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ABSTRACT 

Understanding those factors critical to predicting public response is crucial to our ability 

to model the consequences of a terrorist strike in an urban area. To forecast community response, 

a system dynamics model was constructed that examines how a community is likely to respond 

to a terrorist attack along several dimensions. For three scenarios (anthrax attack, bomb blast and 

propane tank explosion) intensity of investigation, media coverage, public risk perception, 

diffusion of fear and community intervention are simulated over a six month period. Terrorist 

attacks generated intense media coverage initially resulting in high perceptions of risk and 

diffusion of fear. Delays in community intervention contributed to higher and more prolonged 

levels of fear. Perceptions of risk rose very quickly but declined quite slowly. These findings 

should prove useful to those wishing to predict public response to a variety of different 

contingencies involving terrorism. 

 

1. INTRODUCTION 

The objective of this paper is to examine factors critical to predicting public reaction to a 

terrorist strike and to describe an approach to modeling the dynamic complexity that underlies a 

community’s response. Emergency response systems, information and communication channels, 

and social support networks are likely to be influenced by the particular characteristics of a 

terrorist event to produce a wide range of physical, social, and economic impacts [1-3]. To 

forecast community response, a system dynamics simulation model is introduced that illustrates 

some of the complexity likely to determine impacts within a large urban community during such 
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a crisis. Additionally, this model simulates the immediate and mid-term impacts (e.g., diffusion 

of fear) of two different types of terrorist events and an accidental mishap.  

As a practical motivation for such modeling, consider the fact that public officials, 

business leaders, health care providers and most citizens now feel the need to prepare for the 

impacts a terrorist strike might have on an urban community. Following the events of September 

11th and the anthrax attacks during the same period, individuals and organizations have become 

aware of their vulnerability with respect to explosions (bombing of tunnels and bridges), 

biological agents (smallpox, anthrax), and radiation releases (“dirty bombs,” attacks on nuclear 

reactors). Reflecting this sense of vulnerability, websites, books, and news reports addressing 

disaster preparedness have become ubiquitous. Universities now offer courses covering all 

aspects of terrorism. 

There is a clear need to provide researchers, educators, homeland security officials, and 

policy makers with a better understanding of the dynamics that underlie how a community is 

likely to prepare for and respond to an attack [4].  

 

1.1. Overview of Study 

This study intends to accomplish two goals. First, we seek to illustrate how systems 

modeling may provide insight into how risk signals following a hazardous event may ripple 

through a community. Hence, we propose a systems model and provide simulation output 

depicting the diffusion of fear in a community. Second, we seek to examine how characteristics 

of different hazards may contribute to the diffusion of fear. With this in mind, we incorporate 

survey findings reported in [5] into our systems model. In that study hypothetical threat scenarios 

were developed and survey data were collected that principally compare accidents to terrorism 
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across two damage mechanisms: explosions and infectious diseases. The authors found that 

perceptions of risk and risk-related behaviors differed markedly depending on the mechanism 

involved and whether terrorism was implicated. However, that study did not analyze how public 

reaction might change over the course of the event. Hence, this paper extends their findings by 

simulating the diffusion of fear over a six month period in the context of community response. 

This simulation is guided by two conceptual frameworks, the social amplification of risk and 

systems thinking and modeling which are discussed next. 

 

1.2. Theoretical and Empirical Basis for Study 

The Social Amplification of Risk. This study is guided by two conceptual frameworks, 

the social amplification of risk and systems thinking and modeling. The central idea behind the 

social amplification framework is that an adverse event, in this case an accident or act of 

terrorism, interacts with psychological, social, institutional, and cultural processes in ways that 

may amplify (or attenuate) community response to the event [1]. According to this theory, the 

effects of an accident or act of terrorism sometimes extend far beyond the direct damages to 

victims, property, or environment and may result in immense indirect impacts. When a mishap 

occurs, information flows through various channels to the public and its many cultural groups. 

This information is interpreted largely on the basis of its interaction with the above processes. 

This interaction, in turn, triggers risk-related behavior. Such behavior, together with the 

influence of the media and special interest groups, generates secondary social and economic 

consequences that eventually call for additional institutional responses and protective actions [6].  

Prior Studies. Numerous studies have examined aspects of the social amplification 

framework from particular disciplinary points of view and methodological approaches [7] with 
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applications from media and risk reporting [8], organizational amplification and attenuation [9-

11], institutional trust [12-13], nuclear power and stigma [14-15] and public policy [16]. Much 

has been learned about the public perception of risk, but far less is known about the contexts 

under which amplification or attenuation occurs or how such amplification of risk perceptions 

are linked to other community impacts [17].  

Systems Thinking. We also discuss systems thinking and later systems modeling as a 

way to address some of the issues raised by these studies. According to [3], the modeling tools 

employed in systems thinking are useful for understanding the structure of a system, the 

interactions among its components, and how change in one area affects the whole system and its 

parts over time. In fact, one of the early pioneering applications of system dynamics modeling 

examined urban renewal policies and their ironic contribution to the acceleration of inner-city 

decay [18].  

From a systems perspective, to understand community reaction to a terrorist act, focus 

must be placed on the interaction of the community’s essential components and processes [19]. 

In fact, the dynamics of such a systemic response can be understood in terms of the interaction of 

positive (self-reinforcing) and negative (self-correcting) feedback loops, along with time and 

information delays and nonlinearities [20]. Nonlinearity, as used here, refers to the potential for 

simple changes in one part of a system to produce dynamically complex effects throughout the 

entire system (in this case the community). It also refers to the possible curvilinear relationships 

that may exist between model variables. Examples of both are offered later in the paper. The 

social amplification framework provides the theoretical and empirical substance to guide what 

processes should be modeled and how system feedback loops and delays may contribute to 
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impacts far in excess of what one might expect based on the immediate and most tangible 

consequences of a terrorist act.  

Positive loops tend to amplify behaviors and negative loops tend to counter such change. 

For example, positive loops formed as the media began to follow the investigation of the anthrax 

attacks in Washington, D.C., Trenton, New Jersey, and Boca Raton, Florida. People around the 

nation began to alert friends and coworkers about this new threat and information spread rapidly 

via word-of-mouth. As a result, concern and to some extent fear began to rise dramatically, 

according to news polls at the time. Ripple effects were felt around the nation as citizens called 

information hotlines and health care providers, brought suspicious mail to local police and fire 

departments, and sought vaccines and antibiotics in case of exposure. Health care facilities felt 

the need to review bioterrorism response and preparedness plans. Conversely, negative loops 

also formed. As word-of-mouth increased, people had fewer new people to talk with or less fresh 

news to talk about and hence “water cooler” conversation declined, having exhausted itself. 

Likewise, as fear spread institutions (e.g., governmental agencies, health care providers, religious 

organizations) responded, offering reassurance and information that the threat of anthrax was not 

as serious as imagined (e.g., not international terrorism) and was being addressed (e.g., the postal 

service screening mail). Fear decreased and so did the volume of telephone calls to health care 

facilities and demands for antibiotics, but the call for bioterrorism preparedness persists today 

[21].  

Delays between actions and consequences as well as nonlinearities are also important and 

make community response difficult to predict and manage [22]. Despite an intensive federal 

investigation, it took time to determine that international terrorism wasn’t behind the anthrax 

attacks and to declare the Senate Office Building free of anthrax spores. Likewise, support 
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organizations required time to respond and offer help. Meanwhile the nation was on the alert. 

Even after new information and reassurances were available, it took time for people to 

emotionally adjust, because it was easier to become scared than to calm down. Finally, the 

effects of terrorist acts in general are unlikely to be proportional to the direct damage they cause. 

The effects are likely to be nonlinear in this sense. The anthrax attacks of 2001 were local events, 

unconnected to international terrorism, in which five people died. Yet, this event, in the wake of 

September 11, has led to massive efforts in bioterrorist research, disaster preparedness, and the 

stockpiling of vaccines and antibiotics.  

 

2. SYSTEMS MODELING 

2.1. Modeling Procedures and Hypothesis 

Procedures. As an explanation of our systems modeling procedures, consider the model 

shown in Figure 1 which seeks to depict the diffusion of fear in a community following a 

terrorist attack. This model has been abridged for ease of discussion. However, the full model, its 

input values and all its equations are posted on the authors’ website [25].1 All model equations 

and inputs are also shown in the Appendix. Figure 1 is a stock and flow diagram [3, 20] designed 

to represent the state of a system at any given moment and to track how the system changes over 

time. Stocks (depicted as rectangles and italicized throughout the paper), are accumulations and 

represent the state of the system at any given time. Flows (depicted as in-flowing and out-

flowing pipes) increase or decrease the size of the stocks over time, respectively. Rates of flow 

are regulated by valves, which in turn are influenced by causal factors (depicted as small circles) 

linked to rates by feedback loops (depicted as arrows).  
                                                 
1 http://www.decisionresearch.org/people/burns/  
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One example of stocks used here are the number of citizens moving first from a state of 

Status Quo (level of concern prior to terrorist event) to Concerned as worry increases, to Fearful 

as fear increases, and back to Concerned as fear decreases. The rate of flow (citizens per day), 

say from Concerned to Fearful is regulated by the valve “fear increasing.” This, in turn, is 

influenced by “fearful talking” and “news impact”. Naturally, the number of concerned 

citizens—Concerned—diminish at the same rate as fearful citizens—Fearful—increase (people 

in a system are conserved). The clouds at the beginning and end of the pipes are stocks (sources 

and sinks respectively) representing variables outside the boundary of the model. 

As will be discussed shortly, this simulation varies a number of model parameters such 

Risk Signal (characteristics of an event that portend immediate or future danger) and Community 

Intervention Delay (time required to reduce fear levels to a target level) to observe how critical 

endogenous variables in the model change over time. The number of fearful people is especially 

important in this respect. However, no attempt is made to introduce stochastic elements into our 

simulation similar to that of a Monte Carlo study. This model is deterministic and instead focuses 

on the underlying dynamics of how risk and risk-related behaviors (e.g., fear) diffuse in response 

to different types of events and speeds of community intervention. 
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Figure 1. System dynamics model of community response to a terrorist strike (abridged). 

Dynamic Hypothesis. The hypothesis underlying our model is based in part on the social 

amplification of risk framework which predicts that events with higher risk signal will receive 

greater investigative attention and broader media coverage. It also suggests that the media may 

amplify this risk signal still further through sheer volume of coverage and selective content and 

imagery. Consistent with this theme, it is inferred that the public will adjust their perceptions of 

risk in response to media reports of a threat and descriptions of how the community appears to be 

responding. However, for events like the ones described in this paper, adjustments upward are 

likely to be rapid whereas adjustments downward may be slow by comparison. Additionally, risk 

perception is believed to have far reaching effects and will act to moderate how the public reacts 

to news and conversations with others. Influenced by their perceptions of threat, concerned 
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citizens may also serve as amplifying stations through word-of-mouth and thus contribute to the 

rapid diffusion of fear in a community. Responding to public reaction, community efforts (e.g. 

social services, faith-based groups) will almost certainly seek to calm citizens and restore 

normalcy. This intervention may not only quell fear but may reduce risk perceptions as well. 

Though not modeled in this paper, high levels of fear may subsequently lead to costly secondary 

impacts as increasing demands are placed on community, regional, and national resources (e.g. 

security efforts following the attacks of September 11th). 

 Story Context. The simulation described here is based on three hypothetical disaster 

scenarios taking place in a theme park near a large city in southern California [5]. These events 

involve an accidental propane tank explosion, a bomb blast and an anthrax release. While these 

scenarios are similar in terms of casualties they differ in terms of risk signal and length of 

investigation. The context of the simulation involves a city of one million adults, one thousand of 

whom are put in harm’s way during a terrorist attack or accidental mishap at the park. Half of 

these people die within days (on average three days for explosions and five days for anthrax).  

Model and Story Outline. As depicted in Figure 1, the story begins with people in the 

proximity of a terrorist act or accidental mishap (Population at Risk), some sustain harm (i.e. 

injured or infected) and about half eventually die (Dead). An investigation ensues based on these 

deaths and the risk characteristics (e.g., accident, terrorism, infectious disease) of the event. As 

the investigation intensifies (Investigative Intensity), media coverage (TV Coverage) increases, 

and alerts citizens about the event. Increased awareness of the terrorist strike leads to an 

increased perception of risk (Risk Perception) causing people to become concerned (Concerned) 

and alert others. Some people will also become fearful (Fearful). However, as the population 

becomes fearful, networks within the community (formal and informal) begin to offer support 
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and reassurance, which in turn begins to reduce the level of fear and subsequently perceptions of 

risk. Eventually the community regains its equilibrium but the public remains at a higher state of 

concern and perceived risk (and to some extent fearful) than before the event.  

 2.2 Stock and Flow Computations  

Metrics. For some model variables the choice of scale was straightforward. For example, 

variables involving delays such as Investigation Delay were measured in terms of days. 

Likewise, stock variables such as Population at Risk, Dead, Status Quo, Concerned and Fearful 

were naturally described in terms of people. However, for a number of variables, scale selection 

was based on ease of assessment and interpretation. For example, Investigation Intensity, TV 

Coverage, Risk Perception, Awareness and Perceived Investigation Intensity were normalized to 

a unitless 0-100 scale. Similarly, factors such as Risk Signal, Fear Impact and a number of the 

risk perception multipliers were standardized to a unitless 0-1 scale. For a complete list of all 

model variables and their unit scales see the authors’ website [25].  

Model Inputs. Inputs and relationships among model variables were based on survey 

results [5-6] and on author judgments (informed by both a familiarity with the disaster literature 

and the San Diego community). Some inputs varied as a direct result of the simulation. For 

example, in simulating public response for the three mishaps mentioned above, scores for Risk 

Signal were assigned on a relative basis as follows: anthrax (1) bomb blast (.8) and massive 

propane tank explosion (.3). These values were based on survey results and on conversations 

with first responders. Length of the investigation also differed for each event (60 days, 30 days, 

10 days respectively). The minimum length of time to investigate an anthrax release was judged 

to be 60 days, and investigations for the other events were assessed relative to this value. Time to 

death for each event was 5 days, 3 days and 3 days respectively. Community Intervention Delay 
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was manipulated independently of the event (1 day, 3 days, 5 days).  However, other inputs were 

fixed throughout the simulation. For example, the rate at which a person might talk with others at 

the height of a crisis was judged to be 10 people per day and was based on survey results [5]. 

The target fear level for community intervention was fixed at 100,000 people (ten percent of the 

population). The initial value for the stock Status Quo was set equal to the population size of 

adults in San Diego (1,000,000). In contrast, the initial value for the stock Population at Risk was 

set equal to the number of people proposed to be near the site of the mishap (1,000). For all other 

stocks initial values were set to zero. 

Graphic Functions. To convey the many nonlinear relationships among model variables 

graphic functions were used. These assessed variables are designated with a small tilde in Figure 

1. and are completely described on the authors’ website [25]. Essentially, the values of a number 

of variables were assessed as a nonlinear function of another model variable. As an example, 

perceived investment intensity was assessed as a function of Investigation Intensity and is shown 

in Figure 2. The rationale for this sigmoid function (as opposed to a linear function) is that events 

receiving lower amounts of investigation effort may be perceived as less intense than they 

actually are because they receive less news coverage and therefore are less salient in the public’s 

mind. The reverse is true for events receiving much greater degrees of attention. 
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Figure 2. Graphic assessment of Investigation Intensity vs. Perceived Investigation Intensity. 

Rate Equations. All stocks in the model change in relation to their corresponding rate 

equations and these are listed in Table 1. Most variables comprising these equations are depicted 

in Figure 1 and all are described in the Appendix.  For a complete representation of variable 

relationships see the unabridged model on the authors’ website [25]. Dead represents a tally of 

the number of people who have died during the event. It increases as a function of the population 

exposed to the threat (1,000 people), and the time it takes to die for the 500 persons designated to 

perish in the simulation. Investigative Intensity represents the allocation of community resources 

in response to a crisis and depends on a number of model variables that evolve during the event. 

This stock increases (investigation increasing in Table 1) as a weighted function of factors 

involving casualties, risk signal, fear, available resources and delays in investigation. 

Conversely, Investigation Intensity decreases over time depending on the length of the 

investigation.  
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Table 1. Flow Variables and Rate Equations for Figure 1 

Flow Variables 
Descriptions 
(Daily Rate) Rate Equations 

deaths increasing Victims dying Population at Risk/Days to Death 

recovering Victims living Population at_Risk/Days to_Death (rate set equal to death 
rate to produce equal numbers of dead and survivors) 

investigation 
increasing 

Percent effort 
increase  

MIN((.1*Casualty_Impact+.85*Risk_Signal+.05* 
Fear_Impact)* 
(Resource_Availability/Investigation_Delay),100) 

investigation 
decreasing 

Investigation 
winding down 

Investigation_Intensity/Investigation_length 

coverage 
increasing 

Airtime increase  MIN((.1*Casualty_Impact+.85* 
(Investigation_Intensity/100)+.05*Fear_Impact)* 
(Available_Air_Time/Coverage_Delay),100) 

coverage 
decreasing 

Airtime decrease TV_Coverage/Media_Attention_Span 

perceptions 
changing 

perceptions increase 
or decrease  

MIN((((Perceived_Invest_Intensity-
Risk_Perception)/Risk_Adjustment)*(Awareness/100))-
Fear_Reduction_Impact*Risk Perception,100) 

news impact Persons concerned 
from news  

MIN((Awareness/100)*RP_News_Multiplier* 
Status_Quo,1000000) 
OR 
MIN((Awareness/100)*RP_News_Multiplier* 
Concerned,1000000)for news impact 2 

concerned talking Persons concerned 
from word-of-mouth 

MIN(Talk_Rate_1*Influence_Rate_1*Status_Quo* 
(Concerned/Population),1000000) 
OR 
MIN(Talk_Rate_2*Influence_Rate_2*Concerned* 
(Fearful/Population),1000000)-for fearful talking 

worry increasing Total persons 
concerned 

MIN(News_Impact_1+Concerned_Talking,1000000) 

ignoring Concerned ignoring Concerned/Ignoring_Delay 

fear increasing Total persons fearful MIN(News_Impact_2+Fearful_Taking,1000000) 

fear decreasing Persons from fearful 
to concerned 

(Fearful-
Target_Fear_Level)/(Community_Intervention_Delay/RP_Int
ervention_Multiplier) 
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TV Coverage increases (coverage increasing in Table 1) with factors involving casualties 

(human hardship), investigative efforts (providing a plot for the story), fear (community 

response), available airtime (competitive stories) and response delays (time and effort to obtain 

details). However, media attention is competitive and a story begins to lose its “newsworthiness” 

over time. As a result, increasing and decreasing coverage were treated as inversely related to 

time. Mathematically representing Investigation Intensity and TV Coverage in this way allows 

for the possibility that an event such as a terrorist threat involving no casualties could have 

potentially much larger consequences than an accidental mishap in which many lives are lost. 

Risk Perception embodies the public’s assessment of threat (a state of mind) in response 

to the crisis and acts as a moderating factor throughout the model as shown in Figure 1. Changes 

in perceived risk (perceptions changing in Table 1) are a complex function of perceived 

investigation intensity, current risk perceptions, public awareness of the threat, speed of 

perceptual adjustment (risk adjustment), and assessments of community efforts to quell fear (fear 

reduction impact). The speed and direction of this change depends largely on the nature of the 

gap between perceptions of investigative efforts and current perceptions of threat. For example, 

Risk Perception increases rapidly when current perceptions of the threat are considerably less 

than perceptions of investigative intensity (i.e. people are highly responsive to reports of 

potential danger) and decreases slowly when the reverse is true (i.e. people are slow to recover 

despite expert assessments).  

The diffusion of fear is modeled by counting the number of people moving between the 

states Status Quo (pre-event levels of concern), Concerned (worried, possibly seeking 

information and prepared to take prudent action) and Fearful (high anxiety and possibly taking 

self-protective though not necessarily prudent actions). The stock of Concerned citizens 
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increases as a direct result of individuals becoming worried (worry increasing in Table 1) on the 

basis of news reports and conversations with others (news impact and concerned talking 

respectively in Table1). The number of people affected by news reports depends on the 

community’s level of awareness, perceptions of risk, and how many are yet unconcerned 

(awareness, risk perception multipliers, and status quo respectively in Figure 1). The spread of 

concern by word-of-mouth is more complicated. The rate at which people talk (concerned talking 

in Table 1) varies according to levels of awareness, number of people contacted per person, how 

much influence each conversation has, the number of people yet unconcerned, and the fraction of 

concerned citizens in the population (awareness, talk rate, influence rate, and status quo 

respectively in Figure 1-population is not shown). Note that contact rate and level of influence 

depend on levels of perceived risk (through its multipliers) hence, events with more news 

coverage and higher perceived risk are attended to more closely, are talked about more 

frequently (conversations are also more influential) and are more likely to generate a number of 

“self-protective” actions [5-6].  

The stock of Fearful citizens increases (fear increasing in Table 1) in the same way the 

stock of Concerned citizens increases. Fear however, has the potential to spread quickly, and 

communities cannot sustain high levels of fear for long. To counteract the diffusion of fear it is 

assumed that community networks mobilize to offer support and reassure people. How rapid or 

effective this response might be is unclear and almost certainly depends on community 

cohesiveness and preparedness. How quickly levels of fear decrease (fear decreasing in Table 1) 

depend on the gap between the current and target levels of fear, the time it takes for the 

community to intervene and perceptions of risk (target fear level, community intervention delay, 

and risk perception multipliers respectively in Figure 1). The idea here is that a community has 
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an explicit or implicit goal to reduce fear levels to some sustainable level and hence will attempt 

to monitor and close this gap. However, it may take a number of days to restore a fearful public 

back to a level of being concerned about their safety. A target of reducing the number of fearful 

people to ten percent was taken as a desired goal because levels below this level may be 

unrealistic. A three day delay was used as a base rate in all model calculations.  

2.3. Results 

Community Response. Now that our modeling has been discussed, consider the 

following model output (Figure 3) depicting important factors likely to be involved in a 

community’s response to an anthrax attack in which 500 die. Notice that the community 

responds quickly during the first few days following the anthrax attack. Investigation Intensity, 

which is not shown here, begins immediately and is already at over 50% of available resources 

by the first day (still at fifty two percent 2 months later). TV Coverage in Figure 3 spikes quickly 

offering extensive reporting for about two weeks and then begins to rapidly decline as it turns to 

other news (less than five percent 2 months later). Within days perceived risk peaks, and over 

eighty five percent of the public are in a state of fear (at forty four percent 2 months later). This 

percentage corresponds exactly, to a nationwide survey conducted two months after September 

11th in which 21% of people described themselves as very afraid and 23% were somewhat afraid 

[23]. However, it should be noted that the two studies may not be measuring fear in the same 

way. Observe that within a few weeks both risk perception and fear begin to decline but 

perceived risk drops much more slowly. This reflects the fact that a community may intervene 

directly to calm people down but attitudes toward certain hazardous events are resistant to 

change (e.g. nuclear power following the accident at Three Mile Island). 
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Figure 3. Simulated community response to an anthrax attack during the first six months. 

Differences in Fear Across Mechanisms. The public is likely to respond differently 

depending on the risk characteristics (e.g. terrorism, infectious agent) of the event. Figure 4 

compares the diffusion of fear in a community following an anthrax attack, bomb blast and 

accidental propane tank explosion. All three events result in the same number of deaths (500). 

However, these events differ not only in their risk signal but in the amount of time it may take to 

investigate the event (i.e. ability to say something definitive to the public regarding causes and 

consequences). Notice that both terrorist events cause considerably more public fear than does 

the propane tank accident. While public fear for the anthrax and bomb blast attacks peak at about 

the same level, fear subsides more quickly for the bomb blast (forty four percent and twenty four 

percent 2 months later respectively). This is due largely to likely differences in the length of 

investigation. The propane tank explosion overall causes a comparatively smaller public reaction 

(twenty percent 2 months later) because propane tanks are very familiar to the public and first 

responders are skilled at controlling this type of hazard (if negligence is involved outrage may be 
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extensive).  The differences in the number of fearful people and the length of time they remain 

afraid has sobering implications for the physical and economic health of a community, not to 

mention its quality of life. This kind of amplification results from the reinforcing feedback loops, 

delays, and nonlinearities predicted by the social amplification of risk framework. 

 

Figure 4. Simulated response for events differing in risk signal and investigation duration. 

Impact of Community Intervention. A wide range of formal and informal community 

networks are likely to respond to public concerns during a crisis. How quickly they are able to 

effectively reach out to its members may have substantial consequences for the community. 

Figure 5 compares the diffusion of fear in the community for three levels of intervention 

(average response delays). Notice that timely intervention causes fear to drop much more quickly 

for an average delay of one day versus five days (twenty percent and sixty two percent after 2 

months respectively). This difference is most likely understated because longer delays may also 

encourage the perception that too little is being done to help. 

 19



 

Figure 5. Simulated response to anthrax attack for three levels of delayed intervention. 

 

3. DISCUSSION 

3.1. Major Findings 

This study has simulated three threat scenarios (anthrax attack, bomb blast and propane 

tank explosion) extending survey findings from a previous study [5] into a systems model to 

examine how fear might diffuse within a community immediately following a terrorist attack or 

an accident. Scenarios differing in risk signal (i.e. terrorism versus accident and infectious 

disease versus explosion) and length of investigation were simulated to determine their impact 

on media coverage, risk perception, word-of-mouth and the diffusion of fear over a six month 

period. Community intervention delays were also investigated to understand their role in the 

diffusion of fear. Small increases in risk signal in combination with length of the investigation 

had a pronounced amplifying effect on the number of fearful people, and rate of diffusion and 

duration of fear. Likewise, increased delays in community intervention also led to substantial 

 20



increases in the level and duration of fear. Community response was substantially different for 

accidents versus terrorist events, a finding consistent with the social amplification of risk 

framework. This study begins to demonstrate how responses to carefully designed scenarios can 

provide data and parameters for input into our system dynamics model.  

3.2. Study Limitations  

Our model represents an attempt to capture some of the dynamics likely to drive 

community response to certain hazardous events. Model construction was guided by the social 

amplification of risk framework (the roles of the media, citizen word-of-mouth and formal and 

informal networks as possible amplification or attenuation stations), and survey data (risk 

perception of events with differing risk characteristics, propensity to contact friends or pay 

attention to the media, risk-related behaviors such as avoiding public places or the perceived 

calming influence of government officials, clergy, social agencies, or health care experts). 

However, many of the functional relationships between model variables were based on 

reasonable but subjective judgments. For example, level of investigative effort was modeled as a 

function of risk signal, fear level and fatalities but a more objective assessment of resource 

allocation may be possible and provide further insight [24]. Additionally, we know that formal 

and informal social support networks engage the public during a crisis but it is difficult to 

describe how effective these efforts are. The effectiveness of community intervention here was 

approximated with a small range of response delays and an assumed target for the level of fear in 

the community. Hence, it would be helpful to corroborate these findings with behavioral data as 

it becomes available. We did compare the level of fear predicted by our model 60 days after an 

anthrax attack with national surveys that tracked public perceptions following September 11th 

and found our projections surprisingly close.  

 21



Likewise, we have incorporated a number of critical variables but some potentially 

important factors were not included. For example, we did not model the impact of public trust in 

community leaders. However, this response would probably influence not only public risk 

perceptions and fear but may impact the magnitude of the event itself through the public’s 

willingness to comply with warnings. Finally, several of the variables in our systems model are 

really an aggregate of a number of related variables. This was done for simplicity but these 

components may not always behave as an aggregate. For example, Investigative Intensity 

potentially represents the efforts of first responders, health care workers, scientists, and local and 

federal authorities. However, an event such as a propane tank explosion might require intense 

efforts by first responders, health care workers and to some extent local authorities whereas a 

terrorist threat may involve enormous attention from a number of groups.  

3.3. Policy Implications 

 Policy makers often must anticipate the impact of potentially hazardous events on their 

communities and society as well. In terms of public reaction, terrorist acts are likely to spark 

rapid and perhaps prolonged concern and fear until the public comes to terms with the crisis. 

Results from our simulation suggest that the longer the crisis goes unresolved in terms of 

investigative closure or supportive intervention the more opportunity there is for the risk signal 

to amplify and for fear to spread throughout the community.  Likewise, the greater the level of 

fear in the community the greater the effort required to restore normalcy among the public. 

Conversely, intervention by social support groups and institutions can help restore normalcy. 

These findings speak to the need for a careful, coordinated and rapid response on the part of 

government officials, first responders, and community leaders and support groups. An active 

effort should be made in advance to search for any and all delays in the community’s delivery of 
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health care, financial assistance, and social support. For these reasons terrorism presents a unique 

challenge to officials wishing to mitigate the effects of a terrorist strike in a community. 

3.4. Suggestions for Future Research  

Our systems model includes a number of the variables likely to influence public response 

(event risk characteristics, media coverage, word-of-mouth, community intervention) but more 

work is needed to determine the requisite factors required to adequately forecast the impact of a 

terrorist strike. Likewise, it would be helpful to have a better understanding of how these factors 

change and interact overtime reflecting the dynamic nature of community of response. It also 

would be important to have better insight into the structural mechanisms that drive such change, 

especially system feedbacks and delays. Hurricane Katrina illustrated with devastating clarity 

how the effects of a disaster can be made much worse by systems delays. Additionally, we 

should learn more about how responses differ across gender, age, ethnicity, and geographic 

region to better understand the diversity of public reaction within a community. Finally, in this 

paper we have modeled the diffusion of fear, but we need to better understand how fear 

translates into impacts on the economy or the long-term well being of the community. 
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APPENDIX 

Model Equations: 
 

Stocks (state of system): Bold 12 pt 
Flows (rate of system change): Bold and Italicized 12 pt 
Event Parameters: Bold 12 pt 
Community Intervention Parameter: Bold 12 pt  
Graphic Functions (description of functional relationship between two variables-they represent 
the authors’ assessment of what is typically a nonlinear relationship): Response Variable = 
Graph (Predictor Variable) 
Model Parameters (fixed inputs): For example, Population = 1,000,000 
INIT (Stock initial values prior to simulation): For example, INIT Concerned = 0 
UNITS (units of variable): For example, UNITS: person/day 
 
Concerned(t) = Concerned(t - dt) + (worry_increasing + fear_decreasing - ignoring - 
fear_increasing) * dt 
INIT Concerned = 0 
UNITS: person 
INFLOWS: 
worry_increasing = MIN(News_Impact_1+Concerned_Talking,1000000) 
UNITS: person/day 
fear_decreasing = (Fearful-
Target_Fear_Level)/(Community_Intervention_Delay/RP_Intervention_Multiplier) 
UNITS: person/day 
OUTFLOWS: 
ignoring = Concerned/Ignoring_Delay 
UNITS: person/day 
fear_increasing = MIN(News_Impact_2+Fearful_Taking,1000000) 
UNITS: person/day 
Dead(t) = Dead(t - dt) + (deaths_increasing) * dt 
INIT Dead = 0 
UNITS: person 
INFLOWS: 
deaths_increasing = Population_at_Risk/Days_to_Death 
UNITS: person/day 
Fearful(t) = Fearful(t - dt) + (fear_increasing - fear_decreasing) * dt 
INIT Fearful = 0 
UNITS: person 
INFLOWS: 
fear_increasing = MIN(News_Impact_2+Fearful_Taking,1000000) 
UNITS: person/day 
OUTFLOWS: 
fear_decreasing = (Fearful-
Target_Fear_Level)/(Community_Intervention_Delay/RP_Intervention_Multiplier) 
UNITS: person/day 
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Investigation_Intensity(t) = Investigation_Intensity(t - dt) + (investigation_increasing - 
investigation_decreasing) * dt 
INIT Investigation_Intensity = 0 
UNITS: Unitless 
 
INFLOWS: 
investigation_increasing = 
MIN((.1*Casualty_Impact+.85*Risk_Signal+.05*Fear_Impact)*(Resource_Availability/Investig
ation_Delay),100) 
UNITS: 1/day 
OUTFLOWS: 
investigation_decreasing = Investigation_Intensity/Investigation_length 
UNITS: 1/day 
Population_at_Risk(t) = Population_at_Risk(t - dt) + (- deaths_increasing - recovering) * dt 
INIT Population_at_Risk = 1000 
UNITS: person 
OUTFLOWS: 
deaths_increasing = Population_at_Risk/Days_to_Death 
UNITS: person/day 
recovering = Population_at_Risk/Days_to_Death 
UNITS: person/day 
Risk_Perception(t) = Risk_Perception(t - dt) + (perceptions_changing) * dt 
INIT Risk_Perception = 0 
UNITS: Unitless 
INFLOWS: 
perceptions_changing = MIN((((Perceived_Invest_Intensity-
Risk_Perception)/Risk_Adjustment)*(Awareness/100))-Fear_Reduction_Impact*Risk 
Perception,100) 
UNITS: 1/day 
Status_Quo(t) = Status_Quo(t - dt) + (ignoring - worry_increasing) * dt 
INIT Status_Quo = Population-Concerned-Fearful 
UNITS: person 
INFLOWS: 
ignoring = Concerned/Ignoring_Delay 
UNITS: person/day 
OUTFLOWS: 
worry_increasing = MIN(News_Impact_1+Concerned_Talking,1000000) 
UNITS: person/day 
TV_Coverage(t) = TV_Coverage(t - dt) + (coverage_increasing - coverage_decreasing) * dt 
INIT TV_Coverage = 0 
UNITS: Unitless 
INFLOWS: 
coverage_increasing = 
MIN((.1*Casualty_Impact+.85*(Investigation_Intensity/100)+.05*Fear_Impact)*(Available_Air
_Time/Coverage_Delay),100) 
UNITS: 1/day 
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OUTFLOWS: 
coverage_decreasing = TV_Coverage/Media_Attention_Span 
UNITS: 1/day 
Attention_Base_Rate = 7 
UNITS: day 
Available_Air_Time = Max_Coverage-TV_Coverage 
UNITS: Unitless 
Community_Intervention_Delay = 3 (Baseline value but varied over 1, 3 and 5 days) 
UNITS: day 
Concerned_Talking = 
MIN(Talk_Rate_1*Influence_Rate_1*Status_Quo*(Concerned/Population),1000000) 
UNITS: person/day 
Contacts_1 = 10 
UNITS: contact/day-person 
Contacts_2 = 10 
UNITS: contact/day-person 
Days_to_Death = 3 (Days to death for explosions were 3 days, for anthrax 5 days) 
UNITS: day 
Fearful_Taking = 
MIN(Talk_Rate_2*Influence_Rate_2*Concerned*(Fearful/Population),1000000) 
UNITS: person/day 
Ignoring_Delay = 15 
UNITS: day 
Influence_Rate_1 = RP_Influence_Multiplier 
UNITS: person/contact 
Influence_Rate_2 = RP_Influence_Multiplier 
UNITS: person/contact 
Investigation_length = 10 (propane explosion =10, bomb blast = 30, anthrax = 60) 
UNITS: day 
Max_Coverage = 100 
UNITS: Unitless 
Max_Resources = 100 
UNITS: Unitless 
Media_Attention_Span = MAX((Investigation_Intensity/100)*Attention_Base_Rate,1) 
UNITS: day 
News_Impact_1 = MIN((Awareness/100)*RP_News_Multiplier*Status_Quo,1000000) 
UNITS: person/day 
News_Impact_2 = MIN((Awareness/100)*RP_News_Multiplier*Concerned,1000000) 
UNITS: person/day 
Percent_Concerned = (Concerned/Population)*100 
UNITS: Unitless 
Percent_Fearful = (Fearful/Population)*100 
UNITS: Unitless 
Population = 1000000 
UNITS: person 
Resource_Availability = Max_Resources-Investigation_Intensity 
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UNITS: Unitless 
Risk_Signal = .3 (propane explosion = .3, bomb blast = .8, anthrax = 1) 
UNITS: Unitless 
Talk_Rate_1 = Contacts_1*RP_Talk_Multiplier 
UNITS: contact/day-person 
Talk_Rate_2 = Contacts_2*RP_Talk_Multiplier 
UNITS: contact/day-person 
Target_Fear_Level = 100000 
UNITS: person 
Awareness = GRAPH(TV_Coverage) 
(0.00, 0.00), (10.0, 35.0), (20.0, 60.0), (30.0, 75.0), (40.0, 80.0), (50.0, 85.0), (60.0, 86.0), (70.0, 
87.0), (80.0, 88.0), (90.0, 89.0), (100, 90.0) 
UNITS: Unitless 
Casualty_Impact = GRAPH(Dead) 
(0.00, 0.00), (25.0, 0.25), (50.0, 0.5), (75.0, 0.75), (100, 1.00), (125, 1.00), (150, 1.00), (175, 
1.00), (200, 1.00), (225, 1.00), (250, 1.00), (275, 1.00), (300, 1.00), (325, 1.00), (350, 1.00), 
(375, 1.00), (400, 1.00), (425, 1.00), (450, 1.00), (475, 1.00), (500, 1.00) 
UNITS: Unitless 
Coverage_Delay = GRAPH(TIME) 
(1.00, 0.125), (2.00, 0.333), (3.00, 0.333), (4.00, 0.667), (5.00, 0.667), (6.00, 0.667), (7.00, 1.00), 
(8.00, 2.00), (9.00, 4.00), (10.0, 6.00), (11.0, 8.00), (12.0, 10.0), (13.0, 12.0), (14.0, 14.0), (15.0, 
24.0), (16.0, 27.0), (17.0, 30.0), (18.0, 33.0), (19.0, 36.0), (20.0, 39.0), (21.0, 42.0), (22.0, 60.0), 
(23.0, 64.0), (24.0, 68.0), (25.0, 72.0), (26.0, 76.0), (27.0, 84.0), (28.0, 84.0), (29.0, 84.0), (30.0, 
84.0) 
UNITS: day 
Fear_Impact = GRAPH(Percent_Fearful) 
(0.00, 0.00), (10.0, 0.1), (20.0, 0.15), (30.0, 0.2), (40.0, 0.3), (50.0, 0.5), (60.0, 0.7), (70.0, 0.8), 
(80.0, 0.9), (90.0, 0.95), (100, 1.00) 
UNITS: Unitless 
Fear_Reduction_Impact = GRAPH(fear_decreasing/Population) 
(0.00, 0.00), (10.0, 0.05), (20.0, 0.10), (30.0, 0.20), (40.0, 0.20), (50.0, 0.20), (60.0, 0.20), (70.0, 
0.20), (80.0, 0.20), (90.0, 0.20), (100, 0.20) 
UNITS: 1/day 
Investigation_Delay = GRAPH(TIME) 
(1.00, 1.00), (2.00, 1.00), (3.00, 1.00), (4.00, 2.00), (5.00, 3.00), (6.00, 4.00), (7.00, 5.00), (8.00, 
10.0), (9.00, 12.0), (10.0, 14.0), (11.0, 16.0), (12.0, 18.0), (13.0, 20.0), (14.0, 22.0), (15.0, 36.0), 
(16.0, 39.0), (17.0, 42.0), (18.0, 45.0), (19.0, 48.0), (20.0, 51.0), (21.0, 54.0), (22.0, 76.0), (23.0, 
80.0), (24.0, 84.0), (25.0, 88.0), (26.0, 92.0), (27.0, 96.0), (28.0, 100), (29.0, 100), (30.0, 100) 
UNITS: day 
Perceived_Invest_Intensity = GRAPH(Investigation_Intensity) 
(0.00, 0.00), (10.0, 5.00), (20.0, 10.0), (30.0, 20.0), (40.0, 30.0), (50.0, 50.0), (60.0, 70.0), (70.0, 
80.0), (80.0, 90.0), (90.0, 95.0), (100, 100) 
UNITS: Unitless 
Risk_Adjustment = GRAPH(Perceived_Invest_Intensity-Risk_Perception) 
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(-100, 7.00), (-90.0, 7.00), (-80.0, 7.00), (-70.0, 7.00), (-60.0, 7.00), (-50.0, 7.00), (-40.0, 6.00), (-
30.0, 4.00), (-20.0, 2.50), (-10.0, 1.50), (0.00, 1.00), (10.0, 0.75), (20.0, 0.5), (30.0, 0.25), (40.0, 
0.25), (50.0, 0.125), (60.0, 0.125), (70.0, 0.125), (80.0, 0.125), (90.0, 0.0625), (100, 0.063) 
UNITS: day 
RP_Influence_Multiplier = GRAPH(Risk_Perception) 
(0.00, 0.00), (10.0, 0.05), (20.0, 0.1), (30.0, 0.2), (40.0, 0.3), (50.0, 0.5), (60.0, 0.7), (70.0, 0.8), 
(80.0, 0.9), (90.0, 0.95), (100, 1.00) 
UNITS: person/contact 
 
RP_Intervention_Multiplier = GRAPH(Risk_Perception) 
(0.00, 0.05), (10.0, 0.1), (20.0, 0.15), (30.0, 0.2), (40.0, 0.3), (50.0, 0.5), (60.0, 0.7), (70.0, 0.8), 
(80.0, 0.9), (90.0, 0.95), (100, 1.00) 
UNITS: Unitless 
RP_News_Multiplier = GRAPH(Risk_Perception) 
(0.00, 0.00), (10.0, 0.05), (20.0, 0.1), (30.0, 0.2), (40.0, 0.3), (50.0, 0.5), (60.0, 0.7), (70.0, 0.8), 
(80.0, 0.9), (90.0, 0.95), (100, 1.00) 
UNITS: 1/day 
RP_Talk_Multiplier = GRAPH(Risk_Perception) 
(0.00, 0.00), (10.0, 0.01), (20.0, 0.015), (30.0, 0.02), (40.0, 0.025), (50.0, 0.04), (60.0, 0.06), 
(70.0, 0.1), (80.0, 0.2), (90.0, 0.4), (100, 1.00) 
UNITS: Unitless 
 


