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Abstract Technologies that measure human nonverbal be-
havior have existed for some time, and their use in the analysis
of social behavior has become more popular following the
development of sensor technologies that record full-body
movement. However, a standardized methodology to effi-
ciently represent and analyze full-body motion is absent. In
this article, we present automated measurement and analysis
of body motion (AMAB), a methodology for examining indi-
vidual and interpersonal nonverbal behavior from the output
of full-body motion tracking systems. We address the record-
ing, screening, and normalization of the data, providing
methods for standardizing the data across recording condition
and across subject body sizes. We then propose a series of
dependent measures to operationalize common research ques-
tions in psychological research.We present practical examples
from several application areas to demonstrate the efficacy of
our proposed method for full-body measurements and com-
parisons across time, space, body parts, and subjects.
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Nonverbal behavior is a key ingredient in personal expression
(McNeill, 1985) and the regulation of interpersonal exchanges
(Ekman, 1965). Its analysis has contributed significantly to our
understanding of how human interactionworks. It is perhaps not
surprising, then, that researchers continue to develop methods
for the effective measurement and analysis of such behavior.
The most common approach relies on observational coding of

behavior, using classification schemes that are developed to
serve a particular research question (Grammer, Kruck, &
Magnusson, 1998; Lausberg & Sloetjes, 2009). These schemes
are often evaluative in nature, in the sense that researchers code
for the occurrence of particular forms of communication, such
as gestures (Doron, Beattie, & Shovelton, 2010) or facial ex-
pressions (Vick et al., 2006). Others are “physicalistic” coding
procedures that utilize a more precise mapping of behavior by
quantifying the movement of different limbs (Bente, 1989;
Dael, Mortillaro, & Scherer, 2012; Frey & Von Cranach,
1973). While the evaluative schemes are open to issues of
reliability because of the qualitative component of the coding
(Scherer & Ekman, 1982), the latter physicalistic schemes have
been shown to yield reliable annotations that are sufficiently
detailed to animate computer characters (Bente, Petersen,
Krämer, & De Ruiter, 2001). However, for both approaches,
the derivation of the data through coding is time consuming,
meaning that there is often an inherent trade-off between the
number of coded actions and the amount of coded material.

In an effort to circumvent this difficulty, there has been a
growing trend toward using technologies to evaluate behavior
(Altorfer et al., 2000; Bente, Senokozlieva, Pennig, Al-Issa, &
Fischer, 2008). In particular, researchers have started to un-
dertake automatic measurement of human movement with
motion capture devices. To date, such approaches have fo-
cused on examining discrete nonverbal behavior, such as head
movement or gestures (e.g., Feese, Arnrich, Tröster, Meyer, &
Jonas, 2012). Yet, to explore how body motion contributes to
the processes of human interaction as observed in more natu-
ralistic settings, there is a need to develop a methodology that
allows for the capture over an extended period of time. In this
article, we introduce a standardized approach to using motion
capture methodologies for examining full-body motion. We
describe how to process raw data independently of the type of
motion capture device and deal with issues such as distortions,
alignment, and normalization. We exemplify our approach
with several case studies. As a supplement to this article, we
provide MATLAB code that performs the computational steps
of automated measurement and analysis of body motion
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(AMAB), including normalization steps, distance functions,
and the functionality to re-create some of the figures in this
article.1

Devices and representation

The adaptation of modern computing technology and the
development of dedicated technologies has made it easier for
researchers to record and analyze human body motion (e.g.,
Dakin, Luu, van den Doel, Inglis, & Blouin, 2010; Krishnan,
Juillard, Colbry, & Panchanathan, 2009). Table 1 identifies
some of the devices available for recording motion as a
function of two distinctions in how they capture and treat
movement data: (1) whether they rely on markers or sensors
to record movement and, (2) whether they offer full-body or
single-movement capture.

Marker-based technologies use a set of cameras to detect
markers worn on the body. These markers are either passive,
such as retroreflective balls, or active, such as infrared trans-
mitters. The former ensure good visibility but can cause
confusion across markers, while the latter use distinct frequen-
cies to avoid confusion. For both approaches, in order to
obtain a 3-D measurement of each marker, it must be visible
to at least two cameras. This means that a large number of
cameras are needed in order to avoid occlusion, particularly
when studying social behavior.

Inertial devices overcome this drawback by measuring
movements on the body—typically, through sensors worn
in a suit or straps. The sensors employ changes in the
magnetic field in a gyroscope-like manner to make esti-
mates of their positions. The accuracy of this approach is
typically high, although the estimated positions can suffer
from drift without additional position measurements—no-
tably, in the presence of metal in the recording environment
and objects therein. Moreover, wearing a tight-fitting suit
may lead subjects to be more conscious of their behavior,
which threatens the ecological validity of any recorded
social interaction.

An increasingly popular alternative to compensate for this
validity problem is to analyze full-body movement unobtru-
sively using single or multiple cameras, possibly aided by
projected structured light (as in Microsoft Kinect; Shotton
et al., 2013). From these devices, a digital volumetric estima-
tion of the scene and the people therein is made, in which one
or more parametric body models are fitted (Poppe, 2007). The
accuracy and robustness are currently lower, as comparedwith
marker-based and inertial devices, and they suffer from the

same occlusion problems as the marker-based approaches.
However, their unobtrusive nature may make them preferable
to some research designs.

The method presented in this article is generic enough to be
applicable to all these techniques. Independently of the type of
device used to record movement, the representation of the
movements in data form is standardized. The human body is
most efficiently described in terms of a series of body parts
and joints, the former being shapes with a certain length and
the latter being single points in space. Together, body parts
and joints form a tree-like representation of the human body,
and movement may be described in terms of the displacement
and rotation of the joints with respect to this tree. Figure 1
shows a schematic illustration of this “kinematic tree.” The
joint at the top of the tree, usually the pelvis, forms a root to
which all other joints are relative. When two joints are
connected to a body part, the one higher in the tree is consid-
ered the parent, and the other the child, such that joints higher
in the hierarchy affect those below. For example, movement in
the right shoulder affects the right elbow and wrist joints. End-
effectors are joints without children (e.g., hands and head).
Typically, sensors and markers are not attached at the location
of the joints. While one could, in principle, use the sensor
locations to analyze human movement, there is no guarantee
that these locations are the same between subjects. As a
consequence, motion capture equipment often employs a cal-
ibration phase to determine the joint positions relative to the
sensors’ placement.

A full-body pose can be described by the rotations or
positions of the joints, of which the latter is computationally

1 MATLAB code is provided as supplementary material to this
publication.

Table 1 Overview of body motion measuring devices

Device
Characteristics

Example Devices Example Studies

Full-
Body

Type

Yes Marker Vicon MX, MotionAnalysis
Raptor, Advanced Realtime
Tracking ARTTRACK,
Optitrack Arena, PhaseSpace
Impuls X2, Phoenix
Technologies Inc. Visualeyez,
Qualisys Oqus

Slawinski et al., 2013

Yes Inertial Animazoo IGS, Ascension
MotionStar, XsensMVN, YEI
Technology 3-Space

Kleinsmith et al.,
2011; Krishnan
etal., 2009

Yes Vision Microsoft Kinect, Ipi Soft,
Organic Motion Openstage

Mead et al., 2013

No Inertial Ascension TrakSTAR, Polhemus
Liberty Latus, Sparkfun
Electronics Witilt

Dotsch &
Wigboldus, 2008;
Feese et al., 2012
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more straightforward. Although there are a few available
approaches to expressing the joint position, the most conve-
nient for full-body capture is to use global representations,
largely because theymake the comparison of joint positions in
time and space across subjects straightforward. In this ap-
proach, joint positions are expressed by three position values
corresponding to the distance from the origin [i.e., the point (0,
0, 0)] along each of three predefined orthogonal axes (i.e., x ,
y, z ). All devices in Table 1 can output global joint positions.
The software supplied with these devices output textual rep-
resentations in either XML or column format.

Once the movement has been recorded, it can be visualized
in the same way as a recorded video. It is possible to have raters
quantify the behavior in such visualizations by using both
evaluative and physicalistic coding approaches. However, au-
tomatic measurement of body motion results in numerical
representations of the body’s position over time that enables a
range of statistical analyses, arguably more sensitive and less
prone to error than human coding. We consider the possibilities
afforded by such an approach in the remainder of this article. To
facilitate our discussion, we denote the k th measurement of
body pose as a vector: xk=(x1

k,…,xm
k), with k ∈ {1,…, m} for

a recording with m measurements. Each component xi
k(i ∈{1,

…,n}) of the vector corresponds to a joint position measure-
ment along an axis. Without loss of generality, AMAB assumes
that the measurements are available as a matrix with m rows
and n columns. Each row corresponds to a full-body measure-
ment xk. The n position measurements are in fixed order of
joints and axes, with each subsequent triplet of columns corre-
sponding to the (x , y, z) values of one joint.

Data screening

Data recorded by devices such as those listed in Table 1 can be
distorted in many ways. It is therefore necessary, as it is with

all inferential statistics in psychology, to screen the data prior
to analysis. This process includes removal of data distortions
and normalization.

Data distortions

Data distortions are due to measurement noise and longer-
term inconsistencies in the data due to equipment or transmis-
sion failure. The most common noises are incidental values,
which occur as a result of tracking failure (e.g., due to missing
marker detections or magnetic resonance). The software re-
ceiving sensor signals often makes a first pass at removing
such errors, but we propose applying a moving median filter
with a modest window size—typically, on the order of 0.25–
0.5 s. Using the median instead of the mean ensures that
incidental off-values are not taken into account, while the
window size is a trade-off between the ability to suppress
“jitter” (i.e., small inaccuracies) in the output and the level
of detail that is retained in the measurements. Formally, the
filtered vector x ′k=(x ′1

k,…,x ′n
k) is obtained with

x0ki ¼ median xk−λi ;…; xki ;…; xkþλ
i

! "# $
k∈ λþ 1;…;m−λf gð Þ; ð1Þ

where λ is the number of measurements before and after the
current measurement that is taken into account. Figure 2 dem-
onstrates the difference between running average and median
filter, both with a window size of seven frames (0.28 s). The
increase in measurement value for the running average due to
an off-value is apparent.

The nature of equipment failure depends on the type of
body motion device. When the time of failure is short, the
missing measurements can be interpolated from the measure-
ments before and after the failure. Linear interpolation is
typically a reasonable approximation, provided that the
amount of (de)acceleration is low (Poppe, 2007).

Normalization

There are a number of common analytical problems in inter-
action research, and these largely remain when recorded body
motion is analyzed. To compare body movements within or
between recording sessions, or within or between subjects,
differences in body size and differences in the recording space
and timemust be taken into account. Themost straightforward
approach to removing such variations, adopted in AMAB, is
to apply one or more forms of normalization.

Normalization in time

When multiple recordings are made simultaneously, synchro-
nization is either handled by the recording software or
established during data screening. The latter case occurs when
recordings have been made on different computers or with

Root joint

End effector

Joint

Fig. 1 Human body representation (left) and kinematic tree (right). Best
viewed in color
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different software (e.g., motion capture and video recording
software). In this case, there are two possible types of normal-
ization required: frame rate alignment and synchronization.
When frame rates differ between sequences, the measure-
ments in each sequence must be resampled equidistantly in
time so that the data align to a fixed rate. The sequences may
then be synchronized in time by determining the latest start
point and earliest end point across the recordings and the
recordings being trimmed to these points. The result is a
synchronized analysis with maximum usage of the available
data.

Normalization in space

The global position of a subject in the recording space affects
all joint positions. This is undesirable when the body poses of
a single subject are compared at different time instances or
when the body postures of multiple subjects are compared.
Without normalization in space, the difference in global posi-
tion will influence the pairwise comparisons of the positions
of each joint. Poses are normalized for position by mean
centering all position measurements relative to the root of
the body. Typically, the pelvis is used as the root joint P, and
its location in the recording space is translated to (0, 0, 0).
Mean centering of the data may be applied to all other joints
through the subtraction of P from the position of each joint j
individually:

x0jx; x0jy; x0jz
# $

¼ xjx−xPx; xjy−xPy; xjz−xPz
# $

: ð2Þ

Figure 3 shows an example of this kind of position nor-
malization for the case of 2 subjects seated at opposite sides of
a table. When comparing the poses of the 2 subjects, the
absolute distance between them is not important. Therefore,
it makes sense to apply normalization in space according to
Equation 2. The result is shown in Fig. 3(I). However, the
global body orientation (i.e., facing direction) of subjects
typically affects comparisons between poses, which is unde-
sirable. In our example, a researcher interested in the similarity
of the subjects’ poses can make an easier comparison by

rotating the pose of one of the subjects 180° around a vertical
axis, as shown in Fig. 3(II). To apply this normalization in
orientation, it is assumed that poses are normalized for posi-
tion and that the y -axis is pointing upward. All joints are
rotated around the y -axis in such a manner that the subject
faces the positive x -axis. To this end, the hips are placed
parallel to the z -axis. The angle of rotation θ is determined as

θ ¼ arctan
xLHx−xRHx
xLHz−xRHz

% &
; ð3Þ

with LH and RH the indices of the left and right hip, respec-
tively. Next, all joints are rotated around the y -axis with angle
θ . For joint I with position (xIx, xIy, xIz), the y -position (i.e.,
the height) remains unchanged, while the rotated x - and z -
positions are determined by

x0Ix; x0Iz½ & ¼ cos θð Þ −sin θð Þ
sin θð Þ cos θð Þ

' (
xIx
xIz

) *
: ð4Þ

An example of position and orientation normalization is
shown in Fig. 4. The graph shows the sum of all pairwise joint
distances (see Equation 5) between 2 subjects who approach
each other, shake hands, and walk away.2 The example is also
included in the software that is provided with the article.
Without normalization, the pose difference reflects the dis-
tance between the subjects. When walking away, one subject
walks backward, while the other turns. As a result, their
orientation becomes more similar, which results in a decreas-
ing pose difference after position normalization. Finally, when
poses are also normalized for orientation, the pose difference
is relatively stable. Poses (I) and (II) in Fig. 4 occur after the
handshake and while walking away, respectively. Although
the distance between the subjects, and the difference in orien-
tation between them, differs between (I) and (II), their body
configuration is similar. This results in a similar pose differ-
ence after normalization of position and orientation.

Fig. 2 Example of median filtering

2 Subjects 18/19, trial 1, obtained from http://mocap.cs.cmu.edu.
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Normalization for different subjects

Subjects differ in their body sizes. Of particular concern for
automated methods of measurement is limb length. These
differences cause different subjects with similar joint rotations
to have different joint positions and vice versa, which affects
the comparison of their joint positions. To reduce this prob-
lem, the body part lengths of different subjects may be scaled
to average limb sizes for a given population. Given parent and
child joints P and C , respectively, and the average limb size l
of the body part connecting them, the adjusted position of C
can be calculated as

x0Cx; x0Cy; x0Cz
# $

¼ xPx þ α xCx−xPxð Þ; xPy
þ α xCy−xPy

# $
; xPz þ α xCz−xPzð Þ

0

BB@

1

CCA;

ð5Þ

where α ¼ l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xCx−xPxð Þ2 þ xCy−xPy

# $2 þ xCz−xPzð Þ2
q

,
which is the ratio between the specified and the actual body
part length.

Interpretation and operationalization

In this section, we demonstrate howAMABmay be applied to
address various research questions that involve full-body mo-
tion measurements. We begin by describing some common
variables that may be used directly by researchers as a depen-
dent variable for their comparisons (e.g., by ANOVA), or as a
basis for more dedicated measures that address specific re-
search questions. We subsequently present four examples of
comparisons across time, space, body parts, and multiple
subjects, as a way of introducing the reader to what is possible
through AMAB. Our coverage is by nomeans exhaustive, and
we acknowledge that researchers must tailor their analyses
beyond what we present below so that it matches their re-
search questions. Some further examples of parameters that
are similar to, and extend beyond, those presented here, are
described in detail by Hirsbrunner, Frey, and Crawford
(1987).

Dependent variables

For most of the research that employs full-body measure-
ments, the operationalization of the research questions in-
volves calculating differences between poses, movement ve-
locity, or a quantification of the amount of body movement.
Their calculation from screened data is discussed
subsequently.

Pose difference

When comparing two poses A and B , their difference can be
expressed as the sum of the distances between each of the
joints j in the set J :

δA;B ¼
X

j∈ J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x jAx−x jBx
# $2 þ x jAy−x jBy

# $2 þ x jAz−x jBz
# $2

q
: ð6Þ

The distance for each joint individually is calculated using
the Pythagorean theorem. Pose differences can be calculated
only when the sets of joints J are equal and poses have been
equally normalized.

Movement velocity

The change in the pose of 1 subject is the difference between
two subsequent poses and is calculated with Equation 5.
Changes in pose are most conveniently expressed as veloci-
ties, with meter per second (m/s) as the unit. To this end, the
pose distance needs to be calculated per second, which de-
pends on the frame rate of the recording or the down-sampling
applied in data screening. For a frame rate f and pose differ-
ence δ , the velocity v is calculated as

v ¼ fδ: ð7Þ

Amount of movement

The total amount of movement for a single joint or all joints
can be calculated by summing all pairwise distances between
subsequent measurements over an interval. For a sequence of

I II

Fig. 3 Example of position normalization (I) and orientation normalization (II)
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length m and all joints in J , the amount of movement α is

α ¼
Xm−1

i¼1
δxi;xiþ1 : ð8Þ

When comparing the amount of movement between two
sequences, these should cover time intervals of equal length
and, ideally, with equal frame rates.

Comparisons across time

Motion capture devices measure full-body poses over time.
While the pose is informative, one is sometimes particularly
interested in the temporal aspect of human movement.
Changes in pose or movement over time can be used to
measure consistency of movement or response time. For
example, fatigue can be measured by analyzing the decrease
in total amount of movement over time. The analysis of
response times to certain stimuli is particularly important to
sports psychologists, who may be interested in factors that
impact the swing of a bat or the speed of a start during the 100-
m sprint (e.g., Slawinski et al., 2013). The latter will be used
here as an example to demonstrate how the AMAB method
can be applied.

Currently, response times in the start of sprinting are typi-
cally measured using pressure-sensors in the starting block
(Bezodis, Salo, & Trewartha, 2010). A threshold on this
pressure is set to exclude false alarms due to small changes
in body pose. While pressure measurements are accurate, foot
pressure is the result of all movements of body parts higher in
the kinematic chain (see Fig. 1). As such, it is an indirect
measurement. Ideally, one wants to analyze not only the final
pressure of the foot, but also the evolvement of the movement
of all parts in the body. The use of motion capture devices
enables one to perform such an analysis. For example,
Slawinski et al. (2013) employ full-body motion capture de-
vices to study pose change during the start of a sprint.

AMAB can be used for the numerical analysis of response
times, in order to detect false starts. First, the full-body move-
ment needs to be filtered and aligned in time relative to the
starting stimulus (e.g., a gunshot). After normalization in
space (Equations 1–3), frame-to-frame differences between

poses can be calculated using Equation 5. Subsequently, a
threshold can be set on the movement velocity (Equation 6) in
order to detect the movement offset and to prevent false
alarms.

Comparisons across space

While normalization of position is typically carried out to
compare different poses, the absolute position itself can also
be used as an independent measurement. One could measure
the position relative to an object with known location or the
distance between two people. For the latter, Hall (1966) dis-
tinguished four different zones of interpersonal distance: inti-
mate (<1.5 feet), personal (1.5–4 feet), social (4–12 feet), and
public (12–25 feet). Researchers have studied interpersonal
distance at all four levels, usually using video recordings to
estimate distances (Hayduk, 1983). According to Hayduk, the
measurements and methodological strategies used to study
interpersonal distance needed refinement, which can be
achieved through the use of new technologies. One approach
has used head-mounted displays to track the subject’s head
position and orientation and adapt the view on a virtual
environment in the display (Bailenson, Blascovich, Beall, &
Loomis, 2003). Another has used virtual characters, which
allows for the control of stimuli but reduces the ecological
validity, especially when the interactions involve dialogue
(Dotsch & Wigboldus, 2008).

These problems can be overcome when full-body motion
capture devices are used, because it becomes possible to
record the interactions between subjects without hindering
other means of expression (e.g., facial movement and speech).
In addition, more informative measures can be employed,
such as those looking at open or closed postures and body
orientation (e.g., Mead, Atrash, & Mataric, 2013).

AMAB can be used to determine interpersonal distances
automatically. Let us turn to the handshake example described
earlier. In addition to pose differences (Fig. 4), we can also
derive measures to describe the distance between two subjects
A and B from the motion captured data. One common mea-
sure is the distance between the head positions of A and B,
observed at the same time (e.g., Bailenson et al., 2003).

I

II

Fig. 4 Example of position and orientation normalization, with sums of pairwise joint distances shown over time
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Equation 5 is applied with only the head joint H in set J . As
the position in world space is required, no position and orien-
tation normalization is applied. In Fig. 5, this head distance is
shown for the handshake sequence. Note that Equation 5 also
takes into account the height of the subjects’ heads. Alterna-
tively, this height can be ignored by calculating the distance
δA,B between head positions xHA and xHB in only the x - and z -

plane as δA;B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xHAx−xHBxð Þ2 þ xHAz−xHBzð Þ2

q
. Instead of

looking at the distance between the heads of the subjects, we
can also calculate the minimum distance between them by
considering all joints. In Fig. 5, this distance is lower, as
compared with head distance, especially halfway through the
sequence when the subjects extend their hands toward each
other and perform the handshake. This measure is useful for
conversations, when the interpersonal space is regulated by
the hands. A third measure can be obtained by looking at the
orientation of both subjects. This could be used to analyze
whether subjects are facing each other. The measure can be
obtained by applying Equation 2 and comparing the values of
θ between subjects. This difference is shown in Fig. 5, with
low values corresponding to a similar orientation. There is a
decrease in orientation difference after the handshake, due to
one subject turning while walking away while the other walks
backward. These measures of interpersonal distance can give
more insight in the displayed behavior and allow one to go
beyond the traditional measures.

Comparisons across body parts

Although much of what we have discussed in relation to
AMAB involves treating the body as a whole and calculating
differences across full-body poses, it is also possible to isolate
joint positions and make pairwise comparisons. For example,
researchers interested in gesture may wish to differentiate and
compare the movements of both hands (e.g., McNeill, 1992).

One prominent line of research is concerned with the
relationship between body pose and perceived affect
(Kleinsmith & Bianchi-Berthouze, 2013). In a typical study
of this issue, subjects are shown stimuli of manipulated body
poses and are asked to assign affective labels. These manipu-
lated poses involve deliberate variation in the positions or
orientations of body parts, such as a right elbow bend of
45°. The obtained ratings are then used to associate different
patterns in position and orientation of body parts with different
ratings of perceived affective state. While these stimuli can be
varied systematically, their ecological validity is often lower
as the body parts are arranged in an unnatural manner. To this
end, researchers have employed motion capture devices to
record full-body poses while eliciting emotions and, thereby,
capturing body poses that correlate with genuine emotions
(e.g., Kleinsmith, Bianchi-Berthouze, & Steed, 2011).

AMAB could be used as a standardized approach to
conducting these studies. In addition to the analysis of static
body poses, the use of motion capture devices also allows for
the analysis of dynamic aspects of affect by measuring the
velocity or amount of movement for individual body parts,
using Equations 6 and 7. Using the same methodology, one
could examine emotion contagion by analyzing to what extent
subjects assume a displayed body pose that is associated to a
certain emotion. Such studies might reveal different patterns
for individual body parts.

Comparisons across people

Often, one is interested in comparing body movements of
multiple people—for example, subjects performing the same
task at different moments in time, such as performing gestures.
Alternatively, one can look at body movement of multiple
interacting subjects at the same moment in time, such as
occurs in studies on pedestrian avoidance in crowded places
and on turn-taking in interactions. The example that will be
explained in more detail here is the occurrence of behavioral
mimicry in interactions.

Nonconsciousmimicry is the automatic tendency to imitate
the behaviors of other people, including poses, gestures, man-
nerisms, speech rates, and facial expressions (Chartrand &
Bargh, 1999; Stel, van Dijk, & Olivier, 2009) at the same time
or within a short time window (Chartrand & Lakin, 2013).
Increased levels of mimicry facilitate smooth interactions and
foster liking (Chartrand & Bargh, 1999), and recent research
has focused on the moderators and consequences of behav-
ioral mimicry (Chartrand & Lakin, 2013). So far, in most
studies, manually coded events from video recordings are
used to measure behavioral mimicry (e.g., Stel et al., 2009).
Besides issues with the subjective and time-consuming nature
of the task (Scherer & Ekman, 1982), these comparisons are
usually only made between isolated behaviors (e.g., face
touching and gesturing). This excludes quantitative analyses
of the form, magnitude, and direction of the behavior.
Methods that directly measure synchrony from video record-
ings (e.g., Paxton & Dale, 2013) allow for such a quantitative
analysis but are strongly influenced by nuisance factors such
as camera viewpoint, illumination, and type of clothing. The
motion capture devices described in this article do not suffer
from these drawbacks.

The AMAB methodology can be used to numerically
analyze the amount of mimicry between 2 subjects A and B,
by looking at their poses or their motion. When using manu-
ally coded videos, the occurrence of individual behaviors
(e.g., posture shift or head nod) is typically rather low, which
requires the use of fairly large time intervals. In contrast, the
frame rate of the body motion recordings is typically high,
which enables analysis of mimicry at a much finer time scale.
Tomake sure only the pose, not absolute position, is taken into
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account, the poses of both subjects are normalized using
Equation 1. Since interacting subjects typically face each other,
poses are also normalized for rotation using Equation 3. This
ensures that both subjects have similar positions and facing
directions (cf. Fig. 3). Additionally, one might left–right mirror
the pose of one of the subjects, to make the direction of the
movements of both subjects similar. As both subjects are rotat-
ed to face the positive x-axis, the z-values of all joints j in J of
one of the subjects can be negated: xjz = −xjz. Mimicry can also
be operationalized using bodymotion by analyzing the velocity
of the body. The screened data of both subjects can subsequent-
ly be compared using windowed cross-correlation (e.g., Paxton
& Dale, 2013) or based on spectral methods (e.g., Oullier, de
Guzman, Jantzen, Lagarde, & Kelso, 2007) with pairwise pose
distances calculated using Equation 5.

Conclusions and future research

We have introduced a set of standards and techniques for
studying nonverbal behavior as measured with full-body mo-
tion tracking technology. The increasingly wider availability
and applicability of these devices provide opportunities for
psychologists working on nonverbal behavior, but it is impor-
tant that the complexity they bring is handled in a sensible and
consistent manner. The approach we propose is one possible
standardized methodology that addresses the automatic mea-
surement and quantitative analysis of full-body motion for a
broad range of applications and research questions. It is worth
stressing the word quantitative in that description, since
AMAB neither gives a qualitative description of the recorded
body motion (e.g., the left arm is moving upward) nor provides
an interpretation of the movement (e.g., the person is reaching).
While the former could be obtained by defining rules on the
measured motion (Dael et al., 2012), the latter requires knowl-
edge of the context in which the movement is performed. This
depends strongly on the specific research question and experi-
ment setup and is, therefore, outside the scope of AMAB.

While this article has focused on hypothesis-driven re-
search questions, AMAB can also be used in explorative,

data-driven research. Instead of using one or a few dependent
variables, a large number of variables (i.e., features) can be
derived from the body motion measurements. The automatic
recording and subsequent screening of the data provide an
excellent starting point for the calculation of these features for
use in statistical analyses. In such a pattern recognition ap-
proach, a computational model is derived from a subset of the
labeled data. Such a model predicts the label given a set of
body motion features. For example, Kleinsmith et al. (2011)
determined the affective category associated to a body pose,
described as a set of joint angles. Krishnan et al. (2009)
classified hand movements from a number of features derived
from accelerometers attached to the hands. While these works
were aimed at automatic recognition, data-driven research can
also be used to explore the contribution of measured body
motion in more detail.

There are several extensions possible in the development of
the AMAB methodology. One potential extension stems from
the fact that AMAB does not describe the motion in terms of
qualitative labels per limb, or combinations of limbs, as in the
BAP coding scheme (Dael et al., 2012). It will be useful to
develop a methodology for automatic translation of the quanti-
tative representation of body movement data into qualitative
form. Such a translation can be implemented by means of
manually crafted rules that take the movement of a single or
multiple limbs and assign a label from a set of codes. Alterna-
tively, pattern recognition methods can be used to automatically
learn such a mapping from labeled data. However, this is chal-
lenging, due to the large variation in possible body movements.

A second set of potential extensions concern the represen-
tation and analysis of the bodymotion of people. For example,
it will be useful to develop analyses that go beyond the
pairwise comparisons presented in the present article and
provide opportunities to objectively study coordination be-
tween subjects in terms of temporal and spatial patterns of
their bodymovement. In particular, we also foresee extensions
in the analysis of group behavior. It may also be valuable to
address interpersonal differences in bodymovement in a more
explicit way than addressed here. Dealing with variations in
the amount and type of movements could lead to a notion of

Fig. 5 Different interpersonal distance measures over time
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baseline behavior, which is instrumental in many research
questions. This further increases the applicability of AMAB.
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