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Abstract

We present an analytically integrable noise function with
similar computational cost and quality to Perlin’s noise.
We show how to evaluate transmittance integrals through
our proposed noise function in a closed form. Such eval-
uation requires only two samples of our noise function.
In contrast, previous methods require a number of sam-
ples that is proportional to the resolution of the noise to
evaluate a transmittance integral. We also propose a dis-
tance importance sampling method for our noise function,
which avoids the limitations of delta tracking. We com-
pare our method to delta tracking. As the resolution of the
noise increases exponentially with respect to the number
of octaves of noise, our method becomes much faster. Ad-
ditionally, with distance importance sampling, the proba-
bility density function of the samples can be calculated an-
alytically, allowing for fast multiple importance sampling.
We also discuss the limitations of our method regarding
the shape of participating media and provide alternative
approaches to overcome these limitations. Finally, we pro-
pose approximated solutions that allow for the use of our
method in real-time applications at the cost of small bias.

Keywords: closed form, analytically integrable, hetero-
geneous media, transmittance, cosine noise, rendering

1 Introduction

In nature, many natural volumetric phenomena such as
clouds, smoke and fog have small variations in density
which need to be reproduced by rendering algorithms to
give these phenomena a realistic look. Such variations are
generally achieved by combining simulated volumes with
procedural noise [2]. However, rendering participating
media with procedural noise of such high-resolution is ex-
tremely expensive computationally as the time complexity
of transmittance evaluations increases exponentially with
respect to the number of octaves of noise. By octaves, we
refer to the number of iterations or frequencies of noise
used to produce fractal noise.

∗mb2280@cam.ac.uk
†rafal.mantiuk@cl.cam.ac.uk

Figure 1: Cloud rendered using cosine noise. The scene
is illuminated by a directional light source. Both renders
took 0.8 seconds. Resolution: 450 by 800 pixels. Effective
noise resolution of about 20003.

First, we will show how previous approaches fail to
avoid this exponential complexity. Then we will show how
we achieved linear complexity using an analytically inte-
grable noise function and give an algorithm for distance
importance sampling as well as compare our method to
the widely used delta tracking. We will then show the lim-
itations of our technique and detail alternative approaches,
which can be used to avoid these limitations. Finally, we
will give a short description of some optimisations, which
let us use our method in real-time applications.
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2 Related work

The radiance of the light scattered in a volume can be ex-
pressed with the rendering equation

Lv(x,~w) =
∫ S

0
Tr(x,xt)Ls(xt ,−~w)dt (1)

where Lv is the volumetric radiance seen from position x
in direction ~w, Tr is the transfer function and Ls is the ra-
diance scattered out from position xt in the direction −~w.

A simple method for the evaluation of Equation 1 is
classical ray marching [9] along the ray with a fixed step-
size to evaluate the integrals. However as the lighting
equation must be evaluated recursively, the time complex-
ity of the algorithm is O(NB) where N is the average num-
ber of steps along a ray, and B is the number of bounces.
Unfortunately as the resolution of the volume is increased
with additional octaves of noise, N must be increased ac-
cordingly. The step size must be set smaller than the aver-
age of distances between local extrema of the noise func-
tion to avoid artefacts. Therefore, N = O(aM) where a is
constant depending on the desired quality and the scaling
factor between octaves of noise and M is the number of
octaves of noise. Therefore, the time complexity of the
lighting calculation is O(aB·M), which is unfavourable for
rendering volumes with a high-resolution noise or many
bounces.

Stochastic methods such as distance sampling are ef-
fective when used in homogenous volumes, but require
ray marching in heterogenous volumes. Only one ray is
marched for each bounce in each sampling iteration re-
sulting in a time complexity of O(B · aM). Although ad-
ditional noise is introduced, the amount of computation
time is distributed equally between bounces. Using the
delta tracking algorithm, also called Woodcock tracking,
[15, 10] the time complexity of distance importance sam-
pling can be reduced to O(B ·M). While delta tracking
requires an accurate upper bound on the extinction coef-
ficient, it is a fast method for distance importance sam-
pling. However, when used for transmittance evaluations,
it only gives stochastic results. Some methods can be
adapted to use stochastic transmittance values, however,
special care must be taken to ensure that the distribution
of these transmittance values maps correctly when trans-
formed non-linearly. With more specialised methods such
as multiple importance sampling or artistic transmittance
functions, the adaptation to stochastic transmittance val-
ues can be too complex or impossible for practical imple-
mentations. In these cases, an exact transmittance eval-
uation is needed, and with stochastic methods, an accu-
rate transmittance evaluation requires many samples. Al-
though techniques such as ratio tracking, residual tracking
[7], free path sampling [14] and negative extinction [13]
can significantly speed up stochastic transmittance evalua-
tion, the associated computational cost is still much higher
than with analytic methods. A comparison of ray march-
ing and delta tracking is shown in figure 2.

(a) Ray marching (b) Delta tracking

Figure 2: Comparison of ray marching and delta tracking
from [10]. Delta tracking produces a noisier image within
the same computation time.

Some caching methods such as decoupled ray march-
ing [6] use binary search to importance sample the vol-
ume density wise, resulting in a time complexity of O(B ·
log(aM)) = O(B ·M) with no additional noise. How-
ever, this approach requires the storage and initialisation
of cached data and acceleration structures. The exponen-
tial time complexity with respect to the resolution at the
initialisation diminishes the advantages of fast samples for
high resolutions in interactive applications, and the high
memory usage makes most caching algorithms difficult to
implement on GPUs.

Previous analytical methods mostly focus on render-
ing homogenous volumes and usually ignore shadowing.
[8] Analytical integration of the transmission function has
been explored recently in [5]. However, only exponen-
tial and spherical density functions were used. In physics,
plane waves are commonly used and are analogous to the
building blocks of cosine noise. Although linearly trans-
formed cosine functions have been proposed to integrate
BRDFs over polygonal domains analytically [3], analyt-
ically integrable noise non-piecewise functions have not
been explored before. Many noise functions are piecewise
integrable, however, as the number of sub-functions is lin-
ear to the frequency of the noise, their computational cost
is similar to numerical methods.

3 Noise definition

We propose a noise function defined as the weighted sum
of longitudinal cosine functions along several vectors. The
noise is described by the scalar field φ :

φ(x) = coffset +∑
i

cos(x ·~Si), (2)

where Si is the collection of vectors defining the scale and
direction of the longitudinal cosines, coffset is a constant
defining the constant density of the noise and x ·~Si is the
dot product of a position x and the ith vector of S. Al-
though Si and x can have arbitrary many dimensions, for
rendering participating media, we will be using three di-
mensional vectors.

From now on we will refer to this proposed noise func-
tion as cosine noise. We have found that to achieve an even
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frequency, the vectors in Si should be roughly the same
length. To reduce the repetitiveness of the pattern, we used
24 quasirandom vectors. We have found vectors generated
by distributing a two dimensional Sobol sequence [12] on
a unit sphere and multiplying the results with uniformly
distributed random values between 0.8 and 1.2, to be rea-
sonably close to Perlin noise.

(a) Cosine noise (b) Perlin noise

(c) Cosine noise over large area (d) Perlin noise over large area

(e) Fractal cosine noise (f) Fractal Perlin noise

(g)
9 octaves of cosine

noise, 256 spp, 36.5 ms (h)
9 octaves of Perlin

noise, 256 spp, 71.3 ms

Figure 3: Quality and performance comparison of cosine
and Perlin noises.

As seen in figure 3c, cosine noise is repetitive when
viewed over large areas, even with 24 vectors. However,
this issue is much less noticeable when the noise is stacked
to create fractal noise, as lower octaves mask the repeti-
tion. Also, the periodic area can be increased by adding
more vectors to S.

As seen in figure 3g and figure 3h, cosine noise has sim-
ilar computational cost to Perlin noise.

4 Integral, fractal noise

Calculating transmittance along the ray between points us-
ing previous methods such as ray marching or delta track-
ing takes up the vast majority of the computational time re-
quired by the rendering of participating media. The com-
monly used exponential transmittance function:

Tr(x,xt) = exp
(
−
∫ xt

x
σt(z)dz

)
, (3)

where σt(x) is the extinction at a given position x. To eval-
uate the exponential transmittance function, we need the
integral of the extinction coefficient along the ray. The ex-
tinction coefficient is generally directly proportional to the
value of the noise at a given position. If σt is the ratio
between the noise and the extinction coefficient we get:

σt(x) = σt ·φ(x). (4)

Therefore when evaluating the exponential transmittance
function along a ray starting from point x, with direction
~w we get:

xt = x+ t ·~w (5)

Tr(x,xt) = exp
(
−σt

∫ xt

x
φ(z)dz

)
, (6)∫

φ(z)dz is an integral we can calculate analytically. The
indefinite integral along a ray from position x with direc-
tion ~w is:∫

φ(x,~w, t) = coffset · t +∑
i

sin((x+~wt) ·~Si)

~w ·~Si
. (7)

Equation 7 can be evaluated quickly on GPU’s by group-
ing the vectors in S into a collection of three by three ma-
trices S′. Algorithm 1 takes advantage of GPU’s linear
algebra and trigonometry hardware.

Algorithm 1 Cosine noise integral evaluator

1: procedure EVALINT(~w,x, t)
2: p← x+~wt
3: L← 0
4: for i in S′ do
5: p′← pS′i
6: ~w′← ~wS′i
7: L← L+(1,1,1) · sin p′

~w′
8: end for
9: return L

10: end procedure

5 Density importance sampling

The transmittance function can be easily importance sam-
pled. We can do this in two parts. In the first part, we
will need to importance sample the transmittance function
to get a target for the density integral, and in the second
part, we will calculate the distance along the ray to get this
density integral. First, we scale the indefinite integral of
the transfer function so that its codomain is [0,1]. For ex-
ponential transmittance functions, we need to multiply by
σt . Then we need to invert this scaled integral and evalu-
ate it for a uniformly random variable in the range (0,1).
The resulting number is the target density integral. Now
we can run a binary search on the definite integral of the
cosine noise along the ray to find the distance along the
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ray which corresponds to the target density integral. The
PDF at this sampling point is the evaluated transmittance
function multiplied by the scalar used before as well as the
density at the sampling point. This process is described by
Algorithm 2.

Algorithm 2 Binary search importance sampling

1: procedure DISTANCESAMPLE(~w,x)
2: σt ← (Absorption+Scattering) · coffset
3: ζ ← rand()
4: Target Density Integral← − ln(1−ζ )

σt
5: t← BinSearch(Bounds,Target Density Integral)
6: PDF← σt exp(−Target Density Integral σt)φ(xt)
7: end procedure

Having an analytical PDF allows for efficient multi-
ple importance sampling, for example, combining density-
wise samples with equiangular samples [6].

(a) Closed form evaluation

(b) Delta tracking

Figure 4: MIS Cloud scene. Both renders took 5.5 sec-
onds at a resolution of 675 by 1200 pixels. Effective noise
resolution of about 20003.

To compare our method to delta tracking, we imple-
mented a scene with a cloud using multiple importance
sampling, illuminated by a directional light as well as a
point light deep in the cloud. The only difference between
the closed form and delta tracking versions of our demos
is the method used to evaluate the transmittance integrals
and the distance sampling method. Therefore the produced
samples are identical, with the difference being the time
required to produce these samples. Figure 4 shows the
two demos rendered given a 5.5 second time limit at a res-

Process Closed form Delta tracking
Ray tracing bound-
ing surface

110ms 110ms

Transmittance evalu-
ations and distance
sampling

65ms 1136ms

Total 179ms 1250ms

Table 1: Performance comparison of our closed form eval-
uation and delta tracking.

olution of 675 by 1200 pixels. Delta tracking produced an
image with fewer samples resulting in much more noise.
Table 1 compares the average time required by the most
computationally intensive parts as well as the total time of
the rendering process to render one sample for each pixel
of the image. As seen in Table 1, our closed form demo is
about 7 times faster, while transmittance evaluations and
distance sampling are about 17 times faster.

All performance data has been recorded on a system
with an Nvidia GeForce RTX 2080Ti and an Intel Core
i9-9900K running OpenGL 4.5 on Ubuntu 18.10 using
Nvidia’s proprietary drivers.

6 Shaping cosine noise

In order to shape participating media, procedural noise
functions are typically multiplied with other functions
which contain information about the shape of the media
such as a simulated volume. While this multiplication is
trivial with numerical solutions, to get the performance
benefits of cosine noise, we have to integrate the volume
analytically. However, in this case, the product of func-
tions generally will not have an elemental antiderivative.
It is also common to shape participating media by com-
posing the noise function with a shaping function. How-
ever, this composite usually does not have an elemental an-
tiderivative either. While these limitations restrict the use
of cosine noise in some special situations, there are other
ways to shape participating media which do not prevent
the analytical integration of cosine noise. We will detail
these approaches in this section.

For multiplicand functions, in case we multiply cosine
noise with a multiplicand function, a fast and straightfor-
ward approach is to sample the noise between bounding
surfaces. We can use isosurfaces of the scalar field defined
by the multiplicand function and multiply cosine noise
with different ci constants in-between bounds to approx-
imate the product of cosine noise and a multiplicand func-
tion. Figure 5 illustrates this process.

Even with a single layer, we can get highly realistic re-
sults as seen in Figure 1. These surfaces can also be stored
as meshes, enabling the use of the hardware rasterizer,
making this approach optimal for real-time use. Real-time
applications will be discussed in greater detail later.
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Figure 5: Illustration of isosurface traversal.

Another approach is to interpolate between samples of
the multiplicand function. First, we sample the multipli-
cand function as we would previously, for example, ray
marching with some step size, interpolate between these
samples, and only multiply cosine noise with the inter-
polant. When using bicubic interpolation along a ray, the
interpolant is given by a third-degree polynomial P. The
antiderivative of the product of a polynomial interpolant
and cosine noise is elemental. This approach is espe-
cially useful when cosine noise is combined with grid-
based volume simulation, as interpolation is straightfor-
ward between voxels and voxel traversal is quite fast [1].
Figure 6 illustrates this process.

Figure 6: Illustration of voxel traversal.

Both of these approaches can be used together with den-
sity importance sampling. After determining the target
extinction integral as well as the bounds or sample loca-
tions of the multiplicand function, we can iterate through
these bounds along the ray, calculating the analytical ex-
tinction integral for each. After some iterations, we will
find the two bounds between which we can use the pre-
viously mentioned binary search method to find the exact
distance. This approach is used in Figure 1. Decoupled ray
marching can be used to speed up this method similarly
as described in [6]. First, we iterate through all bounds
and store their extinction integrals in an array. Then we
can use another binary search on this array for each sub-
sequent sample to find the bounds that correspond to the
target extinction integral. The combination of cosine noise
and decoupled ray marching is especially powerful when
rendering grid based simulated volumes, as a single ray
intersects relatively few voxels, therefore, the size of the
required array is small, while cosine noise can add a signif-
icant amount of detail, combining the best of both worlds.

While multiplicand functions generally control the ge-
ometry of the noise, composites with shaping functions
generally alter the shapes of variation in the noise, for ex-
ample changing the density or making the transition be-
tween densities sharper or smoother. Figure 7 shows some
examples.

(a)
No shaping

function applied (b)
Raised to

power of 2.5 (c) Clamping from
0.3 to 1.0

Figure 7: Comparison of different shaping functions ap-
plied to Perlin noise.

Multiplicand functions usually have a relatively low res-
olution and combining previous techniques with cosine
noise is very effective in that case. However, if the com-
posite of a shaping function and cosine noise does not have
an elemental antiderivative, there is no simple solution.
However, we have found that instead of using a shaping
function, just tuning the parameters of cosine noise gives
a similar amount of control. First, sparsity can be con-
trolled by the coffset parameter of the cosine noise as in
Equation 2. Choosing a small offset may result in neg-
ative densities at particular coordinates, however, unless
their magnitude is significant, clamping samples and inte-
grals are enough. Large magnitudes of negative densities
can cause anisotropic artefacts. Although, especially with
animated volumes, small anisotropic artefacts are hard to
discern. Figure 8 shows the effect of changing the offset
parameter.

(a) Normal offset (b) Low offset (c) High offset

Figure 8: Comparison of cosine noises with different off-
sets

A second approach is to tune the parameters of the frac-
tal noise. Changing the coefficient and the linear trans-
formations between octaves can result in different looks.
Figure 9 shows some examples.

(a) Blue noise (b) Grey noise (c) Pink noise

Figure 9: Examples of different fractal noises constructed
using cosine noise.

Finally, unique noises can be produced by changing the
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vectors in S from the more general quasirandom vectors
described in Section 3. Figure 10 shows an example.

Figure 10: Cosine noise with artistic S.

When compared with shaping functions, these methods
can also produce a variety of looks, satisfying many use
cases.

7 Real-time application

Real-time volumetric renderers generally use ray march-
ing to render heterogeneous media and to calculate light-
ing. However, even with temporal optimisation and
shadow maps, only a low volume resolution can be
achieved using these techniques because of the low num-
ber of samples. [4, 11] Cosine noise is especially useful
here as the extinction integral towards the light can be eval-
uated analytically.

If we rely on bounding meshes to shape the noise,
we can use the following method. First we need to
draw the visible part of the bounding meshes similarly to
transparency rendering techniques. For example, AMD’s
linked list method is a good option [16]. After this step,
we should have a list of bounds for each pixel. We also
need to create a multi-layer shadow map, which we can do
by repeating the same process. Now we can use the impor-
tance sampling method described in Section 5. With just
16 quasirandom samples we can get a high level of detail.
With such low sample counts, however, importance sam-
pling based on only an average extinction reduces noise
and allows for more samples as the binary search is not
necessary. Figure 11 shows a screenshot of our implemen-
tation, as a single scattering volume bound by a sphere is
illuminated by a directional light.

8 Future work

Real-time applications of cosine noise could be explored
more in depth. The closed form integral of cosine noise
could potentially be extended to support depth of field and
motion blur by integrating over multiple domains. Shap-
ing methods for cosine noise could also be explored fur-
ther. We would also like to explore the use of other peri-
odic functions in place of cosines. Cosine noise could be
useful to compress 3D textures.

Figure 11: Real-time implementation of our method. Run-
ning at 80 frames per second at a resolution of 675 by
1200. Effective noise resolution of about 20003.

9 Conclusion

We proposed cosine noise as a solution to the high compu-
tational cost of rendering participating media with a high-
resolution procedural noise using previous methods. We
have shown that our method is significantly faster at eval-
uating transmittance in high-resolution noise than delta
tracking. Our method is optimal for use on GPUs and of-
fers a higher effective volume resolution in real-time ap-
plications than previous approaches. While our method
is limited in terms of shaping cosine noise, we proposed
several alternative approaches to mitigate this limitation.
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