
Authentication for Resilience: the Case of SDN

Dongting Yu1, Andrew W. Moore1, Chris Hall2, and Ross Anderson1

1 Computer Laboratory, University of Cambridge
2 Highwayman Associates Ltd.

{Dongting.Yu, Andrew.Moore, Ross.Anderson}@cl.cam.ac.uk,
Chris.Hall@highwayman.com

Abstract. Software Defined Networks (SDN) aim to deconstruct cur-
rent routers into a small number of controllers, which are general purpose
machines, and a large number of switches that contain programmable
forwarding engines. The vision is that instead of the ad-hoc mecha-
nisms used in current routers we can build programmable networks us-
ing proper computer science abstractions. This technology is now at the
startup stage, and is being deployed in the data centres of large web
service firms.
We are interested in protecting a future SDN. The current designs follow
traditional security assumptions and do not consider many likely deploy-
ment scenarios. We discuss how SDN architecture can be structured to
offer more security, the auxiliary services that such a network will require
and the advantages that it can offer.

1 Introduction

SDN is gaining traction in traditional networking settings by offering a low-cost,
programmable alternative to traditional proprietary routers. A large number of
hardware switches are controlled by a smaller number of controllers, which are
general-purpose computers running special software. This allows network opera-
tors to break free from vendor lockin and also holds out the prospect of making
networks programmable, leading to the prospect that a number of services cur-
rently deployed in proprietary devices (such as firewalls, intrusion detection en-
gines and botnet mitigation) might become applications. The initial deployments
are mostly in datacentres where cost savings are paramount [4].

However SDNs will be deployed in less controlled environments too. The
question that then arises is what new security problems and protection oppor-
tunities may arise in these environments, such as a large airport where 100,000
staff working for 1,000 companies may be sharing the facility owner’s network.
These airlines, baggage firms, travel agents, catering companies and so on are
often competitors and sometimes the agents of states in conflict with each other.
A future SDN will have to support good separation between rivals’ virtual net-
works while also supporting dependable shared channels (e.g. of which aircraft
is at which gate).

How will the controllers and switches in a complex environment such as an
airport authenticate each other? The current standards simply state that SDN



systems may use TLS, but this is not always implemented and would be nowhere
near enough. We need to work with or in some cases replace existing network
security mechanisms such as MPLS, DNSSEC [1] and BGPSEC [5] while sup-
porting resilience against local failures and service-denial attacks. In an environ-
ment like an airport, for example, many switches and some controllers will be on
tenant premises and so may be open to occasional compromise. Existing mech-
anisms not only fail to support resilience; they are incompatible or ill-defined.
For example, within an AS, iBGP authentication is not compatible with route
reflectors, which cause source IP addresses to not work. (There’s a proprietary
extension by one router vendor to deal with this, but no standard.) Another ex-
ample is bandwidth: there are proprietary mechanisms such as Cisco’s IP SLA
to probe network bandwidth to inform routing decisions, but no standard.

It is therefore time to update the threat model. Just as the traditional pro-
tocol research community started off in the days of Needham and Schroder from
the assumption that all principals behave themselves, and then had to adapt to
cope with misbehaving clients or servers, so also intradomain routing has been
traditionally thought to need little authentication which will change as we move
to more dynamic networks. The airport with a controller and six switches in a
closet that a janitor can access is a very simple case; if and when SDN is de-
ployed on the battlefield, engineers will have to design authentication to cope
with devices being constantly added and lost, and occasionally falling into enemy
hands.

Scaling also forces a rethink. As we move from current SDN deployments of
perhaps 50 controllers and 500 switches in one data centre to global networks
with tens of thousands of controllers and hundreds of thousands of switches, we
can no longer assume that the threat only comes from outside. It is already an
issue that when a network operator deploys a router in a remote location, this
is usually done by an untrusted local contractor.

Our threat model must assume physical compromise of devices, along with
associated attacks involving (for example) software that’s old and vulnerable or
that has been tampered with. We must assume that some devices in the field
are unsafe; that a handful of switches are compromised at any given time, and
sometimes controllers at the bottom of the hierarchy (which are deployed near
switches). Some communication channels are also insecure: the wires are subject
to the same attacks.

In addition to the usual mechanisms for key generation, distribution, update
and revocation, a resilient authentication infrastructure will also require a trust-
worthy mechanism to monitor and detect rogue devices in the rest of the SDN.
This will alert operators when a device starts to act maliciously, so that appro-
priate action can be taken to revoke and exclude it. The scale and complexity
are much larger than previously considered, but a broad range of data can be
monitored: we can query a switch, its neighbours and their controllers for band-
width information; and we can also launch data plane probes to cross-check.
With a large corpus of live and historical network data, the operator can make
better decisions when under attack.



2 Proposed Architecture

Architecture matters. We can get real benefit from the move from peer routers
and switches, any of which can cause equal havoc if compromised, to a hierar-
chical system of switches and controllers. This means we can arrange things so
that the compromise of a few switches will do no more than local damage.

C0,0! C0,1!

C1,0! C1,1! C1,2! C1,3!

C2,0! C2,1! C2,2! C2,3! C2,4! C2,5! C2,6!

S0!Sk!Sk!Sk!Sk! S0!Sk! Sk! Sk!Sk!Sk! S0!Sk!Sk!Sk!Sk! S0!Sk!Sk!Sk!Sk! S0!Sk!Sk!Sk!Sk!

PKI!

Management!

Monitor!

V
ir

tu
al

 In
te

rf
ac

e!

V
ir

tu
al

 In
te

rf
ac

e!

Fig. 1. An SDN setup with hierarchical controllers and switches. Solid lines denote
connections, and dotted lines backup connections. Note that the PKI, management,
and monitoring services are conceptually drawn, and may not be physically separate
from the main hierarchy.

To illustrate this, an SDN currently deployed in a data centre, as illustrated
in Figure 1, might have a bottom layer of 1,000 switches, with each ten switches
driven by a level 2 controller, every ten level 2 controllers driven by a level 1
device, and the ten level 1 devices coordinated by a master controller. If we can
arrange things so that only controllers can cause widespread outages if compro-
mised, the number of critical components is reduced by a factor of ten. If we
can further arrange things so that the compromise of a level 2 controller does
little damage outside of its immediate neighbourhood, then we have reduced the
number of points of serious failure by another order of magnitude.

Although Figure 1 illustrates an SDN hierarchy informed by datacenter prac-
tices, without much imagination it is plausible to map the components to those
of an ISP (Network Operation Centre, Regional Offices, PoPs, etc.) and to the
components of our airport example (where there are some central facilities, some



in separate buildings and some on different floors of those buildings, connected
in a hierarchy).

In terms of division of work, the two or more layers of ‘middle management’
controllers between its root controller and the switch fabric is where the ‘work’
will be done, of creating virtual networks and supporting virtual services. An
operator will issue commands top down from level 0 and each level of controllers
below will be responsible for translating the directives into rules suitable for
their layer of abstraction. If there is virtualisation, it will also happen in the
middle layers, at layers 1 and 2. Finally, the level 2 controllers issue the necessary
primitive rules to the switches they control.

We assume the level 0 and level 1 controllers to be trusted, although with po-
tential accidental configuration errors; and that there may be occasional compro-
mises at level 2. However, there may be network application code (the software-
defined applications) running on level 1 and level 2 controllers, which might
misbehave, intentionally or not. As we noted, some proportion of the switches
may be compromised at any one time; and, as the data packets being dealt with
can come from anywhere, nothing is assumed of them.

We imagine that in time there will be many SDN applications that operators
can choose to deploy. This will bring the same problems seen with application
markets for mobile phones. Will we take the ‘walled garden’ approach of the
iPhone, with some central authority that vets applications and developers, or
the somewhat more freewheeling approach of Android, where all can play but
applications are removed from the play store once they are considered harm-
ful? Many applications will contain too much code to verify, and even if their
developers are honest and competent, they may still face commercial incentives
to collect as much information as possible, or to give higher priority to their
own traffic at the expense of their competitors’. Network engineers deciding how
much access to grant an app may be more sophisticated than the typical Android
user trying to decide whether a social networking app that asks for the ability
to send text messages is exploitative — but the difficulties encountered with the
manifests for phone apps bear careful thought. How should we design the set of
permissions that will define and constrain the behaviour of an SDN app? How
should the access control policies look like? And what will be the practicality if
a hundred different virtual networks are run on this fabric for different tenants
– will it be at all practical to run different apps on behalf of different tenants on
a number of controllers, or will we have to impose significant limitations (such
as no shared state for apps on tenant networks, or across controllers)?

We believe this area that needs substantial and urgent research.

3 Auxiliary Services

Apart from the hierarchy of controllers and switches, we will need auxiliary
services in the network. Switches are connected to a logical monitoring service
which in turn feeds relevant data back into the management service, completing



the loop by connecting to the root level controllers. If TLS is used, there may
also be a PKI to support this; an alternative could be a Kerberos-type system.

Monitoring is a logical service in the network. The purpose of monitoring is
to collect both control plane status and data plane statistics from the bottom
level switches. Monitoring makes available its information to relevant users and
operators so they can watch and intervene if needed. This service can perform
both passive and active monitoring. Passively, it can measure statistics such as
the number of packets matching a certain signature, or per-interface bandwidth
usage. Actively, it can send a packet to a switch and observe the decision made
by the switch on that packet. Because the monitoring service can observe all
interfaces of a switch, it can see the result of a forwarding decision. Monitor-
ing also exposes a new level of control to the network. The potential of using
this for auditing and information flow analysis is immense. Among others, SDN
makes available an interesting potential for tackling botnet outbreaks as well as
adapting and reacting to other forms of network attacks [6, 8].

The monitoring service also feeds data back into the management service.
Since this knows all the commands issued from the top, it can check if they are
followed, completing the loop. It can can also actively generate fake traffic to
isolate devices that are dishonest. Most importantly, it links the human operator
with the rest of the network. While the root controllers are the technical author-
ities in the control plane, the management service translates human operator
intentions into control directives.

Both the management service and monitoring service expose a virtual in-
terface for a users of the network, or to those to whom the operator delegates
access, for example a network operator for an airline only needs partial access to
the airport network. Each such user gets a separate virtual slice of the network
along with relevant virtual devices, resources, and monitoring data. On the man-
agement side, the virtual interface deals with resource allocation and visibility;
and the monitoring side only shows the part of the collected data that the user
is authorised to view. There has been some recent work [2, 3, 7] on abstraction
and virtualisation in network programming; future research might well focus on
incorporating such concepts into the architecture laid out here.

4 Conclusions

Software defined networks are getting deployed because they are cheap, both for
hardware capex and for operation. Yet the work on SDN security has only just
started. As these technologies escape from the datacenter and get deployed in
large heterogeneous networks, a lot of protection issues arise. An important first
step is architecture. We propose a hierarchical model of SDN which reduces the
number of points of serious failure by one or two orders of magnitude. The sig-
nificance for protocol research is that while people have in the past talked about
hierarchical deployment of both public-key and shared-key protocol mechanisms,
this has so far been abstract (and was largely limited to the debate in the 1990s
about which cryptographic technology scaled better). For the first time, SDN



provides an environment with a real need for hierarchical security. This in turn
raises the question of whether we can use delegation with public key mechanisms,
or hierarchical Kerberos mechanisms, to support tiered security in networks.

5 Acknowledgments

We would like to thank Peter Neumann, Phillip Porras, Vinod Yegneswaran, Anil
Madhavapeddy, and Charalampos Rotsos for helpful discussions in the early
stage of this work. We would also like to thank the audience at the Security
Protocols Workshop ’13 for additional comments during the presentation.

This work was sponsored by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL), in part under con-
tract FA8750-11-C-0249, and in part under contract FA8750-13-2-0023. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views, opinions,
and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies, either expressed
or implied, of the Defense Advanced Research Projects Agency, the Air Force
Research Laboratory or the Department of Defense.

References

1. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security
Introduction and Requirements. RFC 4033 (Proposed Standard) (Mar 2005),
http://www.ietf.org/rfc/rfc4033.txt

2. Foster, N., Guha, A., Reitblatt, M., Story, A., Freedman, M.J., Katta, N.P., Mon-
santo, C., Reich, J., Rexford, J., Schlesinger, C., Story, A., Walker, D.: Languages for
software-defined networks. Communications Magazine, IEEE 51(2), 128–134 (2013)

3. Gutz, S., Story, A., Schlesinger, C., Foster, N.: Splendid isolation: a slice abstraction
for software-defined networks. In: Proceedings of the first workshop on Hot topics
in software defined networks. pp. 79–84. HotSDN ’12, ACM (2012)

4. Hoelzle, U.: OpenFlow @ Google (2012), keynote address at the Open Network
Summit

5. Lepinski (Ed.), M.: BGPSEC Protocol Specification (Feb 2013),
http://www.ietf.org/id/draft-ietf-sidr-bgpsec-protocol-07.txt

6. Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., Gu, G.: A security
enforcement kernel for OpenFlow networks. In: Proceedings of the first workshop
on Hot topics in software defined networks. pp. 121–126. HotSDN ’12, ACM (2012)

7. Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstractions for
network update. In: Proceedings of the ACM SIGCOMM 2012 conference on Ap-
plications, technologies, architectures, and protocols for computer communication.
pp. 323–334. SIGCOMM ’12, ACM (2012)

8. Shin, S., Porras, P., Yegneswaran, V., Fong, M., Gu, G., Tyson, M.: Fresco: Modular
composable security services for software-defined networks. Internet Society NDSS
(Feb. 2013). To appear (2013)


