distance do so by
incorporating a contrast sensitivity function (CSF). CSF [10],



[11] models the smallest contrast detectable by an average
observer on a uniform background. It can be used in a quality
metric to pre-filter compared images, as done in sCIELab
[12], or to weight each band of a band-pass decomposition
by the corresponding sensitivity, as done in SSIMplus [13],
HDR-VDP-3 [14]] and FovVideoVDP [15]. A CSF alone does
not model the discrimination of contrast differences above the
detection threshold because of the contrast constancy of the
visual system [|16]]. Therefore, CSF is often combined with the
models of contrast masking [[14], [[15].

Some metrics like VMAF [17], have distinct models for
different devices or resolutions, as a result, they lack the
flexibility to account for any possible viewing distance. Others
[2l, [18] employ a neural network that takes the viewing
distance as a feature. However, these models perform poorly
when applied to new viewing distances that were not included
in the training. Thus, these two metrics will not be included
in the study. Gu et al. studied different approaches to adapt
the existing metrics to varying viewing distances. In [[19], they
used a scaling function of the viewing distance while in [4],
[20] they used the wavelet decomposition to prefilter compared
images. We experimented with all these models but excluded
them from our analysis as they performed worse than simple
image rescaling, which we explain later in Section

III. REPORTING VIEWING DISTANCE AND RESOLUTION

Different works report viewing distance in a different man-
ner. Here, we want to clarify the notation and units used in
this paper.

The viewing distance is often reported in multiplies of
physical display height. This is because the recommended
viewing distance for a FullHD and 4K television is often re-
ported in such units. Some authors report the viewing distance
in image heights, where the image occupies only a portion
of the screen. Other authors enlarge the image to the full
display resolution before displaying the images. Alternatively,
the viewing distance can be reported as a distance in meters
together with the screen dimensions and resolution. All those
eclectic measures can be unified and simplified to a single
measure that is directly related to the perceived resolution, also
known as effective resolution — the resolution of the image
that will be projected on the retina. The perceived resolution is
best reported as the number of pixels within one visual degree,
which can be computed as:
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where 7, is the display’s vertical resolution in pixels, h is the
display height and d is the viewing distance, both in the same
units (e.g. meters). The equation assumes square pixels and a
negligible effect of the viewing angle.

IV. RESCALING IMAGES TO ACCOUNT FOR THE VIEWING
DISTANCE

Most metrics do not incorporate CSF and do not account
for the viewing distance. However, we can use a simple

observation: The size of the image projected on the retina is
proportional to the viewing distance (refer to Eq. (I))). Hence,
doubling the viewing distance approximately halves the size
of the projected image on the retina. Using this observation,
we can easily account for the viewing distance by rescaling
an image accordingly.

We need to assume that each metric has been calibrated and
performs the best at a certain viewing distance d,,. If we want
to compute metric scores at a different viewing distance d,
resulting in a different effective resolution, we need to rescale
the image by a factor zy:
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where h represents the display height in the same units as
d and o corresponds to the multiplies of viewing heights
that correspond to the optimal effective resolution for a given
metric. This approach is similar to the rescaling in [2]f], [[19].

We optimized parameter « individually for each metric to
yield the best Spearman correlation. This was done using the
VDID2014 dataset (see Section , which we will consider
as a training dataset and exclude from testing. The value
was found by performing an exhaustive search on the set
a = {1.5,2,2.5,3}. The elements of the set correspond to
the recommended viewing distances for QA datasets. The
rescaling was performed using a box filter to simulate a display
of lower/higher effective resolution. The default parameters of
MATLAB and Python PIL functions are used for the filter.

In this work, we aim to do a cross-dataset comparison study
of perceptual quality metrics for varying viewing distances.
To accomplish this, we carefully select a set of well-known
quality metrics that are most relevant to our study. A summary
of the quality metrics we consider in addition to the «
parameter chosen for each of them and the corresponding
effective resolution is provided in Table [I|
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V. QUALITY ASSESSMENT DATASETS FOR VARYING
VIEWING DISTANCE

Our focus in this paper is on image/video quality datasets
that contain data collected at more than one viewing distance.
The key information about each dataset is summarized in
Table [[I| and explained in more detail below.

a) VDID2014: The dataset [4] contains 8 pristine images
with 2 different resolutions 512x512 and 768x512 px, and
160 distorted images produced by 4 distortion types (Gaussian
Blur, White noise, JPEG2000 and JPEG) at 5 different levels.
DMOS scores were collected using the single stimulus method.
No information regarding the display size was provided, but,
fortunately, it is not needed for our study, as they provided
the viewing distance as a multiple of display height (refer to
Eq. ().

b) CID:IQ: The dataset [3|] contains 23 pristine images.
Six different distortions have been used in the dataset: JPEG
and JPEG2000 compression artefacts, Poisson Noise, Gaussian
Blur, and two types of gamut mapping methods, AF and
SGCK. All the distortions have been applied at five different



TABLE I: A list of the metrics used for the benchmark study.
The “type” column states whether the metric is full-reference
(FR) or no-reference (NR), intended for video or images. The
calibrated resolution is the effective resolution at which the
metric performs the best on the VDID2014 dataset, given as

ppd (Eq. (1)) and o (Eq. @)).

TABLE II: A summary of the datasets used in our study. The
first column reports the number of conditions with respect
to the number of references, the second column reports the
display and visual field sizes, and the two last columns report
the viewing distance used for each dataset as the effective
resolution (Eq. (I))) and multiplies of display heights.

severity levels resulting in a total of 690 distorted images.
DMOS scores were collected using a 9-categories ACR.

c) VCIP21: The dataset [1]] contains 10 reference videos
encoded with the HEVC codec to generate distorted videos at
three bitrates to obtain “excellent”, “good” and “fair” qualities.
MOS scores were collected using the ACR method. Because
no reference videos were provided with this dataset, we used
the missing videos from AOM common test conditions v2.0
[35]. We could match reference videos for only half of the
dataset (5 videos).

d) VLIC: The dataset [7] is different from the others as it
contains only very subtle distortions — the compression level
at which the distortions become just noticeable — Visually
Lossless Threshold or VLT. The VLT was measured at two
viewing distances and two display brightness levels, but we
consider only the brighter level (220 cd/m?) in our study. The
dataset provides the probability of detecting the distortion
at each compression level (for JPEG and WebP), which we
converted into Just Objectionable Difference (JOD) units using
Eq. (5) from [36]]. We demonstrated that such JOD units are
linearly related to the quality measured as mean-opinion scores
[37]. Because the conversion from the probability of detection

Metric Calibrated Conditions Display size [in] Effective Viewing distance
Metric P resolution: Details Dataset pray si o resolution as multiplies of
ype ppd (a) (Reference) / Field size [°] [ppd] display height
PSNR FR-Image | 29.30 (1.5) | A peak-signal-to-noise ratio in decibels. 1 38
SSIM [21] FR-Image | 29.30 (1.5) | A structural similarity index. VDID2014 [4] 160 (8) unknown 57 3
MS-SSIM [22! FR-Image | 57.09 (1.5) | A multi-scale version of SSIM. T . 56° x 33° 32 1.7
Measures the similarity between the CID:IQ [3] 690 (23) 247/ 300 x 17° 64 33
FSIM |[23] FR-Image 38.49 (2.5) phase‘ congruency and the gradient 310 X 18° 60 37
magniiude foatures. — VCIP21 (1] 156) | 467 /21° x 12° 92 49
GMSD (24 FR-Image | 38.49 (1.5) qli:ﬂ‘i‘[;“ © gradients to predict the 15° x 8° 129 6.8
: ___ ] 74 X 46° 32 12
Measures the fidelity between sparse VLIC [7] 184 (20) 2771 .o °
SFF |25 FR-Image 38.49 (3) encoding of the images. 41° x 24 61 2.4
Natural scene statistic (NSS) based
VIF [26] FR-Image | 47.77 (1.5) | metric that models the images in the
wavelet domain.
LpmPs 7] FR Image | 2930 (15) Sg;gf;gesn::vtgi:emaed by deep- to JOD can introduce a 1arg§ .error close .to probablhtle?s. of 0
] A meitc modeline Tow Ievel Vision and 1, we used only the conditions for which the probability of
HDR-VDP3 |14 FR-Image - s
] ¢ including CSF and contrast masking. detection was between 0.1 and 0.9 at both viewing distances.
Prefilters images with CSF and then
sCIELab [12 FR-Image - calculates differences in the CIELab
colour space. VI. PERFORMANCE ANALYSIS
An achromatic metric that models . . . ..
FovVideoVDP 15| | FR-Video - spatial and temporal low-level vision, In this section, we will evaluate the performance of existing
inci S S A -3, . . . . .
: A the same principles as IDR-VDPS. state-of-the-art image and video quality metrics on the quality
VMAF |17 FR-Video | 57.09 (1.5) Lo PN . .. . .
1 for quality predictions. assessment task across different viewing distances. The metrics
Computes the difference between h d . 1 f . . d d d
SpEED-QA [28] FR-Video | 57.09 (2.5) | conditional block entropies of both the that do not natively account for viewing distances are adapte
reference and distorted input. :
; ST bae T o e T o NSS using Eq. (Z). We do not evaluate the performance of the
BRISQUE [29 NR-Image | 3849 (2) - . . . .
] features. metrics without adaptation as it is not related to this study.
BIQI [30] NR-Image | 57.09 (2.5) | A distortion-aware quality metric.
] Employs a multivariate gaussian model .
NIQE [31] NR-Image | 47.77 (2:5) | o"ciality aware features. A. Evaluation Protocol
| Captures statistics of the real-word . . .
FRIQUEE |32 NR-Image | 3849 (2) im,fges o predict quality. We used four metric performance indicators: the Spearman
PIQE (331 NR-Image | 3849 (2.5) | & Pereeption-based metric that uses rank-order correlation coefficient (SROCC), the Pearson linear
e sl aagtive Hyper st lati fficient (PLCC), the Kendall rank-ord f
HyperlQA B4 NR Image | 2030 (1.5) | E/mPloys a self-adaptive hyper network correlation coefficient ( ), the Kendall rank-order coef-
for training the quality predictor model.

ficient (KROCC) and the root mean squared error (RMSE).
Due to space constraints, we include SROCC and RMSE
in the main paper and the other two in the supplementary
document [ﬂ A non-linear regression function was applied
to the predictions before calculating the PLCC and RMSE
coefficients. We used Eq. (16) from [4].

B. Confidence intervals

When comparing quality metrics, it is essential to account
for the variance in subjective data. Such variance can cause
some (if not most) of the performance differences between
quality metrics to lack statistical significance. We used para-
metric resampling based on the reported standard errors. The
standard errors were generously provided to us by the authors
of [1]], [3] or included in the datasets.

To compute the distribution of each performance indicator,
we generated 1000 random samples. For each sample, the
estimated subjective score value for each condition was drawn
from N (p;,0;), where p; was the reported quality value
and o; was the standard error of the mean. Then, each
metric performance indicator was computed separately for
each sample. The distributions of the computed indicators can
be found in Figure

'You can find the supplementary material using this [link,


https://drive.google.com/file/d/1QEtx4xkvnGwQPGjp25eoJ1fhuTcjbSK0/view?usp=sharing
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Fig. 1: Metric performance for the three tested datasets (rows), shown as SROCC

and RMSE (columns). The violin plots

visualize the error distribution due to the variance in subjective data. The black “-” denotes the mean score, and the red
“-” denotes the Sth percentile which estimates the bad-case performance. The green solid lines group the metrics for which
there is no statistical evidence that one metric is better than another. Refer to the supplementary for the PLCC and KROCC

performance plots.

Furthermore, to test the statistical evidence of the results,
we applied the one-tailed t-test at 0.05 significance level. The
degrees of freedom were equal to 2N — 2 where N was the
number of observers. Prior to the test on the correlation coef-
ficients, Fisher’s Z-transform was applied to ensure a normal
distribution of compared samples. Moreover, to account for
the risk of obtaining false positive results when conducting
multiple comparisons between metrics, the Benferroni-Holm
correction [38] was applied to the p-values. We visualize
the lack of statistical significance by plotting green lines in
Figure [T] and Figure 2] When a line groups metrics, there is
no statistical evidence to prove that the performance of one
metric is better than any other in the same group.

C. Metrics Evaluation

The results for the CID:IQ and VCIP21 datasets, shown
in Figure [I] indicate that most full-reference quality metrics
perform well, except for VIF on CID:1Q. No-reference metrics

perform poorly. We believe the problem could be the metrics’
inability to generalize to new data. The results for the VLIC
dataset (bottom row in Figure [I) show much worse perfor-
mance for all the metrics. One explanation is that this dataset
consists of subtle, just noticeable, distortions, which most
metrics were not designed or trained for. We also observed
that the results for this dataset are worse at 61 ppd than at
32 ppd (see the supplementary document).

The best-performing metrics differ from one dataset to
another. However, we can single out LPIPS (both models),
MS-SSIM, SSIM, SFF, and HDR-VDP-3 as the top metrics
across all datasets. VCIP21 results show fewer statistically
significant differences as this is a smaller dataset. Given
the results for all three testing datasets, we do not see a
pattern indicating whether scaling-based or CSF-based metrics
perform better.

The performance results of the metrics at each fixed view-
ing distance (refer to the supplementary) report noteworthy
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Fig. 2: Metric performance in terms of predicting quality differences
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distances (see Section [VI-D). The

between viewing

notation is the same as in Figure E Refer to the supplementary for the PLCC and KROCC performance plots.

changes in performance between different viewing distances.
For the CID:IQ dataset, the metrics’ performance is compara-
ble between viewing distances, with each metric performing
slightly better at a specific viewing distance. In contrast, the
VCIP21 dataset displays a distinct pattern, where most metrics
perform the best at an effective resolution of 60 ppd, with a
decrease in performance for higher effective resolutions. Sim-
ilarly, the VLIC dataset exhibits a drastic drop in performance
with the increase of effective resolution, excluding LPIPS-
VGG, LPIPS-Alex and FSIM, which were able to perform
better at an effective resolution of 61 ppd.

D. The effect of viewing distance disentangled

Our main research question is which metric does the best
job in accounting for the viewing distance, and, to a lesser
extent, which metric performs well at predicting the quality.

To disentangle the effect of viewing distance from general
metric performance on the testing datasets, we calculate the
differences between metric predictions at two viewing dis-
tances: Az; ;= x; ,—;,, where x; 1 is the metric prediction
for the condition ¢ and the viewing distance k. Then, we do the
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Fig. 3: Scatter plot of the disentangled quality scores for the
SSIM metric and VLIC dataset. The values show the difference
between the 32 ppd (near) and 61 ppd (far) conditions.

same for the subjective quality values and calculate SROCC
and RMSE for the above differences. This way, we can report
how well the metric compensates for the viewing distance and
not whether it performs well on a given dataset.

The results for the disentangled performance indices are re-



ported in Figure[2] We observe that the correlation coefficients
for the disentangled data are low, in particular for CID:IQ and
VLIC datasets. We investigated this further (see Figure |3| and
the scatter plots in the supplementary document) and observed
that the effect of the viewing distance on quality is irregular
and very different for different content. While we expect the
distortions to become less visible at larger viewing distances,
there are examples that show otherwise. For example, the
VLIC dataset contains three images in which the distortions
become more noticeable at larger distances. Furthermore, the
effect of distance is very different for different content —
some are almost unaffected by the distance, while others show
a substantial change in quality. Neither image rescaling, nor
CSF used in the metrics, can predict this effect well.

VII. CONCLUSION

In this paper, we investigated the performance of existing
metrics on the task of predicting quality at different viewing
distances. In particular, we compared the metrics that natively
account for the viewing distance (via CSF) with those that
were provided with rescaled images. Using four publicly avail-
able datasets designed for this task, our results indicated that
there is no statistical evidence suggesting that one approach is
better than another. Rather, both failed to predict the changes
in quality introduced by the change in viewing distance. Our
results suggest that the effect of the viewing distance of quality
is complex, and it requires better models than those used in
the existing metrics.
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