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Abstract. A number of web service firms have started to authenticate
users via their social knowledge, such as whether they can identify friends
from photos. We investigate attacks on such schemes. First, attackers of-
ten know a lot about their targets; most people seek to keep sensitive
information private from others in their social circle. Against close ene-
mies, social authentication is much less effective. We formally quantify
the potential risk of these threats. Second, when photos are used, there is
a growing vulnerability to face-recognition algorithms, which are improv-
ing all the time. Network analysis can identify hard challenge questions,
or tell a social network operator which users could safely use social au-
thentication; but it could make a big difference if photos weren’t shared
with friends of friends by default. This poses a dilemma for operators:
will they tighten their privacy default settings, or will the improvement
in security cost too much revenue?

1 Introduction

Facebook1 recently launched a new user authentication method called “social
authentication” which tests the user’s personal social knowledge [14]. This idea
is neither unique nor novel [17] but Facebook’s implementation is its first large-
scale deployment. A user is presented with a series of photos of their friends and
asked to select their name of a highlighted face from a multiple-choice list (see
Figure 1). The current system is used to authenticate user login attempts from
abroad.

Facebook has invited security experts to find flaws in the current system
before a wider roll-out. If it were deployed for regular authorization and lo-
gin systems and attacks were to be found subsequently, this could have wide
repercussions for the many online merchants and websites which use Facebook
to identify their customers, using the Facebook Connect OAuth 2.0 API2. We
therefore set out to find the best attacks we could on social authentication, and
this paper presents our results.

Social authentication is based on the intuition that the user can recognize
her friends while a stranger cannot. At first glance, this seems rather promising.
However, we argue here that it is not easy to achieve both security and usability:

1 http://www.facebook.com/
2 http://developers.facebook.com/docs/authentication

http://www.facebook.com/
http://developers.facebook.com/docs/authentication
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Fig. 1. Social authentication on Facebook. Facebook typically asks the user to name
people in three photos.

(1) the user’s personal social knowledge is generally shared with people in her
social circle; (2) photo-based social authentication methods are increasingly vul-
nerable to automatic attacks as face recognition and social tagging technologies
develop; and (3) we face the same problems as in previous “personal knowledge
questions”.

In the rest of this article, we will analyse the risk of guessing attacks, then
propose several schemes to mitigate them. In community-based challenge se-
lection we use social topology; if a user’s friends divide into several disjoint
communities, we can select challenge sets that should not be known to any in-
dividual friend. We can also reduce the risk of impersonation attacks leveraging
the mutual friends between the target user and the adversary; we demonstrate
this empirically on realistic data.

2 Why is it difficult to provide secure social
authentication?

We analyse three security issues in the photo-based social authentication used
in Facebook.

2.1 Friend information is not private enough

Social authentication may be effective against pure strangers. However, the peo-
ple against whom we frequently require privacy protection are precisely those in
our own social circle. For example, if a married man is having an affair, some ran-
dom person in another country is not likely to be interested; the people who are
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interested are his friends and his wife’s. In short, users may share a lot of their
friends with their adversaries. This is nothing new; 2,400 years ago, Sun-Tzu
said ‘Keep your friends close, and your enemies closer’. So a proper assessment
of the protective power of social authentication in real social networks must be
made using real data.

Formally, we view social connections between users in Facebook as an undi-
rected graph G = (U,E), where the set of nodes U represents the users and
the set of edges E represents “friend” relationships. For any user u ∈ U , we use
fu to denote the set of u’s friends. If each challenge image is selected by the
methodM, we define the advantage of an adversary a who tries to impersonate
the target user u as:

AdvM,a(u, k, ρ) ≥
min{k,|fu|}∏

i=1

Pr
[
ci ∈ f (i)a : ci

M←−− f (i)u

]
· ρ (1)

where f
(i)
x = fx−{c1, · · · , ci−1} and k is the number of challenges (such that all

k challenges need to be answered correctly) and ρ is the adversary a’s average
success rate to recognize a person in a challenge image ci when ci ∈ fa. It
seems reasonable to introduce ρ less than 1 since it may sometimes be difficult
to recognize friends if tricky images are selected. For simplification, however, we
use ρ as a system parameter.

For any u, k and ρ, we define the impersonation attack advantage of M via

AdvM(u, k, ρ) ≥ max
a∈Au

{AdvM,a(u, k, ρ)} (2)

where the maximum is over all potential adversaries a ∈ Au and Au is the set
of users who share mutual friends with u.

In other words, at least one potential adversary a can impersonate the user u
with probability at least AdvM(u, k, ρ) when k challenge images are provided by
the selection methodM. If we assume that k challenge images of different friends
are randomly selected, the advantage of the impersonation attack in Equation
(2) can be computed as follows:

AdvR(u, k, ρ) ≥ max
a∈Au


min{k,|fu|}∏

i=1

|fua| − (i− 1)

|fu| − (i− 1)
· ρ

 (3)

where fua is the intersection of fu and {fa ∪ a} and R denotes the random
selection method.

For example, in Figure 2, since |fu| = 5 and |fua| = 2, we get the probability
that a chooses the answer correctly for a challenge image about u is at least
(2/5) · ρ when k = 1. The probability decreases to (1/10) · ρ when k = 2.
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Fig. 2. An example graph with u and a. Nodes represent users and links represent
friend relationships. The nodes u and a have five (fu, grey) and three (fa, square)
friends, respectively. They commonly share two friends (fua, grey-square).

One might think that authentication might be made arbitrarily secure since
increasing k will lead to an exponential decrease in the adversary success prob-
ability. We decided, however, to use real datasets to explore what value of k
might give a good balance between usability and security. With an ideal ρ value
(ρ = 0.99), we compute the AdvR(u, k, ρ) value for each user u by varying k
from 1 to 5 on the real Facebook network crawled from both university and
regional sub-networks. These sub-networks are summarised in Table 1.

Table 1. Summary of datasets used. 〈d〉 and ncc represent the “average number of
friends” and the “number of connected components”, respectively. The sub-networks
of universities are highly connected compared to those of regions.

Network Type |U | |E| 〈d〉 ncc

Columbia University 15,441 620,075 80.32 16

Harvard University 18,273 1,061,722 116.21 22

Stanford University 15,043 944,846 125.62 18

Yale University 10,456 634,529 121.37 4

Monterey Bay Region 26,701 251,249 18.82 1

Russia Region 116,987 429,589 7.34 3

Santa Barbara (SB) Region 43,539 632,158 29.04 1

We display the histograms to show the distributions of the AdvR(u, k, ρ)
values for all the users in each sub-network. The experimental results are shown
in Figure 3.

In order to identify the high-advantage attackers, we calculate the Pearson
correlation coefficients between AdvR(u, k, ρ) and some representative network
centrality that are widely used for measuring the relative importance of nodes
in network: degree (Deg), closeness (Clo), betweenness (Bet) and clustering
coefficient (CC) centrality (see ‘Appendix: Network centrality’). The scatter
plots in Figure 4 showing the correlation between the adversary’s advantage and
network centrality visually when ρ = 0.99 and k = 3. For degree, closeness and
betweenness centrality, we can see a negative correlation between the adversary’s
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Fig. 3. The histograms of AdvR(u, k, ρ) when ρ = 0.99 for the users in the seven
sub-networks of Facebook in Table 1. The black dotted lines represent the mean of
AdvR(u, k, ρ) values over the all users in a sub-network.

advantage and nodes’ centrality values, although this trend appears to be rather
weak for betweenness. In particular, the correlation coefficients for the university
datasets are much higher than those for the region datasets. For example, the
correlation coefficients between the adversary’s advantage and closeness central-
ity of -0.485 and -0.584 are obtained for each scatter plot graph of the university
sub-networks, respectively, while those ranged from -0.00439 to -0.0425 for the
region sub-networks. These results indicate that social authentication should not
be offered to people with low centrality values.

Another key observation is the correlation between the adversary’s advan-
tages and nodes’ clustering coefficients. We can see there is a clear correlation
(ranged from 0.307 to 0.633) between them although the results are somewhat
inconsistent in the cases of ‘Monterey Bay’ and ‘Santa Barbara’. That is, users
with high clustering coefficients will become more vulnerable than those with low
clustering coefficients. It is natural; the clustering coefficient quantifies how well
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Fig. 4. Scatter plot graphs showing the correlation between the adversary’s advantage
(X-axis) and network centrality (Y -axis) over nodes when ρ = 0.99 and k = 3. We also
calculate the Pearson correlation coefficient for each scatter plot. These graphs indicate
that there exists a negative correlation between the adversary’s advantage and network
centrality while there exists a positive correlation between the adversary’s advantage
and clustering coefficient.

a node’s friends are connected to each other — we should conclude that social
authentication is not recommended for users with high clustering coefficients.

2.2 Automatic face recognition

Social authentication is an extension of image-recognition CAPTCHAs. So we
should consider its vulnerability to machine learning attacks; Golle [8] showed
that Microsoft’s image-recognition CAPTCHA (Asirra) can be broken using ma-
chine learning by an adversary who can collect and label a reasonable sample
set. So automatic image recognition will be a significant threat to photo-based
social authentication. Although face recognition is not a completely solved prob-
lem, face recognition algorithms do well under certain conditions. For example,
current algorithms are about as good as human judgements about facial iden-
tity for “mug shot” images with frontal pose, no facial expression, and fixed
illumination [7].
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Recent evaluation of face recognition techniques with the real photo images
in Facebook [3] showed that the best performing algorithms can achieve about
65% accuracy using 60,000 facial images of 500 users. This shows that the gap
between the legitimate user and a mechanised attack may not be as large as one
might think.

As with CAPTCHAs, if adversaries use ever-better face recognition pro-
grams, the designers could use various tricks to make image recognition – e.g. by
noise or distortion – but such images are also hard for legitimate users to iden-
tify. The usability costs could be nontrivial. For example, if we reduce ρ to 0.9,
then even for k = 3 we get an unacceptable user success rate of (0.9)

3 ≈ 0.73.
To make matters worse, face recognition attacks could be easily extended to

large-scale automated attacks by combining the photo collection and recognition
processes. As Facebook provides APIs to get images with Facebook ID easily
from photo albums, an adversary might automatically collect a lot of high-quality
images from the target’s friends since many casual users expose their photos in
public [1,12]. Although some users do have privacy concerns about sharing their
photos, many casual users often struggle with privacy management [13]. Social
networks make it difficult for users to manage privacy; it is in their commercial
interests for most users to stick with the (rather open) default settings. Therefore
an adversary attempting to circumvent social authentication could simply login
to Facebook with her own account, access the photos of the victim’s friends via
the openly available public search listings [5,10].

2.3 Statistical guessing attacks

Finally, we revisit statistical guessing attacks which have been studied in the
context of personal knowledge questions [9,6]. In particular, Bonneau et al. [6]
showed that many personal knowledge questions related to names are highly
vulnerable to trawling attacks. The same issues arise in social authentication
when the names of a user’s friends are sought. The probability distribution of
names is not uniform but follows Zipf’s law, and the target’s language and culture
can give broad hints. Even a subject’s racial appearance can increase the guessing
probability. Since there is a significant correlation between name and race (or
gender), the subject’s appearance may help an attacker guess his or her name.

3 Toward more secure social authentication

Having identified security problems of photo-based social authentication in Sec-
tion 2, we now consider what can be done to improve matters.

3.1 Community-based friend selection

In Section 2.1, we observe that there exists a potential adversary a who can
impersonate the target user u with a high probability if the number of challenges
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k is small. This is because a shares many mutual friends with the user. In this
case, random selection of challenge images may be ineffective.

We propose instead “community-based challenge selection”; our intuition is
that a user’s friends often fall into several social groups (e.g. family, high school
friends, college classmates, and work colleagues) with few, if any, common mem-
bers. So if we select challenges from different groups, this may cut the attack
success probability significantly. We describe this process in detail. For a user u,
the k challenges are selected as follows:

1. Extract the subgraph H induced on the user u’s friends’ nodes fu from the
social graph G.

2. Find the set of community structures S = {η1, · · · ηl} in H where ηi repre-
sents the ith community structure in H and l = |S|.

3. For ith challenge generation for 1 ≤ i ≤ k, choose randomly c and remove it
from η(i MOD l) where ηl = η0. After removing c from η(i MOD l), if η(i MOD l) is
empty, remove it from S and decrease the indices of the following community
structures {ηm : (i MOD l) < m ≤ l} and the total number of community
structures l by 1.

For example, we extract the subgraph H induced on fu in Figure 5(a) and
then find two community structures of H by applying a community detection
algorithm. Although a specific heuristic method [4] is used here for community
detection, we expect that any community detection algorithm can be used for
this purpose. In this example, unlike the results of the random selection in Sec-
tion 2.1, v cannot impersonate u since we choose a challenge from the community
structure η1 in Figure 5(b) when k = 1.

(a) Subgraph H (b) Communities of H

Fig. 5. An example of how the community structures are detected. (a) The subgraph H
is induced on the user u’s friends’ nodes fu (fu, grey). (b) Two community structures
S = {η1, η2} are detected in H.

Formally, if we select k challenge images using community-based challenge
selection, the advantage of the impersonation attack A, AdvA(u, k, ρ), can be
computed as follows:
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Fig. 6. Comparison of the mean values of adversary advantage between community-
based challenge selection (red solid line) and the random challenge selection (black
dashed line).

AdvC(u, k, ρ) ≥ max
v∈U
u 6=v


min{k,|fu|}∏

i=1

|η(i MOD l)(v)|
|η(i MOD l)|

· ρ

 (4)

where ηi(v) is the intersection of ηi and {fv ∪ v} and C denotes the community-
based challenge selection method.

To validate the effectiveness of this selection method, we compute the mean
values of AdvC(u, k, ρ) on the preceding datasets in Section 2.1 and compare
those of AdvR(u, k, ρ) with random selection. The experimental results (for ρ =
0.99) are shown in Figure 6 which shows almost the same slope patterns for all the
datasets. Community-based selection (C, red solid line) performed significantly
better than random selection (R, black dashed line) from k = 2 to 5. But if we
use a single challenge image (i.e. k = 1), it does worse! Since the first challenge
is selected from the first community ηi only, the attack success probability of
anyone in that community ηi is increased. The gap between community-based
and random challenge selection is largest for k = 3 or 4, and the mean values
of the adversary’s advantage tend to converge slowly. In fact, community-based
challenge selection is comparable at k = 3 to random selection at k = 10.

We hypothesised that setting k to the “number of community structures”
would enable community-based selection to get a good tradeoff between security
and usability. In order to test this, we analysed the average number of community
structures for each user’s friends. The results are shown in Table 2 where friends
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Fig. 7. the adversary advantage between the community-based challenge selection (red
solid line) and the random challenge selection (black dashed line) by varying ρ from
0.99 to 0.84 when k = 3.

can be divided into about three or four communities on average except in the
Santa Barbara sub-network.

Table 2. The average number of communities for each user’s friends.

Columbia Harvard Stanford Yale Monterey Russia Santa

3.779 3.371 3.227 2.812 3.690 3.099 4.980

We verified this hypothesis by calculating the average number of community
structures for each user’s friends and found that indeed friends can be divided
into about three or four communities on average; the exception being Santa
Barbara sub-network which had 5 communities.

We now discuss how adversary advantage may change with the friend recog-
nition success rate ρ (see Figure 7). To demonstrate this we fix k = 3. As ρ
decreases from 0.99 to 0.84, the advantage values of both selection methods
also slightly decrease. However, the change of ρ does not significantly affect the
advantage values compared to the change of k or the challenge selection meth-
ods. These values were derived from user success rates for existing image-based
CAPTCHAs [11].

In all our experiments, the average number of communities is always a small
number (less than 5). Since we use campus or region networks, the number of
communities might be small compared to real friendship patterns in Facebook,
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which could include structures of high school friends, college classmates, work
colleges and so on. Recently, some social networking services such as Google+3

and Facebook have started to encourage users to divide their friends into explicit
community groups; community-based challenge selection should be even more
useful in such situations.

3.2 Exclusion of well-known or easily-recognizable friends

In order to mitigate the threat via automatic face recognition program discussed
in Section 2.2, some might suggest that we should educate users about these
attacks, but that has been found in many applications to not work very well;
“blame and train” is not the way to fix usability problems.

One approach may be to exclude users who make all their photos visible
to everyone or “friends of friends” – an option in Facebook. This will prevent
collection of the training data needed for automatic face recognition tools. There
may be technical options too. As face-recognition software tools improve, they
can be incorporated into the challenge generation system – by rejecting candidate
challenge images whose subjects they can identify.

However, we should be cautious in using a long blacklist of photos; such a
policy may shrink the space of challenge photos to the point that an adversary
can just guess the answer to a given challenge.

3.3 Weighted random sampling

In order to reduce the risk of the statistical guessing attacks discussed in Sec-
tion 2.3, and which leverage the probability distribution of people’s names, we
suggest using weighted random sampling instead of uniform random sampling.

Under uniform sampling, a name n is selected with the probability f(n) where
f is the probability density function for a set of names of people P. Alternatively,
in weighted random sampling, n is selected with the following probability:

w(n) =
f(n)−1∑
p∈P f(p)−1

(5)

Intuitively, in this case, friends with infrequent names will be selected with
higher probability compared to friends with popular names when a challenge
image is chosen. In a global view, the estimated probability density function of
the users’ names in challenge images might tend to be the uniform distribution
if the number of users with popular names is much greater than that with un-
popular name. So selecting popular names as challenge answers won’t help the
attacker any.

However, if an adversary can crawl all names of a victim’s friends successfully,
weighted random sampling is worse than uniform random sample unlike our

3 https://plus.google.com/

https://plus.google.com/
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expectation; an attacker can choose a name from the crawled names in proportion
to the above probability since the challenge image is chosen with the probability.
Thus in practice a more complicated weighted random sampling technique should
be considered based on real statistics of privacy settings. As part of the future
work, we plan to design more advanced weighted sampling methods.

4 Related work

Our work focuses on the security and usability of photo-based social authen-
tication methods. Social authentication was introduced under the belief that
adversaries halfway across the world might know a user’s password, but they
don’t know who the user’s friends are.

Yardi et al. [17] proposed a photo-based authentication framework and dis-
cussed some security issues including Denial of Service (DoS) attacks: an adver-
sary can spam the system with photos with wrong tagging information so legiti-
mate users cannot pass the authentication test. They also mentioned attacks by
a network outlier belonging to the same group as the target. We extended this
attack formally and experimentally measured the level of threat.

In social networks, photo privacy may become even more problematic as
social networking websites such as Facebook have become the primary method
of sharing photos between people [16]. Ahern et al. [2] examined users’ decisions
when posting photos to Flickr4 with mobile camera phones, finding that many
users were concerned with protecting their personal images and keeping them out
of public view. Most social networking websites already provide mechanisms for
fine-grained photo sharing control, but user surveys [1,12] have shown that over
80% of social network users do not change their privacy settings at all from the
default. This implies that photo-based social authentication is very vulnerable
in practice to face recognition tools.

5 Conclusion

Facebook recently launched an interesting authentication method [14], and is
currently waiting for feedback from the security community before pushing it
out to a wider range of authentication and login services including, potentially,
third-party merchants who utilise the Facebook Connect API.

This article provides that feedback. We found that the current social au-
thentication scheme is susceptible to impersonation both by insiders and by
face-recognition tools, and a naive approach to selecting friends isn’t effective
against either attack. It is hard to identify the social knowledge that a user holds
privately since social knowledge is inherently shared with others. A critical ob-
servation is that many likely attackers are ‘insiders’ in that the people who most
want to intrude on your privacy are likely to be in your circle of friends.

4 http://www.flickr.com/

http://www.flickr.com/
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We set out to formally quantify the difficulty of guessing the social informa-
tion of your friends (and your friends’ friends) through the analysis of real social
network structures and analysed how this can interact with technical attacks
such as automatic face recognition and statistical guessing.

We proposed several ways to mitigate the threats we found. Community-
based challenge selection can significantly reduce the insider threat; when a user’s
friends are divided into well-separated communities, we can select one or more
recognition subjects from each. We can also avoid subjects with common names
or who are known in multiple communities. But perhaps the most powerful way
to improve social authentication will be to exclude subjects who make their
photos visible to friends of friends. At present, that’s most users, as 80% of
users never change the privacy defaults – presumably there was some marketing
advantage to Facebook in having relaxed privacy defaults, in that making the
photos of friends’ friends visible helped draw in new users, increasing the network
effects; so a change to a default of sharing photos only with friends could give a
real security improvement.

In analysing the adversary’s advantage, we assumed some fixed constants
(e.g. the adversary’s average success rate to recognize a person in a challenge
image) rather than actual testing results through user studies on Facebook. So
our analysis is still rather limited. To verify this point in a practical environment,
we plan to conduct a user study to evaluate the effectiveness of the attack and
mitigation techniques.
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Appendix: Network centrality

Formally, we use the standard definition [15] of the degree, closeness and be-
tweenness centrality values of a node u.

Degree centrality simply measures the number of direct connections to
other nodes. This is calculated for a node u as the ratio of the number of edges
of node u to the total number of all other nodes in the network. Degree centrality
can be simply computed but does not take into account the topological positions
of nodes and the weights of edges.

Closeness centrality expands the definition of degree centrality by mea-
suring how close a node is to all the other nodes. That is, this metric can be
used to quantify in practical terms how quickly a node can communicate with all
other nodes in a network. This is calculated for a node u as the average shortest
path length to all other nodes in the network:

Clo(u) =
1

|V | − 1

∑
v 6=u∈V

dist(u, v) (6)
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Nd Nc Nb

Fig. 8. The characteristics of network centrality. In this network, Nd has higher degree
centrality than Nc since Nd has five neighbours while Nc has higher closeness centrality
than Nd. We note that Nd is located at the periphery of the network compared to Nc.
Interestingly, Nb has the highest betweenness centrality. We can see that Nb plays a
‘bridge’ role for the rightmost nodes.

where dist(u, v) is the length of the shortest path from node u to node v. In
an undirected graph, dist(u, v) is the number of hops in the shortest path from
node u to node v.

Betweenness centrality measures the paths that pass through a node and
can be considered as the proportional flow of data through each node. Nodes that
are often on the shortest-path between other nodes are deemed highly central
because they control the flow of information in the network. This centrality is
calculated for a node u as the proportional number of shortest paths between
all node pairs in the network that pass through u:

Bet(u) =
1

(|V | − 1) · (|V | − 2)

∑
s6=u,t6=u∈V

σs,t(u)

σs,t
(7)

where σs,t is the total number of shortest paths from source node s to destina-
tion node t, and σs,t(u) is the number of shortest paths from source node s to
destination node t which actually pass through node u. For normalization, it is
divided by the number of all pairs of s and t.

In Figure 8, for example, the nodes Nd, Nc, and Nb illustrate the character-
istics of these network centrality metrics. These nodes have the highest degree,
closeness and betweenness centrality, respectively.

Clustering coefficients measures the probability of neighbours of a node
to be neighbours to each other as well. This is calculated for a node u as the
fraction of permitted edges between the neighbours of u to the number of edges
that could possibly exist between these neighbours:

CC(u) =
2 ·∆

(κu)(κu − 1)
(8)

where ∆ is the number of the edges between the neighbours of node u and κu is
the number of the neighbours of node u (i.e. the degree of node u).
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