
Security and Software Engineering

CST Part 1a
Ross Anderson

Easter 2017 CST 1a

Aims
•  Introduce students to software engineering, and in

particular to the problems of building
–  large systems
–  safety-critical systems
–  systems to withstand attack by capable opponents

•  Illustrate what goes wrong with case histories
•  Study software and security engineering practices

as a guide to how mistakes can be avoided

Easter 2017 CST 1a

Objectives

•  At the end of the course you should know how
writing programs with tough assurance targets, or
in large teams, or both, differs from the
programming exercises you’ve done so far

•  You should appreciate the waterfall, spiral and
evolutionary models of development as well as the
value of development and management tools, and
the economics of the development lifecycle

Easter 2017 CST 1a

Objectives (2)
•  You should understand the various types of

bugs, vulnerabilities and hazards, how to find
them, and how to avoid introducing them

•  You should be prepared for your 1b group
project

•  And your part 2 project, and later courses in
security, systems etc.

•  And you should start absorbing the lore!
Easter 2017 CST 1a

Resources

•  Recommended reading:
– R Anderson, ‘Security Engineering’ (2nd edition

2008), part 1 and chapters 25–26 (available
online via my web page)

– M Howard and D LeBlanc, ‘Writing Secure
Code’, Microsoft press, 2003

– N Leveson, ‘Safeware’ (1994; see also her
‘System Safety Engineering’ online)

Easter 2017 CST 1a

Resources (2)
•  Additional reading:

–  FP Brooks, ‘The Mythical Man Month’
–  J Reason, ‘The Human Contribution’
–  SW Thames RHA, ‘Report of the Inquiry into the

London Ambulance Service’
–  S Maguire, ‘Writing Solid Code’, Microsoft 1993
–  H Thimbleby, ‘Improving safety in medical devices and

systems’
–  MPP cases: O Campion-Awwad et al, ‘The National

Programme for IT in the NHS – A Case History’
•  And any application areas that interest you!
Easter 2017 CST 1a

Outline
•  Trying a different order from the booklet:

– Security policy, safety case
– Psychology
– Protocols, software bugs of different types
– The software crisis, the development lifecycle
– Modern integrated development environments
– Critical systems, combining safety and security

•  No lecture May 1
•  Guest lecture May 15 at 3pm in LT2, CL
Easter 2017 CST 1a

What is Security Engineering?

 Security engineering is about building
systems to remain dependable in the face of
malice, error and mischance. As a
discipline, it focuses on the tools, processes
and methods needed to design, implement
and test complete systems, and to adapt
existing systems as their environment
evolves.

Easter 2017 CST 1a

Design Hierarchy

• What are we
trying to do?

• How?
• With what?

Policy

Architecture,
protocols …

Hardware, crypto,
access control…

Easter 2017 CST 1a

Security vs Dependability
•  The safety and security communities use

different languages
•  For us, dependability = reliability + security
•  Reliability and security are often strongly

correlated in practice
•  But malice is different from error!

– Reliability: “Bob will be able to read this file”
– Security: “The Chinese Government won’t be

able to read this file”
Easter 2017 CST 1a

Clarifying terminology

•  A system can be:
–  a product or component (PC, smartcard,…)
–  some products plus O/S, comms and

infrastructure
–  the above plus applications
–  the above plus internal staff
–  the above plus customers / external users

•  Common failing: policy drawn too narrowly

Easter 2017 CST 1a

Clarifying terminology (2)
•  A subject is a physical person
•  A person can also be a legal person (firm)
•  A principal can be

–  a person
–  equipment (PC, phone, smartcard, car…)
–  a role (the officer of the watch)
–  a complex role (Alice or Bob, Bob deputising for Alice)

•  Sometimes you need to distinguish ‘Bob’s
smartcard representing Bob who’s standing in for
Alice’ from ‘Bob using Alice’s card in her absence’

Easter 2017 CST 1a

Clarifying terminology (3)

•  Secrecy is a technical term – mechanisms
limiting the number of principals who can
access information

•  Privacy means control of your own secrets
•  Confidentiality is an obligation to protect

someone else’s secrets
•  Thus your medical privacy is protected by

your doctors’ obligation of confidentiality

Easter 2017 CST 1a

Clarifying terminology (4)
•  Anonymity is about restricting access to metadata.

It has various flavours, from not being able to
identify subjects to not being able to link their
actions

•  An object’s integrity lies in its not having been
altered since the last authorised modification

•  Authenticity has two common meanings –
–  an object has integrity plus freshness
–  you’re speaking to the right principal

Easter 2017 CST 1a

Clarifying Terminology (5)
•  Trust is hard! It has several meanings:

1.  a warm fuzzy feeling
2.  a trusted system or component is one that can break

my security policy
3.  a trusted system is one I can insure
4.  a trusted system won’t get me fired when it breaks

•  I’m going to use number 2 (the NSA definition)
•  E.g. an NSA man selling key material to the

Chinese is trusted but not trustworthy (assuming
his action was unauthorised)

Easter 2017 CST 1a

Clarifying Terminology (6)
•  An error is

–  a design flaw, or
–  a deviation from an intended state

•  A failure is a nonperformance of the system,
within specified environmental conditions

•  Reliability is the probability of failure within a set
period of time (typically mtbf, mttf)

•  An accident is an undesired, unplanned event
resulting in specified kind or level of loss

Easter 2017 CST 1a

Clarifying Terminology (7)
•  A hazard is a set of conditions on a system, plus

conditions on the environment, which can lead to
an accident in the event of failure

•  Thus: failure + hazard = accident
•  Risk is the probability of an accident, etc
•  Thus: risk is hazard level combined with danger

(probability hazard → accident) and latency
(hazard exposure + duration); e.g. a micromort

•  Uncertainty is where the risk is not quantifiable
•  Safety is simple: freedom from accidents
Easter 2017 CST 1a

Clarifying Terminology (8)
•  A security policy is a succinct statement of

protection goals – typically less than a page of
normal language

•  A protection profile is a detailed statement of
protection goals – typically dozens of pages of
semi-formal language

•  A security target is a detailed statement of
protection goals applied to a particular system –
and may be hundreds of pages of specification for
both functionality and testing

Easter 2017 CST 1a

Methodology 101
•  Sometimes you do a top-down development. In

that case you need to get the security policy right
in the early stages of the project

•  Often it’s iterative. Then the security requirements
can get ignored, detached or confused

•  In the safety-critical systems world there are
methodologies for maintaining the safety case

•  In both security and safety, the big problem is
often maintaining dependability as the system –
and the environment – evolve. (More on this later)

Easter 2017 CST 1a

What often passes as ‘Policy’

1.  This policy is approved by Management.
2.  All staff shall obey this security policy.
3.  Data shall be available only to those with

a ‘need-to-know’.
4.  All breaches of this policy shall be

reported at once to Security.

What’s wrong with this?
Easter 2017 CST 1a

Traditional government approach
•  Start from the threat model: an insider who is

disloyal (Burgess/MacLean, Aldrich Ames,
Edward Snowden...) or careless (loose talk,
reading secret papers on train, malware on PC...)

•  So: limit the number of people you have to trust,
and make it harder for them to be untrustworthy

•  Basic idea since 1940: a clerk with ‘Secret’
clearance can read documents at ‘Confidential’ and
‘Secret’ but not at ‘Top Secret’

•  Reinforce with material handling rules
Easter 2017 CST 1a

Multilevel secure systems (MLS)
•  Multilevel secure (MLS) systems are widely used

in government
•  They enforce standard handling rules for material

at ‘Confidential’ ‘Secret’, ‘Top Secret’ etc.
•  Resources have classifications; principals have

clearances; clearance must equal or exceed
classification; and information flows upwards only

•  Enforcement independent of actions for most users
•  So this is also called ‘mandatory access control’

Easter 2017 CST 1a

Formalising the Policy
•  Bell-LaPadula (1973):

–  simple security policy: no read up
–  *-policy: no write down

•  With these, one can prove that a system which
starts in a secure state will remain in one

•  Ideal: minimise the Trusted Computing Base (set
of hardware, software and procedures that can
break the security policy) so it’s verifiable

•  1970s idea: use a ‘reference monitor’, part of the
operating system. Problem: this got complex, fast

Easter 2017 CST 1a

Typical MLS system
•  Use architecture to get

high assurance of the hey
aspect of protection

•  Example: stop classified
data flowing from high to
low using one-way flow

•  Assurance then depends
on a simple mechanism

•  But keeping this small and
verifiable is often harder
than it looks!

Easter 2017 CST 1a

Multilateral Security
•  Sometimes the aim is to

stop data flowing down
•  Other times, you want

to stop lateral flows
•  Examples:

–  Intelligence, typically
with compartments

–  Medical records
–  Competing clients of an

accounting firm

Easter 2017 CST 1a

Safety via Multilevel Integrity

•  The Biba model – data may flow only down
from high-integrity to low-integrity

•  Dual of BLP: no reading from lower levels,
or writing to higher ones

•  Examples:
–  Medical device with ‘calibrate’ and ‘operate’ levels
–  grid control with safety as highest level,

operational control at next level, then management,
billing etc

Easter 2017 CST 1a

Architecture matters
•  Lots of legacy protocols

trust all network nodes
•  E.g. DNP3 in control

systems, CAN bus in cars
•  IP address = trouble!
•  Chrysler Jeep recall
•  Bad node = trouble too
•  So: separate subnets,

capable firewalls
Easter 2017 CST 1a

Other safety policies
•  Industries have their own standards, cultures,

often with architectural assumptions
embedded in component design

•  Over 180 regulations for cars alone – e.g.
ABS mustn’t cause asymmetric braking

•  Sometimes set top-down but in more mature
industries safety standards tend to evolve

•  Two basic ways to evolve them
Easter 2017 CST 1a

Failure modes and effects analysis
•  Understanding relationships between failures and

outcomes can be bottom-up or top-down
•  Bottom-up: ‘failure modes and effects

analysis’ (FMEA) – developed by NASA
•  Look at each component and list failure modes
•  Figure out what you’ll do about each (cut the

probability by overdesign? Redundancy?)
•  Then use secondary mechanisms to deal with

interactions

Easter 2017 CST 1a

Fault tree analysis

•  Top-down – ‘fault tree analysis’ (in security, a threat tree)
•  Work back from the bad outcome that we must avoid, to

identify critical components

Easter 2017 CST 1a

Example – nuclear safety

•  Don’t want Armageddon caused by a mad
president, a mad pilot or a stolen bomb

•  So: for nuclear yield, we require
– Authorisation: president/PM releases code
–  Intent: pilot puts key in bomb release
– Environment: N seconds zero gravity

•  Independent, simple, technical mechanisms

Easter 2017 CST 1a

Bookkeeping, c. 3300 BC

Easter 2017 CST 1a

Bookkeeping c. 1100 AD

•  How do you manage a business that’s grown too
big to staff with your own family members?

•  Double-entry bookkeeping – each entry in one
ledger is matched by opposite entries in another
–  E.g. firm sells £100 of goods on credit – credit the sales

account, debit the receivables account
–  Customer pays – credit the receivables account, debit

the cash account
•  So bookkeepers have to collude to commit fraud

Easter 2017 CST 1a

From the Genizah Collection

Easter 2017 CST 1a

Separation of duties in practice
•  Serial:

–  Lecturer gets money from EPSRC, charity, …
–  Lecturer gets Old Schools to register supplier
–  Gets stores to sign order form and send to supplier
–  Stores receives goods; Accounts gets invoice
–  Accounts checks delivery and tell Old Schools to pay
–  Lecturer gets statement of money left on grant
–  Audit by grant giver, university, …

•  Parallel: two signatures (e.g. where transaction
large, irreversible – as in bank guarantee)

•  How would you design such a system?
Easter 2017 CST 1a

Decoupling Policy, Mechanism

•  Role-based Access Control adds extra indirection
layer: ‘officer of the watch’, ‘branch accountant’,
‘charge nurse’

•  Still need to devise a security policy!
•  SELinux offers MLS with RBAC
•  iPhones have something similar
•  Red Hat uses it to separate services: a web server

compromise doesn’t automatically get DNS

Easter 2017 CST 1a

Defence in Depth

•  Reason’s ‘Swiss cheese’ model
•  Stuff fails when holes in defence layers line up
•  Thus: ensure human factors, software, and

procedures complement each other (more later!)
Easter 2017 CST 1a

Summary: security / safety policy

•  What are we trying to do?
•  Security: threat model, security policy
•  Safety: hazard analysis, safety standard
•  Refine to protection profile, safety case
•  Typical mechanisms: usability engineering,

firewalls, protocols, access controls...
•  We’ll now look at more detail
Easter 2017 CST 1a

Predicting user behaviour

•  It’s so tempting to ignore ‘user error’
•  Banks routinely tell victims of fraud “Our

systems are secure so it must be your fault”
•  But regulators push back
•  Most car crashes are user error; we still

build cars with crumple zones
•  Compare 1959, 2009 Chevrolets in video

Easter 2017 CST 1a

Security and human behaviour
•  Hierarchy of harms

– Targeted attacks, such as spear phishing
– Generic malware such as Zeus or Dridex
– Bulk password compromise
– Abuse of mechanisms provided as standard

•  Each step down this hierarchy, the number
of victims goes up an order or magnitude

•  Let’s start at the bottom where most harm is!
Easter 2017 CST 1a

Abuse of standard mechanisms

•  Just as a car crash is abuse of mechanism,
so are most scams and abuses

•  E.g., crook runs website offering flat to let,
so you send off some money

•  Or you get email telling you of a lottery win
•  What can we do about cyber-bullying?
•  Or doxxing?

Easter 2017 CST 1a

Bulk password compromise
•  In June 2012, 6.5m LinkedIn passwords

stolen, cracked (encryption did not have a
salt) and posted on a Russian forum

•  Method: SQL injection (will discuss later)
•  Passwords reused on other sites, from mail

services to PayPal, were exploited there
•  There have been many, many such exploits!
•  What can we do about password reuse?
Easter 2017 CST 1a

Phishing and social engineering
•  Card thieves phone victims to ask for PINs
•  Generic phishing has been around since 2005
•  A well-crafted lure sent to company staff

(‘from’ the boss, etc) can get 30% yield
•  Personalized to target: can be over 50%
•  Some big consequences, e.g. John Podesta
•  Think like a crook (and read Mitnick)!

Easter 2017 CST 1a

Cognitive Factors
•  Many errors arise from our highly adaptive mental

processes
–  We deal with novel problems in a conscious way
–  Frequently encountered problems are dealt with using

rules we evolve, and are partly automatic
–  Over time, the rules have give way to skill

•  But our ability to automatise routine actions leads
to absent-minded slips, or following a wrong rule

•  There are also systematic limits to rationality in
problem solving – ‘heuristics and biases’

Easter 2017 CST 1a

Risk misperception

•  People offered £10 or a 50% chance of £20 usually
prefer the former; if offered a loss of £10 or a 50%
chance of a loss of £20 they tend to prefer the latter!

•  Kahneman and Tversky’s ‘prospect theory’ explains
such risk preferences systematically

•  Risk misperception is exploited by cybercriminals (to
remain inconspicuous) and terrorists (the opposite!)

Easter 2017 CST 1a

Framing decisions about risk
•  Decisions are heavily influenced by framing. E.g. the

‘Asian disease problem’ where the subject is making
decisions on vaccination. Two options put to subjects. First:

A: “200 lives will be saved”
B: “with p=1/3, 600 saved; with p=2/3, none saved”

•  Here 72% choose A over B!
•  Second option is

C: “400 will die”
D: “with p =1/3, no-one will die, p=2/3, 600 will die”

•  Here 78% prefer D over C!
•  This is also why marketers talk ‘discount’ or ‘saving’ – and

fraudsters know that people facing losses take more risks
Easter 2017 CST 1a

Social psychology
•  Authority matters: Milgram showed over

60% of all subjects would torture a ‘student’
•  The herd matters: Asch showed most people

could deny obvious facts to please others
•  Reciprocation is built-in: even monkeys do

tit-for-tat! So give a gift, or appear to be in
the mark’s in-group

•  Cialdini’s “Influence – science and
practice” (the marketer’s bible) discusses
these, plus scarcity and need for consistency

Easter 2017 CST 1a

Fraud psychology

•  All the above plus
– Appeal to the mark’s kindness
– Appeal to the mark’s dishonesty
– Distract them so they act automatically
– Arouse them so they act viscerally

•  For more, see Modic and Lea’s taxonomy,
and Stajano and Wilson on hustling

Easter 2017 CST 1a

Scam mechanics

Easter 2017 CST 1a

Scam mechanics II

Easter 2017 CST 1a

Scam mechanics III

Easter 2017 CST 1a

Scam mechanics IV

•  See Stajano and Wilson paper, or “The Real
Hustle” videos

Easter 2017 CST 1a

Users’ mental models
•  Explore how your users see the problem –

the ‘folk beliefs’
–  threats seen as ‘viruses’ which could be

mischievous, or crime tools;
–  ‘hackers’ who may be seen as graffiti artists or

burglars or targeting big fish;
– Or simply as ‘bad neighbourhoods’ online!

•  The kinds of security advice they're likely to
follow depends on their main mental model

Easter 2017 CST 1a

Affordances
•  Why Johnny couldn’t encrypt
•  What actions do you make natural?
•  Defaults really matter. Most people won’t

opt in, or opt out; they go with the flow
•  So governments try to set socially optimal

defaults (e.g. you must opt out of pensions)
•  Why doesn’t everyone set safer or more

secure defaults online?
Easter 2017 CST 1a

Economics versus psychology
•  Most people don’t worry enough about

computer security
•  How could this be fixed, and why is it not

likely to be?
•  Most people worry too much about

terrorism
•  How could this be fixed, and why is it not

likely to be?
Easter 2017 CST 1a

The compliance budget
•  Violations of rules also matter: they’re often an

easier way of working, and sometimes
necessary

•  ‘Blame and train’ as an approach is suboptimal
•  It’s often rational to ignore warnings
•  People will spend only so much time obeying

rules, so choose the rules that matter
•  The ‘right’ way of working should be easiest:

look where people walk, and lay the path there

Easter 2017 CST 1a

Where should the path be?

Easter 2017 CST 1a

Differences between people

•  Ability to perform certain tasks can very
widely across subgroups of the population

•  Risk thermostat – function of age, gender
•  Also, banks tell customers ‘parse URLs’
•  Baron-Cohen: people can be sorted by SQ

(systematizing) and EQ (empathising)
•  Is this correlated with ability to detect

phishing websites by understanding URLs?
Easter 2017 CST 1a

Results

•  Ability to detect
phishing is correlated
with SQ-EQ

•  It is (independently)
correlated with gender

•  The ‘gender HCI’ issue
applies to security too

Easter 2017 CST 1a

Errors

•  Read up the psychology that underlies errors!
•  Slips and lapses

–  Forgetting plans, intentions; strong habit intrusion
–  Misidentifying objects, signals (often Bayesian)
–  Retrieval failures; tip-of-tongue, interference
–  Premature exits from action sequences, e.g. ATMs

•  Rule-based mistakes; applying wrong procedure
•  Knowledge-based mistakes; heuristics and biases

Easter 2017 CST 1a

Errors (2)

•  Training and practice help – skill is more reliable
than knowledge! Error rates (motor industry):
–  Inexplicable errors, stress free, right cues – 10-5
–  Regularly performed simple tasks, low stress – 10-4

–  Complex tasks, little time, some cues needed – 10-3

–  Unfamiliar task dependent on situation, memory – 10-2

–  Highly complex task, much stress – 10-1

–  Creative thinking, unfamiliar complex operations, time
short & stress high – ~1

Easter 2017 CST 1a

Passwords
•  Cheapest way to authenticate, but 3 issues:

– Will users enter passwords correctly?
– Will they remember them, or will they choose

weak ones or write them down?
– Can they be tricked into revealing them?

•  Advice is often like ‘choose something you
can’t remember and don’t write it down’

•  We know lots about password / PIN choice!
Easter 2017 CST 1a

Can you train users?
•  Experiment with first-year NatScis

– Control group of 100 (+ 100 more observed)
– Green group: use a memorable phrase
– Yellow group: choose 8 chars at random

•  Expected strength Y > G > C; got Y=G > C
•  Expected resets Y > G > C; got Y=G=C
•  But we had 10% noncompliance
•  So if it matters, maybe measure entropy?
Easter 2017 CST 1a

XKCD

Easter 2017 CST 1a

Password guessing
•  Sometimes you can limit guessing
•  E.g. bank card PINs – 3 guesses in the card

and 3 online
•  Enforced by hardware tamper-resistance

and software in both card and bank server
•  But: if the typical person has five cards with

the same PIN, how many wallets do you
need to find before you get lucky?

Easter 2017 CST 1a

Password guessing (2)
•  Bad guys sometimes get the password file

anyway
•  Salt: don’t store {0}P, but [Np, {Np}P]
•  Slow attacks further by multiple encryption
•  Add breach reporting laws
•  Externalise problem using Oauth protocol?
•  So is authentication a natural cloud service?

(after all, Google knows where you are)
Easter 2017 CST 1a

Externalities
•  One firm’s action has side-effects for others
•  Password sharing a conspicuous example
•  Everyone wants recovery questions too
•  Many firms train customers in unsafe

behaviour such as clicking on links
•  Much ‘training’ amounts to victim blaming
•  Two-factor authentication? Ubuntu hack

Easter 2017 CST 1a

Incremental guessing
•  Of Alexa top 500 websites, 26 use use

primary account number + exp date (Aamir)
•  37 use PAN + postcode (numeric digits only

for some, add door number for others)
•  291 ask for PAN + expdate + CVV2
•  So: iterated guessing with a botnet works!
•  Some paper receipts have PAN + expdate
•  Some websites whitelist good customers
Easter 2017 CST 1a

Matt Honan hack
•  Gmail password reset sends a message to the

backup email and prints part of it (was Matt’s
apple @me.com account)

•  Apple password reset: billing address plus last
4 digits of credit card

•  Amazon: provide any credit card number (add a
new one; then you see last 4 digits of others)

•  Hackers wiped Matt’s phone, Macbook and
Gmail, then sent racist tweets from his Twitter

Easter 2017 CST 1a

Security Protocols
•  Security protocols are a second intellectual

core of security engineering
•  They are where cryptography and system

mechanisms (such as access control) meet
•  They introduce an important abstraction, and

illustrate adversarial thinking
•  They often implement policy directly
•  And they are much older then computers…
Easter 2017 CST 1a

Real-world protocol

•  Ordering wine in a restaurant
– Sommelier presents wine list to host
– Host chooses wine; sommelier fetches it
– Host samples wine; then it’s served to guests

•  Security properties?

Easter 2017 CST 1a

Real-world protocol

•  Ordering wine in a restaurant
– Sommelier presents wine list to host
– Host chooses wine; sommelier fetches it
– Host samples wine; then it’s served to guests

•  Security properties
– Confidentiality – of price from guests
–  Integrity – can’t substitute a cheaper wine
– Non-repudiation – host can’t falsely complain

Easter 2017 CST 1a

Car unlocking protocols
•  Principals are the engine controller E and the car key

transponder T
•  Static (T → E: KT)
•  Non-interactive

T → E: T, {T,N}KT

•  Interactive
E → T: N
T → E: {T,N }KT

•  N is a ‘nonce’ for ‘number used once’. It can be a sequence
number, a random number or a timestamp

•  Can include a command, e.g. ‘lock’, ‘unlock’, ‘open boot’

Easter 2017 CST 1a

Identify Friend or Foe (IFF)

•  Basic idea: fighter challenges bomber
F → B: N
B → F: {N}K

•  What can go wrong?

Easter 2017 CST 1a

Identify Friend or Foe (IFF)

•  Basic idea: fighter challenges bomber
F → B: N
B → F: {N}K

•  What if the bomber reflects the challenge back at
the fighter’s wingman?
F → B: N
B → F: N
F → B: {N}K

B → F: {N}K

Easter 2017 CST 1a

IFF (2)

Easter 2017

Two-factor authentication

S → U: N
U → P: N, PIN
P → U: {N, PIN}KP

Easter 2017 CST 1a

Card Authentication Protocol
•  Lets banks use EMV

cards in online banking
•  Users compute codes for

access, authorisation
•  A good design would take

PIN and challenge / data,
encrypt to get response

•  But the UK one first tells
you if the PIN is correct

•  What can go wrong with
this?

Easter 2017 CST 1a

Key management protocols

•  Suppose Alice and Bob each share a key
with Sam, and want to communicate?
– Alice calls Sam and asks for a key for Bob
– Sam sends Alice a key encrypted in a blob only

she can read, and the same key also encrypted
in another blob only Bob can read

– Alice calls Bob and sends him the second blob
•  How can they check the protocol’s fresh?
Easter 2017 CST 1a

Kerberos
•  Uses ‘tickets’ based on encryption with

timestamps to manage authentication in
distributed systems (Windows, Linux, ...)
A → S: A, B
S → A: {TS, L, KAB, B, {TS, L, KAB, A}KBS}KAS

A → B: {TS, L, KAB, A}KBS, {A, TA}KAB

B → A: {TA+1}KAB

•  Here S is the ticket-granting server giving
access to the resource B

Easter 2017 CST 1a

Europay-MasterCard-Visa (EMV)

•  C → M: sigB{C, card_data}
•  M → C: N, date, Amt, PIN (if PIN used)
•  C → M: {N, date, Amt, trans_data}KCB

•  M → B: {{N, date, Amt, trans_data}KCB,
trans_data}KMB

•  B → M: {OK}KCB

How might you attack this?
Easter 2017 CST 1a

What about a false terminal?
•  Replace a terminal’s

insides with your own
electronics

•  Capture cards and PINs
from victims

•  Use them to do a man-
in-the-middle attack in
real time on a remote
terminal in a merchant
selling expensive goods

Easter 2017 CST 1a

The relay attack (2007)

PIN

$2000$20

PIN

attackers can be on opposite
sides of the world

Dave

Carol

Alice
Bob

$

Easter 2017 CST 1a

Attacks in the real world

•  The relay attack is almost unstoppable, but
it was too hard to scale!

•  What the bad guys did initially was mag-
strip fallback fraud

•  PEDs tampered at Shell garages by‘service
engineers’ (PED supplier went bust)

•  BP Girton: 200+ customers found their
cards cloned and used in Thailand, 2008

Easter 2017 CST 1a

The No-PIN attack (2010)

•  C → M: sigB{C, exp}
•  M → Ć: N, date, Amt, PIN
•  Ć → C: N, date, Amt
•  C → M: {N, date, Amt, trans_data}KCB

•  M → B: {{N, date, Amt, trans_data}KCB,
trans_data’}KMB

•  B → M: {OK}KCB

Easter 2017 CST 1a

Fixing the ‘No PIN’ attack
•  In theory: might compare card data with terminal

data at terminal, acquirer, or issuer
•  In practice: has to be the issuer (terminal and

acquirer incentives are poor)
•  Barclays introduced a fix July 2010; removed Dec

2010 (too many false positives?); banks asked for
student thesis to be taken down from web instead

•  Eventually fixed for UK transactions in 2016!
•  Real problem: EMV spec now far too complex

Easter 2017 CST 1a

The preplay attack (2014)
•  In EMV, the terminal sends a random

number N to the card along with the date d
and the amount Amt

•  The card authenticates N, d, X using the key
it shares with the bank, KCB

•  What happens if I can predict N for date d?
•  Answer: if I have access to your card I can

precompute an authenticator for Amt, d!
Easter 2017 CST 1a

Public key crypto revision
•  Public key encryption lets you encrypt data

using a user’s public encryption key
•  She can decrypt it using her private

decryption key
•  You saw Diffie-Hellman in Discrete Maths
•  We’ll write {X}A in our protocol notation
•  Digital signatures are the other way round;

only you can sign but anyone can verify
Easter 2017 CST 1a

Public key crypto revision (2)
•  Anthony sends a box with a message to

Brutus
•  But the messenger’s loyal to Caesar, so

Anthony puts a padlock on it
•  Brutus adds his own padlock and sends it

back to Anthony
•  Anthony removes his padlock and sends it

to Brutus who can now unlock it
•  Is this secure?
Easter 2017 CST 1a

Public key crypto revision (3)
•  Naïve electronic implementation:

A → B: MrA

B → A: MrArB

A → B: MrB

•  But encoding messages as group elements can be
tiresome so instead Diffie-Hellman goes:

A → B: grA

B → A: grB

A → B: {M}grArB

Easter 2017 CST 1a

Public-key Needham-Schroeder

•  Proposed in 1978:
A → B: {NA, A}KB

B → A: {NA, NB}KA

A → B: {NB}KB

•  The idea is that they then use NA⊕NB as a
shared key

•  Is this OK?

Easter 2017 CST 1a

Public-key Needham-Schroeder (2)

•  Attack found eighteen years later, in 1996:
A → C: {NA, A}KC

C → B: {NA, A}KB

B → C: {NA, NB}KA

C → A: {NA, NB}KA

A → C: {NB}KC

C → B: {NB}KB

•  Fix: explicitness. Put all names in all messages
Easter 2017 CST 1a

Public key certification
•  One way of linking public keys to principals is to

physically install them on machines (IPSEC, SSH)
•  Another is trust on first use: set up keys, then

verify manually that you’re speaking to the right
principal (Signal, Bluetooth simple pairing)

•  Another is certificates. Sam signs Alice’s public
key (and/or signature verification key)
CA = sigS{TS,L,A,KA,VA}

•  This is the basis of SSL / TLS

Easter 2017 CST 1a

Transport Layer Security (TLS)
•  Customer C calls server S

C → S: C, C#, NC
S → C: S, S#, NS, CS
C → S: {K0}S
C → S: crypto hash of K0, NC, NS, etc
S → C: crypto hash of K0, NS, NC, etc

•  This has been proved to be secure (Larry
Paulson, 1999)

•  So what could possibly go wrong?
Easter 2017 CST 1a

Beyond the protocol abstraction
•  You can’t just use raw Diffie-Hellman as you saw

it in Discrete Maths 1a!
•  The function y = gx is a homomorphism; if

x3=x1+x2 then y3 = gx3 = g(x1+x2) = gx1gx2 = y1y2
•  So you can do fancy stuff like threshold decryption

and signature (exercise: figure out how)
•  You can also do fancy attacks!
•  So real public key encryption (and signature)

functions need careful design (see Security II)
Easter 2017 CST 1a

Beyond the protocol abstraction (2)
•  The same holds for shared-key encryption!
•  Use a strong cipher: triple-DES or AES
•  Choose the right mode of operation: do you

need encryption? Authentication? Both? Do
you need it randomized, or do you need the
same answer each time you encrypt X?

•  Again, for the subtle details see Security II
•  Crypto API defaults are often weak!
Easter 2017 CST 1a

Beyond the protocol abstraction (3)
•  Although abstract TLS is proven secure,

real implementations break about annually
•  Attacks: send bad packets and observe error

messages, or measure the time it takes to
encrypt, or scavenge memory ...

•  Writing crypto code is hard (the compiler
tries to optimise away your defensive code)

•  Again, later courses have many more details
Easter 2017 CST 1a

Beyond the protocol abstraction (4)
•  Governments may attack or coerce the

certification authority
•  See if you can find the Turkish government

cert in your browser...
•  More: read Snowden, Diginotar, certificate

pinning, ‘Keys under doormats’
•  For critical stuff (your startup’s software

update key), do you need your own CA?
Easter 2017 CST 1a

Beyond the protocol abstraction (5)
•  ‘Leverage’ – sharing infrastructure – can be

attractive but is often a snare
•  Suppose that we had a protocol for users to

sign hashes of payment messages :
C → M: order
M → C: X [= hash(order, amount, date, …)]
C → M: sigK{X}

•  How might this be attacked?
Easter 2017 CST 1a

‘Chosen protocol attack’

 The Mafia asks people to sign a random
challenge as proof of age for porn sites!

Easter 2017 CST 1a

Entomology
•  What sort of bugs can we expect?
•  Bugs in the code

– Arithmetic
– Syntactic
– Logic

•  Bugs around the code
– Code injection
– Usability traps (for programmers)

Easter 2017 CST 1a

Arithmetic bug – patriot missile

•  Failed to intercept an Iraqi scud missile in Gulf
War 1 on Feb 25 1991

•  SCUD struck US barracks in Dhahran; 28 dead
•  Other SCUDs hit Saudi Arabia, Israel
Easter 2017 CST 1a

Patriot missile (2)
•  It was a bug in the arithmetic

–  measured time in 1/10 sec, truncated from .
0001100110011…

–  when system upgraded from air-defence to anti-
ballistic-missile, accuracy increased

–  but not everywhere in the (assembly language) code!
–  modules got out of step by 1/3 sec after 100h operation
–  not found in testing as spec only called for 4h tests

•  Critical system failures are typically multifactorial
•  How else do they persist in systems that are very

extensively tested?
Easter 2017 CST 1a

Syntactic bugs
•  By this we mean bugs that arise from the

features of a specific language.
•  In java

– 1+3+""="3"
– ""+1+2="12"

•  Can anyone explain
–  perl -e 'printf("%d\n", "information" == "")'
–  perl -e 'printf("%d\n", "automation" == "")'

Easter 2017 CST 1a

Apple’s ‘goto fail’

Easter 2017 CST 1a

Logic bugs
•  In April 2014, the Heartbleed bug forced

rapid reissue of most TLS certificates
•  Missing bounds check in the OpenSSL

code for the heartbeat TLS extension
•  A buffer over-read can leak the private key,

as well as user data, passwords, cookies etc
•  Race to get new certs: 50% in first month
•  White House took ‘equity issue’ from NSA
Easter 2017 CST 1a

Concurrency bugs

•  Recall the preplay attack on EMV?
•  A generic security failure is “time of check to time

of use” flaw (TOCTTOU)
•  Race conditions: See Therac-25 case, later
•  Another issue is synchronisation. See “The bug

heard round the world”: the first Shuttle launch
aborted when they couldn’t sync the five guidance
computers (more on redundancy later)

Easter 2017 CST 1a

Analogue code injection

•  Clallam Bay jail had inmate payphones
•  Inmate dials number to which recorded

voice says: “If you will accept a collect call,
please press the number 3 on your handset
twice. The caller will now say his name”

•  This can be sent in English or Spanish

Easter 2017 CST 1a

Analogue code injection

•  Clallam Bay jail had inmate payphones
•  Inmate dials number to which recorded

voice says: “If you will accept a collect call,
please press the number 3 on your handset
twice. The caller will now say his name”

•  Hack: select Spanish then speak your name
as “To hear this message in English, please
type 33.”

Easter 2017 CST 1a

Code injection

•  Is it ethical for Burger King to run an ad
that says “OK Google, what is the Whopper
Burger?”

Easter 2017 CST 1a

Code injection

•  Is it ethical for Burger King to run an ad
that says “OK Google, what is the Whopper
Burger?”

•  Their ad people had changed the wikipedia
page; it was then defaced, then locked down

•  Google then blacklisted that specific phrase
•  (Back in the 80s – demo of ‘FORMAT C:’)

Easter 2017 CST 1a

Buffer overflows

•  In 1988, the Morris worm brought down the
Internet by spreading rapidly in Unix boxes

•  It had a list of passwords to guess, but also
used three buffer overflow attacks

•  These used a remote command (finger, rsh)
with a long argument that overran the stack

•  The extra bytes were interpreted as code
•  Full details later in 1b Security course
Easter 2017 CST 1a

SQL injection

•  $sql = "INSERT INTO Students (Name) VALUES ('" .
$studentName . "');"; execute_sql($sql);

•  So, “sanitize all inputs” or ”don’t create SQL statements
that include outside data”?

Easter 2017 CST 1a

Software countermeasures
•  Operating system

– Address space layout randomisation
– Data execution prevention

•  Tool choice
– Strongly typed languages

•  Defensive programming
–  1949: EDSAC coders check arithmetic
– Now: assertions

Easter 2017 CST 1a

Software countermeasures (2)
•  Secure coding standards

– See Howard and leBlanc on MS standards for C
– Google: set libraries of user-facing code
– Much else

•  Contracts (in the Eiffel language)
•  API analysis (can less trusted code that calls

your libraries manipulate them?)
•  Coverity and other such tools (later)
Easter 2017 CST 1a

The ‘Software Crisis’
•  Software continues to lag far behind the

hardware’s potential!
•  Many large projects are late, over budget,

dysfunctional, or abandoned (LAS, CAPSA,
NPfIT, DWP, Addenbrookes …)

•  Some failures cost lives (Therac 25) or
billions (Ariane 5, NPfIT)

•  Some expensive scares (Y2K, Pentium)
•  Some combine the above (LAS)
Easter 2017 CST 1a

The London Ambulance Service disaster
•  Widely cited example of project failure

because it was thoroughly documented (and
the pattern has been frequently repeated)

•  Attempt to automate ambulance dispatch in
1992 failed conspicuously with London
being left without service for a day

•  Hard to say how many deaths could have
been avoided; estimates ran as high as 20

•  Led to CEO being sacked, public outrage
Easter 2017 CST 1a

Original dispatch system
•  999 calls written on paper tickets; map reference

looked up; conveyor to central point
•  Controller deduplicates tickets and passes to three

divisions – NW / NE / S
•  Division controller identifies vehicle and puts

note in its activation box
•  Ticket passed to radio controller
•  This all takes about 3 minutes and 200 staff of

2700 total. Some errors (esp. deduplication), some
queues (esp. radio), call-backs tiresome

Easter 2017 CST 1a

Project context
•  Attempt to automate in 1980s failed – system

failed load test
•  Industrial relations poor – pressure to cut costs
•  Public concern over service quality
•  SW Thames RHA decided on fully automated

system: responder would email ambulance
•  Consultancy study said this might cost £1.9m and

take 19 months – provided a packaged solution
could be found. AVLS would be extra

Easter 2017 CST 1a

The manual implementation

resource
mobilisation

call taking resource identification

resource management

Control
Assistant

Map
Book

Resource
 Controller

Incident
 Form

Resource
Allocators

Allocations
Box Radio

Operator

Dispatcher Incident
 form'

Incident
Form''

Easter 2017

Computer-aided dispatch system

call
taking

resource
mobilisation

resource
identification

resource
management

dispatch
worksystem •  Large

•  Real-time

•  Critical

•  Data rich

•  Embedded

•  Distributed

•  Mobile
components

Easter 2017 CST 1a

Tender process
•  Idea of a £1.5m system stuck; idea of AVLS

added; proviso of a packaged solution forgotten;
new IS director hired

•  Tender 7/2/1991 with completion deadline 1/92
•  35 firms looked at tender; 19 proposed; most said

timescale unrealistic, only partial automation
possible by 2/92

•  Tender awarded to consortium of Systems Options
Ltd, Apricot and Datatrak for £937,463 – £700K
cheaper than next lowest bidder!

Easter 2017 CST 1a

First phase
•  Design work ‘done’ July
•  Main contract signed in August
•  LAS told in December that only partial

automation by January deadline – front end
for call taking, gazetteer, docket printing

•  Progress meeting in June had already
minuted a 6 month timescale for an 18
month project, a lack of methodology, no
full-time LAS user, and SO’s reliance on
‘cozy assurances’ from subcontractors

Easter 2017 CST 1a

From phase 1 to phase 2
•  Server never stable in 1992; client and server lockup
•  Phase 2: radio messaging with blackspots and congestion.

Couldn’t cope with ‘established working practices’
•  Yet management decided to go live 26/10/92
•  CEO: “No evidence to suggest that the full system

software, when commissioned, will not prove reliable”
•  Independent review had called for volume testing,

implementation strategy, change control … It was ignored!
•  On 26 Oct, the room was reconfigured to use terminals, not

paper. There was no backup…

Easter 2017 CST 1a

LAS disaster
•  Vicious circle on 26/7 October:

–  system progressively lost track of vehicles
–  exception messages scrolled up off screen and were lost
–  incidents held as allocators searched for vehicles
–  callbacks from patients increased causing congestion
–  data delays → voice congestion → crew frustration →

pressing wrong buttons and taking wrong vehicles →
many vehicles sent to an incident, or none

–  slowdown and congestion leading to collapse
•  Switch back to semi-manual operation on 26th and

to full manual on Nov 2 after crash
Easter 2017 CST 1a

Easter 2017 CST 1a

Easter 2017 CST 1a

Easter 2017

Collapse

•  Entire system descended into chaos:
–  e.g., one ambulance arrived to find the patient

dead and taken away by undertakers
–  e.g., another answered a ‘stroke’ call after 11

hours, 5 hours after the patient had made their
own way to hospital

•  People probably died as a result
•  Chief executive resigns
Easter 2017 CST 1a

What went wrong – specification

•  LAS ignored advice on cost and timescale
•  Procurers insufficiently qualified and experienced
•  No systems view
•  Specification was inflexible but incomplete: it was

drawn up without adequate consultation with staff
•  Attempt to change organisation through technical

system
•  Ignored established work practices and staff skills

Easter 2017 CST 1a

What went wrong – project
•  Confusion over who was managing it all
•  Poor change control, no independent QA,

suppliers misled on progress
•  Inadequate software development tools
•  Ditto datacomms, with effects not foreseen
•  Poor interface for ambulance crews
•  Poor control room interface

Easter 2017 CST 1a

What went wrong – go-live
•  System went live with known serious faults

–  slow response times
– workstation lockup
–  loss of voice comms

•  Software not tested under realistic loads or
as an integrated system

•  Inadequate staff training
•  No back up
Easter 2017 CST 1a

NHS National Programme for IT
•  Like LAS, an attempt to centralise power

and change working practices
•  Earlier failed attempt in the 1990s
•  The February 2002 Blair meeting
•  Five LSPs plus national contracts: £12bn
•  Most systems years late and/or didn’t work
•  Coalition government: NPfIT ‘abolished’
•  See case history written by MPP students in

2014 (linked from course materials page)
 Easter 2017 CST 1a

Next – Universal Credit
•  Idea: unify hundreds of welfare benefits and

mitigate poverty trap by tapered withdrawal as
claimants start to earn

•  Supposed to go live Oct 2013! Problems …
•  General: big systems take 7 years not 3
•  They hoped ‘agile’ development would fix it …
•  Depended on real-time feed of tax data from

HMRC, which in turn depended on firms
•  Descended into chaos; NAO report

Easter 2017 CST 1a

Next – ‘smart meters’
•  Idea: expose consumers to market prices, get peak

demand shaving, make use salient
•  EU Electricity Directive 2009: 80% by 2020
•  Labour 2009: £10bn centralised project to save the

planet and help fix supply crunch in 2017
•  March 2010: experts said we just can’t change 47m

meters in 6 years. So excluded from spec
•  Coalition government: wanted deployment by

2015 election! Planned to build central system
Mar–Sep 2013 (then: Sep 2014 …)

•  Spec still fluid, tech getting obsolete, despair …
Easter 2017 CST 1a

Managing complexity
•  Software engineering is about managing

complexity at a number of levels
–  At the micro level, bugs arise in protocols etc because

they’re hard to understand
–  As programs get bigger, interactions between

components grow at O(n2) or even O(2n)
–  …
–  With complex socio-technical systems, we can’t predict

reactions to new functionality
•  Most failures of really large systems due to wrong,

changing, or contested requirements
Easter 2017 CST 1a

Project failure, c. 1500 BC

Easter 2017 CST 1a

Nineteenth century view

•  Charles Babbage, ‘On Contriving
Machinery’
–  “It can never be too strongly impressed upon

the minds of those who are devising new
machines, that to make the most perfect
drawings of every part tends essentially both to
the success of the trial, and to economy in
arriving at the result”

Easter 2017 CST 1a

Complexity, 1870 – Bank of England

Easter 2017 CST 1a

Complexity 1876 – Dun, Barlow & Co

Easter 2017 CST 1a

Complexity 1906 – Sears, Roebuck

•  Continental-scale mail order meant specialization
•  Big departments for single bookkeeping functions
•  Beginnings of automation

Easter 2017 CST 1a

Complexity 1940 – �
First National Bank of Chicago

Easter 2017 CST 1a

1960s – the ‘software crisis’
•  In the 1960s, large powerful mainframes made

even more complex systems possible
•  People started asking why project overruns and

failures were so much more common than in
mechanical engineering, shipbuilding…

•  ‘Software engineering’ was coined in 1968
•  The hope was that we could things under control

by using disciplines such as project planning,
documentation and testing

Easter 2017 CST 1a

How is software different?
•  Many things that make writing software fun also

make it complex and error-prone:
–  joy of solving puzzles and building things from

interlocking moving parts
–  stimulation of a non-repeating task with continuous

learning
–  pleasure of working with a tractable medium, ‘pure

thought stuff’
–  complete flexibility – you can base the output on the

inputs in any way you can imagine
–  satisfaction of making stuff that’s useful to others

Easter 2017 CST 1a

How is software different? (2)
•  Large systems become qualitatively more complex, unlike

big ships or long bridges
•  The tractability of software leads customers to demand

‘flexibility’ and frequent changes
•  This makes systems more complex to use over time as

‘features’ accumulate, and interactions have odd effects
•  The structure can be hard to visualise or model
•  The hard slog of debugging and testing piles up at the end,

when the excitement’s past, the budget’s spent and the
deadline’s looming

Easter 2017 CST 1a

The software life cycle

•  Software economics can be nasty
– Consumers buy on sticker price, businesses on

total cost of ownership
–  vendors use lock-in tactics
–  complex outsourcing

•  First let’s consider the simple (1950s) case
of a company that develops and maintains
software entirely for its own use

Easter 2017 CST 1a

Cost of software

•  Initial development cost (10%)
•  Continuing maintenance cost (90%)

cost

time

development operations legacy

What does code cost?
•  First IBM measures (60s)

–  1.5 KLOC/developer year (operating system)
–  5 KLOC/dev yr (compiler)
–  10 KLOC/dev yr (app)

•  AT&T measures
–  0.6 KLOC/dev yr (compiler)
–  2.2 KLOC/dev yr (switch)

•  Alternatives
–  Halstead (entropy of operators/operands)
–  McCabe (graph entropy of control structures)
–  Function point analysis

Easter 2017 CST 1a

First-generation lessons learned
•  There are huge variations in productivity between

individuals
•  The main systematic gains come from using an

appropriate high-level language
•  High level languages take away much of the

accidental complexity, so the programmer can
focus on the intrinsic complexity

•  It’s also worth putting extra effort into getting the
specification right, as it more than pays for itself
by reducing the time spent on coding and testing

Easter 2017 CST 1a

Development costs

•  Barry Boehm, 1975

•  So – the toolsmith should not focus just on code!

Spec Code Test
C3I 46% 20% 34%
Space 34% 20% 46%
Scientific 44% 26% 30%
Business 44% 28% 28%

Easter 2017 CST 1a

‘The Mythical Man-Month’
•  Fred Brooks debunked interchangeability
•  Imagine a project at 3 developers x 4 months

–  Suppose the design work takes an extra month. So we
have 2 months to do 9 dev mth work

–  If training someone takes a month, we must add 6 devs
–  But the work 3 devs did in 3 months can’t be done by 9

devs in one! Interaction costs maybe O(n2)
•  Hence Brooks’ law: adding manpower to a late

project makes it later!

Easter 2017 CST 1a

Software engineering economics

•  Boehm, 1981 (empirical studies after Brooks)
–  Cost-optimum schedule time to first shipment

T=2.5(dev-months)1/3

–  With more time, cost rises slowly
–  With less time, it rises sharply
–  Hardly any projects succeed in less than 3/4 T

•  Similar and supporting studies – see van Vliet,
chapter 7, on software cost metrics

•  Yet some projects fail despite huge resources!
Easter 2017 CST 1a

The software project ‘Tar Pit’

•  You can pull any one of your legs out of the tar …
•  Individual software problems all soluble but …

Easter 2017 CST 1a

Structured design
•  People realised fairly quickly only practical way

to build large complex programs is to chop them
up into modules

•  Sometimes task division seems straightforward
(bank = tellers, ATMs, dealers, …)

•  Sometimes it isn’t
•  Sometimes it just seems to be!
•  Quite a number of methodologies have been

developed (SSDM, Jackson, Yourdon, UML…)

Easter 2017 CST 1a

The waterfall model
Requirements

Specification

Implementation &
Unit Testing

Integration &
System Test

Operations &
Maintenance

Easter 2017 CST 1a

The waterfall model (2)
•  Requirements are written in the user’s language
•  The specification is written in system language
•  There can be many more steps than this – system

spec, functional spec, programming spec …
•  The philosophy is progressive refinement of what

the user wants
•  Warning – when Winton Royce published this in

1970 he cautioned against naïve use
•  But it become a US DoD standard …

Easter 2017 CST 1a

The waterfall model (3)
Requirements

Specification

Implementation &
Unit Testing

Integration &
System Test

Operations &
Maintenance

validate

validate

verify

verify
Easter 2017 CST 1a

The waterfall model (4)
•  People often suggest adding an overall feedback

loop from ops back to requirements
•  However the essence of the waterfall model is that

this isn’t done
•  It would erode much of the value that

organisations get from top-down development
•  Very often the waterfall model is used only for

specific development phases, e.g. adding a feature
•  But sometimes people use it for whole systems

Easter 2017 CST 1a

Waterfall – advantages
•  Compels early clarification of system goals and is

conducive to good design practice
•  Enables the developer to charge for changes to the

requirements
•  It works well with many management tools, and

technical tools
•  Where it’s viable it’s usually the best approach
•  The really critical factor is whether you can define

the requirements in detail in advance. Sometimes
you can (Y2K bugfix); sometimes you can’t (HCI)

Easter 2017 CST 1a

Waterfall – objections
•  Iteration can be critical in the development process:

–  requirements not yet understood by developers
–  or not yet understood by the customer
–  the technology is changing
–  the environment (legal, competitive) is changing

•  The attainable quality improvement may be
unimportant over the system lifecycle

•  It’s used to loot naïve customers like government:
when the system doesn’t work it’s the customer’s
fault as he signed off the specification

Easter 2017 CST 1a

Iterative development

Develop

outline spec

Build system Use system

Deliver system

OK?
Yes

NoProblem: this algorithm
might not terminate!

Easter 2017 CST 1a

Spiral model

Easter 2017 CST 1a

Spiral model (2)
•  The essence is that you decide in advance

on a fixed number of iterations
•  E.g. engineering prototype, pre-production

prototype, then product
•  Each of these iterations is done top-down
•  “Driven by risk management”, i.e. you put

your energy into prototyping the bits you
don’t understand yet

Easter 2017 CST 1a

Evolutionary model
•  By the 1990s, products like Windows and Office

were so complex that they had to evolve (MS tried
to rewrite Word from scratch twice and failed)

•  The big change that made code evolution possible
was the arrival of automatic regression testing

•  Firms now have huge suites of test cases against
which daily builds of the software are tested

•  The development cycle is to add changes, check
them in, and test them

Easter 2017 CST 1a

Evolutionary model (2)
•  A modern integrated development

environment has several components
– Code and documentation version control (git)
– Code review (gerrit)
– Automated build (make)
– Continuous integration (Jenkins)

•  The guest lecture will discuss the effect this
tech has had on the industry

•  Think how you’ll set up your group project!
Easter 2017 CST 1a

Assurance of critical software
•  Many systems must avoid a certain class of

failures with high assurance
–  safety critical systems – failure could cause, death,

injury or property damage
–  security critical systems – failure could allow leakage of

confidential data, fraud, …
–  real time systems – software must accomplish certain

tasks on time
•  Critical computer systems have much in common

with mechanical systems (bridges, brakes, locks)
•  Key insight: engineers study how things fail
Easter 2017 CST 1a

Tacoma Narrows, Nov 7 1940

Easter 2017 CST 1a

Hazard elimination

•  Which motor reversing circuit above is the safe one?
•  Some architecture and tool choices can eliminate whole

classes of software hazards, e.g. using a strongly-typed
language to limit syntax errors and memory leaks...

•  But usually hazards involve more than just software
Easter 2017 CST 1a

Ariane 5, June 4 1996

•  Ariane 5 accelerated faster than Ariane 4
•  This caused an operand error in float-to-integer conversion
•  The backup inertial navigation set dumped core
•  The core was interpreted by the live set as flight data
•  Full nozzle deflection → 20o angle of attack → booster
separation

Easter 2017 CST 1a

Multi-factor failure
•  Many safety-critical systems are also real-

time systems used in monitoring or control
•  It would be great to have no arithmetic or

bounds errors in the first place
•  Exception handling is often tricky (and it

would be great to have no core dumps ever)
•  But criticality of timing makes many simple

verification techniques inadequate
•  Testing can also be really hard
Easter 2017 CST 1a

Emergent properties

•  In general safety is a system property and
has to be dealt with holistically

•  The same goes for security, and real-time
performance too

•  A very common error is not getting the
scope right

•  For example, designers don’t consider
human factors such as usability and training

Easter 2017 CST 1a

The Therac accidents
•  The Therac-25 was a

radiotherapy machine sold
by AECL

•  Between 1985 and 1987
three people died in six
accidents

•  Example of a fatal coding
error, compounded with
usability problems and
poor safety engineering

Easter 2017 CST 1a

The Therac accidents (2)
•  25 MeV ‘therapeutic

accelerator’ with two
modes of operation
–  25MeV focused electron

beam on target to generate
X-rays

–  5-25MeV spread electron
beam for skin treatment
(with 1% of beam current)

•  Safety requirement: don’t
fire 100% beam at human!

Easter 2017 CST 1a

The Therac accidents (3)

•  Previous models (Therac 6 and 20) had
mechanical interlocks to prevent high-intensity
beam use unless X-ray target in place

•  The Therac-25 replaced these with software
•  Fault tree analysis arbitrarily assigned probability

of 10-11 to ‘computer selects wrong energy’
•  Code was poorly written, unstructured and not

really documented

Easter 2017 CST 1a

The Therac accidents (4)

•  Marietta, GA, June 85: woman’s shoulder
burnt. Settled out of court. FDA not told

•  Ontario, July 85: woman’s hip burnt. AECL
found microswitch error but could not
reproduce fault; changed software anyway

•  Yakima, WA, Dec 85: woman’s hip burned.
‘Could not be a malfunction’

Easter 2017 CST 1a

The Therac accidents (5)
•  East Texas Cancer Centre, Mar 86: man burned in

neck and died five months later of complications
•  Same place, three weeks later: another man burned

on face and died three weeks later
•  Hospital physicist managed to reproduce flaw: if

parameters changed too quickly from x-ray to
electron beam, the safety interlock failed

•  Yakima, WA, Jan 87: man burned in chest and
died – due to different bug now thought to have
caused Ontario accident

Easter 2017 CST 1a

The Therac accidents (6)

•  East Texas deaths caused by editing ‘beam type’ too quickly
•  This was due to poor software design

Easter 2017 CST 1a

The Therac accidents (7)
•  Datent sets turntable

and ‘MEOS’, which
sets mode and energy
level

•  ‘Data entry complete’
can be set by datent, or
keyboard handler

•  If MEOS set (& datent
exited), then MEOS
could be edited again

Easter 2017 CST 1a

The Therac accidents (8)
•  AECL had ignored safety aspects of software
•  Confused reliability with safety
•  Lack of defensive design
•  Inadequate reporting, followup and regulation – didn’t

explain Ontario accident at the time
•  Unrealistic risk assessments
•  Inadequate software engineering practices – spec an

afterthought, complex architecture, dangerous coding,
little testing, careless HCI design…

•  AECL got out of the medical equipment business. But
similar accidents are still happening! (NY Times article)

•  Poor medical device safety usability still costs many lives
Easter 2017 CST 1a

Easter 2017 CST 1a

Easter 2017 CST 1a

Easter 2017 CST 1a

Medical device safety
•  Usability problems with medical devices

kill about the same number of people as
cars

•  Biggest killer nowadays: infusion pumps
•  Regulators are incompetent / captured
•  Nurses get blamed for fatalities
•  Avionics are safer, as incentives are better
•  Read Harold Thimbleby’s paper!

Easter 2017 CST 1a

Software safety myths (1)
•  ‘Computers are cheaper than analogue devices’

–  Shuttle software cost $108 pa to maintain
•  ‘Software is easy to change’

–  Exactly! But it’s hard to change safely
•  ‘Computers are more reliable’

–  Shuttle software had 16 potentially fatal bugs found
since 1980 – and half of them had flown

•  ‘Increasing reliability increases safety’
–  They’re correlated but not completely

Easter 2017 CST 1a

Software safety myths (2)
•  ‘Reuse increases safety’

–  Not in Ariane, Patriot and Therac, it didn’t
•  ‘Formal verification can remove all errors’

–  Not even for 100-line programs
•  ‘Testing can make software arbitrarily reliable’

–  For MTBF of 109 hours you must test >109 hours
•  ‘Automation can reduce risk’

–  But thus often takes an extended period of evolution
–  What about architectural hacks such as redundancy?

Easter 2017 CST 1a

Redundancy

•  Some vendors, like Stratus, developed redundant
hardware for ‘non-stop processing’

CPU

CPU CPU

CPU

? ?

Easter 2017 CST 1a

Redundancy (2)

•  Stratus users found that the software is then
where things broke

•  The ‘backup’ IN set in Ariane failed first!
•  Next idea: multi-version programming
•  But: errors are correlated, dominated by failure

to understand requirements (Leveson)
•  Implementations often give different answers
•  With both types of errors, redundancy is hard!
Easter 2017 CST 1a

Redundancy management – 737

Easter 2017 CST 1a

Panama crash, June 6 1992
•  Need to know which way up!
•  New EFIS (each pilot), WW2

artificial horizon (top right)
•  EFIS failed – loose wire
•  Both EFIS fed off same IN set
•  Pilots watched EFIS, not AH
•  47 fatalities
•  And again: Korean Air cargo

747, Stansted Dec 22 1999
Easter 2017 CST 1a

Kegworth crash, Jan 8 1989
•  BMI London-Belfast, fan

blade broke in port engine
•  Crew shut down starboard

engine and did emergency
descent to East Midlands

•  Opened throttle on final
approach: no power

•  47 dead, 74 injured
•  Initially blamed wiring

technician! Later: cockpit
design

Easter 2017 CST 1a

Complex socio-technical systems
•  Aviation is actually an easy case as it’s a

mature evolved system!
•  Stable components: aircraft design, avionics

design, pilot training, air traffic control …
•  Interfaces are stable too
•  Crew capabilities are well known
•  The whole system has good incentives for

learning – much better than with medical
devices!

Easter 2017 CST 1a

Pulling it together
•  First, understand and prioritise hazards. E.g. the motor

industry uses:
1.  Uncontrollable: outcomes can be extremely severe

and not influenced by human actions
2.  Difficult to control: very severe outcomes, influenced

only under favourable circumstances
3.  Debilitating: usually controllable, outcome art worst

severe
4.  Distracting; normal response limits outcome to minor
5.  Nuisance: affects customer satisfaction but not

normally safety

Easter 2017 CST 1a

Pulling it together (2)
•  Develop safety case: hazards, risks, and strategy per

hazard (avoidance, constraint)
•  Who will manage what? Trace hazards to hardware,

software, procedures
•  Trace constraints to code, and identify critical

components / variables to developers
•  Develop safety test plans, procedures, certification,

training, etc
•  Figure out how all this fits with your development

methodology (waterfall, spiral, evolutionary …)

Easter 2017 CST 1a

Pulling it together (3)
•  Managing a critical property – safety, security,

real-time performance – is hard
•  Although some failures happen during the ‘techie’

phases of design and implementation, most happen
before or after

•  The soft spots are requirements engineering,
certification, and then operations / maintenance

•  These are interdisciplinary, involving systems
people, domain experts and users, cognitive
factors, politics and marketing

•  We’ll have more on certification later
Easter 2017 CST 1a

The emerging challenge
•  With the “Internet of Things”, safety now

includes security
•  Things like cars, medical devices and grid

equipment have 10-year certification cycles
•  Put software everywhere, and attacks scale!
•  The Panix lesson
•  Expect everything to go to monthly updates
•  This will stress test a lot of regulators!
Easter 2017 CST 1a

Tools

•  Homo sapiens uses tools when some
parameter of a task exceeds our native
capacity
– Heavy object: raise with lever
– Tough object: cut with axe
– …

•  Software engineering tools are designed to
deal with complexity

Easter 2017 CST 1a

Tools (2)
•  There are two types of complexity:

–  Incidental complexity dominated programming in the
early days, e.g. keeping track of stuff in machine-code
programs. Solution: high-level languages

–  Intrinsic complexity is the main problem today, e.g.
complex system (such as a bank) with a big team.
‘Solution’: structured development, project management
tools, …

•  We can aim to eliminate the incidental
complexity, but the intrinsic complexity must be
managed

Easter 2017 CST 1a

Incidental complexity (1)
•  The greatest single improvement was the

invention of high-level languages like FORTRAN
–  2000 loc/year goes much farther than assembler
–  Code easier to understand and maintain
–  Appropriate abstraction: data structures, functions,

objects rather than bits, registers, branches
–  Structure lets many errors be found at compile time
–  Code may be portable; at least, the machine-specific

details can be contained
•  Performance gain: 5–10 times. As coding = 1/6

cost, better languages give diminishing returns
Easter 2017 CST 1a

Incidental complexity (2)
•  Thus most advances since early HLLs focus on

helping programmers structure and maintain code
•  Don’t use ‘goto’ (Dijkstra 68), structured

programming, pascal (Wirth 71); info hiding plus
proper control structures

•  OO: Simula (Nygaard, Dahl, 60s), Smalltalk
(Xerox 70s), C++, Java … covered elsewhere (but
do see ‘Objects have failed’ on the course page)

•  Don’t forget the object of all this is to manage
complexity!

Easter 2017 CST 1a

Incidental complexity (3)
•  Early batch systems were very tedious for

developer … e.g. our school computer in 1972
•  Time-sharing systems allowed online test – debug

– fix – recompile – test – …
•  This still needed plenty scaffolding and carefully

thought out debugging plan
•  Integrated programming environments such as

TSS, Turbo Pascal,…
•  Some of these started to support tools to deal with

managing large projects – ‘CASE’
Easter 2017 CST 1a

Formal methods
•  Pioneers such as Turing talked of proving

programs correct
•  Floyd (67), Hoare (71), … now a wide range:

–  Z for specifications
–  HOL for hardware
–  BAN for crypto protocols

•  These are not infallible (a kind of multiversion
programming)

•  Can find a lot of bugs, especially in small, difficult
tasks

Easter 2017 CST 1a

Static analysis tools
•  One outcome of the formal-methods

community is modern static analysis tools
•  Tools like Coverity don’t expect to find all

bugs, just many of them
•  Problem: when you buy it, you find 10,000

more bugs and your ship date slips
•  Similar problems when you upgrade it!
•  But attitudes to software are changing...

Easter 2017 CST 1a

Programming philosophies
•  ‘Chief programmer teams’ (IBM, 70–72):

capitalise on wide productivity variance
•  Team of chief programmer, apprentice, toolsmith,

librarian, admin assistant etc, to get maximum
productivity from your staff

•  Can be effective during implementation
•  But each team can only do so much
•  Why not just fire the less productive

programmers?

Easter 2017 CST 1a

Programming philosophies (2)
•  ‘Egoless programming’ (Weinberg, 71) – code

should be owned by the team, not by any
individual. In direct opposition to chief
programmer team
–  But: groupthink entrenches bad stuff more deeply

•  ‘Literate programming’ (Knuth et al) – code
should be a work of art, aimed not just at machine
but also future developers
–  But: creeping elegance is often a symptom of a project

slipping out of control

Easter 2017 CST 1a

Capability maturity model

•  Humphrey, 1989: it’s important to keep teams
together, as productivity grows over time

•  Nurture the capability for repeatable, manageable
performance, not outcomes that depend on
individual heroics

•  CMM developed at CMU with DoD money
•  It identifies five levels of increasing maturity in a

team or organisation, and a guide for moving up

Easter 2017 CST 1a

Capability maturity model (2)
1.  Initial (chaotic, ad hoc) – the starting point for

use of a new process
2.  Repeatable – the process is able to be used

repeatedly, with roughly repeatable outcomes
3.  Defined – the process is defined/confirmed as a

standard business process
4.  Managed – the process is managed according to

the metrics described in the Defined stage
5.  Optimized – process management includes

deliberate process optimization/improvement
Easter 2017 CST 1a

Trends in development style
•  Over the past 20 years, emphasis shift from

requirements to testing to people
•  1990s: put a lot of effort into the spec
•  2000s: the major effort is in an incremental

build system, with an automatic regression
test environment

•  Can be simple, or an expensive “lab car”
•  Foundation for the next step
Easter 2017 CST 1a

Agile development – beginnings
•  ‘Extreme Programming’ (Beck, 99): aimed at

small teams working on iterative development
with automated tests and short build cycle

•  ‘Solve your worst problem. Repeat’
•  Focus on development episode: write tests first,

then the code. ‘The tests are the documentation’
•  Programmers work in pairs, at one keyboard and

screen
•  That didn’t survive, but episodes did, and people

added the ‘scrum’
Easter 2017 CST 1a

Agile development – now
•  See guest lecture for this!
•  Start with a sound technical foundation:

languages, build environment, testing
•  Agree processes: daily scrum, weekly

lunch, customer interaction...
•  Break the development into short sprints
•  Figure out what else is needed (e.g., security

policy, safety case, real-time constraints...)
Easter 2017 CST 1a

The specification still matters!
•  Study of failure of 17 large demanding systems,

Curtis Krasner and Iscoe 1988
•  Causes of failure

1.  Thin spread of application domain knowledge
2.  Fluctuating and conflicting requirements
3.  Breakdown of communication, coordination

•  They were very often linked, and the typical
progression to disaster was 1→ 2 → 3

Easter 2017 CST 1a

But specification is hard
•  Thin spread of application domain knowledge

–  How many people understand everything about running
a phone service / bank / hospital?

–  Many aspects are jealously guarded secrets
–  Some fields try hard to be open, e.g. aviation
–  Or with luck you might find a real ‘guru’
–  But you can expect specification mistakes

•  The spec may change in midstream anyway
–  Competing products, new standards, fashion
–  Changing environment (takeover, election, …)
–  New customers (e.g. overseas) with new needs

Easter 2017 CST 1a

How the spec can kill you...
•  Spec-driven development of large systems leads

to comms problems – N people means N(N-1)/2
channels and 2N subgroups

•  Big firms do hierarchy; but if info flows via ‘least
common manager’, bandwidth will be inadequate

•  So you proliferate committees, staff departments
•  This causes politicking, blame shifting
•  Management attempts to gain control result in

restricting many interfaces, e.g. to the customer

Easter 2017 CST 1a

Project management
•  A manager’s job is to

–  Plan
–  Motivate
–  Control

•  The skills involved are interpersonal, not techie;
but managers must retain respect of techie staff

•  Growing software managers a perpetual problem!
‘Managing programmers is like herding cats’

•  Nonetheless there are some tools that can help

Easter 2017 CST 1a

Activity Charts

•  ‘Gantt’ chart (after
inventor) shows
tasks and
milestones

•  Problem: can be
hard to visualise
dependencies

Easter 2017 CST 1a

Critical path analysis

•  Project Evaluation and Review Technique
(PERT): draw as a graph with dependencies

•  Give critical path (here, two) and shows slack
•  Can help maintain ‘hustle’ in a project
•  Also helps warn of approaching trouble

Keeping people motivated
•  People can work less hard in groups than on their

own projects – ‘free rider’ or ‘social loafing’ effect
•  Competition doesn’t invariably fix it: people who

don’t think they’ll win stop trying
•  Dan Rothwell’s ‘three C’s of motivation’:

–  Collaboration – everyone has a specific task
–  Content – everyone’s task clearly matters
–  Choice – everyone has a say in what they do

•  Many other factors: acknowledgement, attribution,
equity, leadership, and ‘team building’ (shared
food / drink / exercise; scrumming)

Easter 2017 CST 1a

Testing
•  Testing is often neglected in academia, but it’s

typically about half the effort, and half the cost
•  Bill G: “are we in the business of writing software,

or test harnesses?”
•  Happens at many levels

–  Design validation, UX prototyping
–  Module test after coding
–  System test after daily build
–  Beta test / field trial
–  Subsequent litigation

•  Cost per bug rises dramatically down this list!
Easter 2017 CST 1a

Testing (2)

•  Huge advance: design for testability, continuous
integration, and automated regression tests

•  Tests check that new versions of the software give
same answers as old versions
–  Customers more upset by failure of a familiar feature

than at a new feature which doesn’t work right
–  Without regression testing, 20% of bug fixes

reintroduce failures in already tested behaviour
–  Test the inputs that your users actually generate!
–  In hard-core agile philosophy, the tests are the spec

Easter 2017 CST 1a

Testing (3)
•  Reliability growth models help us assess mtbf, number of

bugs remaining, economics of further testing…
•  Failure rate due to one bug is e-k/T; with many bugs these

sum to k/T
•  So for 109 hours mtbf, must test >109 hours
•  But: changing testers brings new bugs to light

Testing (4)
•  The critical problem is to exercise the conditions

under which the system will actually be used
•  Many failures result from unforeseen input /

environment conditions (e.g. Patriot)
•  Random testing – fuzzing – now good practice
•  Incentives still matter: commercial developers

look for friendly certifiers while military, NASA,
DoE arrange hostile review

•  So: to whom do you have to prove what?
Easter 2017 CST 1a

Documentation
•  Think: how will you deal with management

documents (budgets, PERT charts, staff schedules)
•  And engineering documents (requirements, hazard

analyses, specifications, test plans, code)?
•  CS tells us it’s hard to keep stuff in synch!
•  Possible partial solutions:

–  High tech: integrated development environment
–  Bureaucratic: plans and controls department
–  Social consensus: style, comments, formatting

Easter 2017 CST 1a

Release management

•  Getting from development code to production release
•  Main focus is stability – work on recently-evolved code,

test with lots of hardware versions, etc
•  Add all the extras like copy protection, rights management
•  Critical decision: patch old versions, or force upgrades?
Easter 2017 CST 1a

Change control
•  Change control and configuration management are critical

yet often poor
•  The objective is to manage the testing and deployment of

software you’ve written, or bought, or got fixes for
•  Someone must assess the risk and take responsibility for

live running, and manage backup, recovery, rollback etc

Development

Purchase
Test Production

Easter 2017 CST 1a

Responsible disclosure
•  Old approach: try to deny existence of bugs

for as long as you can
•  Reaction: hackers boast about them
•  Consensus in 2000s: vulnerabilities should

be disclosed after a time delay
•  Immediate disclosure: then instant exploit
•  No disclosure: then vendors won’t fix
•  Can use CERTs, regulators as channel
Easter 2017 CST 1a

Vulnerability lifecycle

•  An engineer introduces a bug
•  Someone discovers it: now a ‘zero day’
•  Disclose responsibly; or at once; or exploit
•  Primary exploit window till patch shipped
•  But many devices aren’t patched (non-IT

products, orphan products like old phones)
•  What do we do about Mirai?
Easter 2017 CST 1a

Shared infrastructure
•  We share a lot of code through open source

operating systems, libraries and tools
•  Huge benefits but also interaction issues!
•  Can you cope with an emergency bug fix

(like Heartbleed)?
•  How do you feed your fixes back to others?
•  Do you encourage responsible disclosure?
•  Are you aware of different license terms?
Easter 2017 CST 1a

Agency issues
•  Recall the lessons from LAS! Employees often

optimize their own utility, not the project’s
•  Bureaucracies are machines for avoiding

blame!
•  Risk reduction becomes compliance
•  Tort law reinforces herding: negligence judged

‘by the standards of the industry’
•  So firms do the checklists, use fashionable

tools, hire the big consultants…
Easter 2017 CST 1a

How do you know when you’re done?
•  Security: the Cathedral

–  the Common Criteria
–  protection profiles and CLEFs
–  rating maintenance, accreditation...

•  Or the Bazaar
–  patch cycle
–  responsible disclosure
–  breach reporting

Easter 2017 CST 1a

Safety
•  Mostly the Cathedral rather than the Bazaar
•  Aircraft: the FAA and the CAA
•  Cars: UNECE standards, independent lab

testing (mandatory in Europe)
•  Medical devices: FDA in USA, national

regulators in Europe (but being harmonised)
•  Regulation and liability
•  Regulatory capture
Easter 2017 CST 1a

•  Outcomes
– Metrics easier for regular losses (risk)
– But rare catastrophes are harder (uncertainty)
– How reassuring are fatality statistics? E.g.

Train Protection Systems, Tesla
– Accidents are random, but not security exploits!
– Product liability for death or injury is strict

(more in Economics, Law and Ethics in 1b)

Easter 2017 CST 1a

Focus on outcomes, or process?

•  Process
– Necessary to adapt as environment changes
– Security development lifecycle is established
– Safety rating maintenance
– And blame avoidance is what bureaucracies do
– Public sector is really keen on ‘compliance’
– But leaves a gap of residual risk / uncertainty

Easter 2017 CST 1a

Focus on outcomes, or process?

Incentives
•  The world offers hostile review, which we

tackle in stages (dogfood, alpha, beta, ops)
•  Some applications use hostile reviewers

deliberately (higher assurance levels of CC,
manned spaceflight, nuclear weapons)

•  Standard contract in Bangalore: you have to
fix bugs for 90 days after sale

•  Businesses avoid risk (regulatory games!)
Easter 2017 CST 1a

A big question
•  At present cars get pre-market testing
•  Tesla has started monthly updates, like for

phones and laptops; the others will follow
•  But cars last 200k miles, and improving
•  We don’t know how to patch old software!
•  So how will today’s Land Rover get patches

in 2037? In 2047?
•  What new tools and new ideas do we need?
Easter 2017 CST 1a

Conclusions
•  Software engineering is about managing

complexity. That’s why it’s hard. That’s our trade
•  Security engineering is going the same way, and

the two are merging as we put CPUs everywhere
•  We can cut incidental complexity using tools, but

the intrinsic complexity remains
•  Top-down approaches can sometimes help, but

really large systems evolve
•  Safety and privacy, as well as underlying

properties like security, are often emergent
Easter 2017 CST 1a

Conclusions (2)
•  Complex systems are usually socio-technical,

so people come into play as users, and also as
members of development and other teams

•  Institutions matter. About 30% of big
commercial projects fail – has been stable for
years! (better tools let people climb higher up
the complexity mountain before they fall off)

•  In future, the confluence of security and safety
may make maintenance the complexity limit,
even more than at present!

Easter 2017 CST 1a

