
Rendezvous: A Search Engine for Binary Code
Wei Ming Khoo

University of Cambridge, UK
Wei-Ming.Khoo@cl.cam.ac.uk

Alan Mycroft
University of Cambridge, UK
Alan.Mycroft@cl.cam.ac.uk

Ross Anderson
University of Cambridge, UK
Ross.Anderson@cl.cam.ac.uk

Abstract—The problem of matching between binaries is impor-
tant for software copyright enforcement as well as for identifying
disclosed vulnerabilities in software. We present a search engine
prototype called Rendezvous which enables indexing and search-
ing for code in binary form. Rendezvous identifies binary code us-
ing a statistical model comprising instruction mnemonics, control
flow sub-graphs and data constants which are simple to extract
from a disassembly, yet normalising with respect to different
compilers and optimisations. Experiments show that Rendezvous
achieves F2 measures of 86.7% and 83.0% on the GNU C library
compiled with different compiler optimisations and the GNU
coreutils suite compiled with gcc and clang respectively. These
two code bases together comprise more than one million lines of
code. Rendezvous will bring significant changes to the way patch
management and copyright enforcement is currently performed.

I. INTRODUCTION

Code reuse is a common practice in software engineering. A
search for the phrase “based on” on the popular social coding
site Github [1] revealed 269,789 hits as of February 2013.
Mockus [2] found that 50% of all files created by open source
projects were reused at least once in another open source
project; the most reused files amongst these projects were from
the GNU C library and the Linux kernel. Sometimes code is
reused without due consideration to its licensing terms. As
of 2012, Welte reported 200 cases of GNU public license
violations in software products that were either successfully
enforced or resolved by gpl-violations.org [3]. Code reuse
also comes with the risk that a vulnerability disclosed in the
imported code becomes an undisclosed vulnerability in the
main product.

Currently, an auditor seeking to identify reused components
in a software product, such as for GPL-compliance, has two
main approaches available: source code review and software
reverse engineering. However, source code availability is not
always guaranteed, especially if the code was developed by
a third party, and understanding machine code is at present
rather challenging.

Our proposed approach is to bootstrap the process by
providing a search engine for binary code. By leveraging on
open source initiatives such as GNU, the Apache foundation,
Linux and BSD distributions, and public code repositories such
as Github and Google code [4], we can reframe identifying
code reuse as an indexing and search problem, and a good
solution to this problem will entail a provenance service for
binary code.

As of February 2013, the GNU C library has an estimated
1.18 million lines of code, the GNU core utilities tool suite

has an estimated 57,000 lines of C, and the Linux kernel has
15.3 million lines according to the open source project tracker
Ohloh [5]. With this many lines of code we have today, it
is clear that we need an efficient method for indexing and
search. Ideally we would like both speed and accuracy, so a
reasonable approach is to initially approximate using several
existing methods that are fast, then optimise and evaluate for
accuracy. Another viable approach is to have accuracy as a
goal, then optimise for speed. We have adopted the former
approach here.

Thus, our primary goal is efficiency: We want to have a
fast information retrieval scheme for executable code. Like a
text search engine, having speedy response times are key for
usability.

Our secondary goals are precision (low false positives)
and recall (low false negatives). Since we cannot control the
compiler or the options used, the model has to be robust with
respect to compilation and their various optimisations.

This paper makes the following contributions.

1) We address the problem of identifying large code bases
generated by different compilers and their various opti-
misations which, to the best of our knowledge, has not
been done before.

2) We have implemented a prototype search engine for
binary code called Rendezvous, which makes use of
a combination of instruction mnemonics, control flow
sub-graphs and data constants (Section III). Experiments
show that Rendezvous is able to achieve a 86.7% F2

measure (defined in Section VII) for the GNU C library
2.16 compiled with gcc -O1 and -O2 optimisation
levels, and an 83.0% F2 measure for the coreutils 6.10
suite of programs, compiled with gcc -O2 and clang
-O2 (Section X).

3) As an early prototype, the efficiency of Rendezvous is
about 0.407 seconds per function in the worst case.
(Section X-H).

II. DESIGN SPACE

Since code presented to our retrieval system may be mod-
ified from the original, we would like to be able to identify
the invariant parts of it, such as certain unique functions. This
can be accomplished by approximating executable code by a
statistical model. A statistical model comprises breaking up
code into short chunks, or tokens, and assigning a probability
to their occurrence in the reference corpus.

978-1-4673-2936-1/13 c© 2013 IEEE MSR 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

329

TABLE I
A SUMMARY OF THE DIFFERENT ABSTRACTIONS CONSIDERED.

Abstraction
1 Instruction mnemonic n-grams [9]
2 Instruction mnemonic n-perms [10]
3 Control flow sub-graph [11]
4 Extended control flow sub-graph
5 Data constants

What should the tokens consist of? For natural language,
the choice of token is a word or phrase; machine code is
more complex in comparison. The decision space of program
abstractions is not unexplored, and the typical choice to
make is between static and dynamic methods. We chose in
favour of static analysis primarily for its relative simplicity.
Dynamic analysis has the disadvantage that it requires a virtual
execution environment, which is costly in terms of time and
resources [6]. Static disassembly is by no means a solved
problem in the general sense [7], but there are well-known
techniques for it, such as linear sweep and recursive traver-
sal [8], and they work well for a wide range of executables.

Three candidate abstractions, or representations, were
considered—instruction mnemonics, control flow sub-graphs,
and data constants. Instruction mnemonics, refers to the ma-
chine language instructions that specify the operation to be
performed, for example mov, push and pop instructions
on the 32-bit x86 architecture. A control flow graph (CFG)
is a directed graph that represents the flow of control in a
program. The nodes of the graph represent the basic blocks;
the edges represent the flow of control between nodes. A sub-
graph is a connected graph comprising a subset of nodes
in the CFG. Data constants are fixed values used by the
instructions, such as in computation or as a memory offset. The
two most common types of constants are integers and strings.
These abstractions were chosen as they are derived directly
from a disassembly. Instruction mnemonics was chosen as the
simplest abstraction for code semantics; the control flow graph
was chosen as the simplest abstraction for program structure;
data constants were chosen as the simplest abstraction for data
values. A summary of the types of abstractions we considered
is given in Table I.

Disassemble Tokenise
Term-specific

processing
Executable Functions Tokens Query terms

Fig. 1. Overview of the code abstraction process.

III. CODE ABSTRACTION

The code abstraction procedure involves three steps (Fig-
ure 1). The executable is first disassembled into its constituent
functions. The disassembled functions are then tokenised, that
is, broken down into instruction mnemonics, control-flow sub-
graphs and constants. Finally, tokens are further processed to
form query terms, which are then used to construct a search
query.

01 // a: array, n: size of a
02 void bubblesort(int *a, int n) {
03 int i, swapped = 1;
04 while(swapped) {
05 swapped = 0;
06 for(i = 0; i < n-1; i++) {
07 if(a[i] < a[i+1]) {
08 int tmp = a[i];
09 a[i] = a[i+1];
00 a[i+1] = tmp;
11 swapped = 1;
12 }
13 }
14 }
15 }

Fig. 2. Source code for our running example: bubblesort.

We will now describe in detail the abstraction process for the
three different abstractions using a running example. Figure 2
shows the sorting algorithm bubblesort written in C.

IV. INSTRUCTION MNEMONICS

We make use of the Dyninst binary instrumentation tool [12]
to extract the instruction mnemonics. An instruction mnemonic
differs from an opcode in that the former is a textual de-
scription, whilst the latter is the hexadecimal encoding of the
instruction and is typically the first byte. Multiple opcodes
may map to the same mnemonic, for instance, opcodes 0x8b
and 0x89 have the same mnemonic mov. Dyninst recognises
470 mnemonics, including 64 floating point instructions and
42 SSE SIMD instructions. We used 8 bits to encode the
mnemonic, truncating any higher-order bits. The executable
is disassembled and the bytes making up each instruction are
coalesced together as one block. We subsequently make use
of the n-gram model which assumes a Markov property, that
is, token occurrences are influenced only by the n− 1 tokens
before it. To form the first n-gram, we concatenate mnemonics
0 to n − 1; to form the second n-gram, we concatenate 1 to
n and so on.

One disadvantage of using mnemonic n-grams is that some
instruction sequences may be reordered without affecting the
program semantics. For example, the following two instruction
sequences are semantically identical and yet they will give
different 3-grams.

mov ebp, esp mov ebp, esp
sub esp, 0x10 movl -0x4(ebp), 0x1
movl -0x4(ebp), 0x1 sub esp, 0x10

An alternative to the n-gram model is to use n-perms [10].
The n-perm model does not take order into consideration,
and is set-based rather than sequence-based. So in the above
example, there will be only one n-perm that represents both se-
quences: mov, movl, sub. The trade-off in using n-perms,
however, is that there are not as many n-perms as n-grams for
the same n, and this might affect the accuracy. The instruction
mnemonics and 1-, 2- and 3-grams and corresponding n-perms
for bubblesort are shown in Figure 3.

330

80483c4: push ebp
80483c5: mov ebp, esp
80483c7: sub esp, 0x10
80483ca: movl -0x4(ebp), 0x1
80483d1: jmp 804844b
80483d3: movl -0x4(ebp), 0x0
80483da: movl -0x8(ebp), 0x1
80483e1: jmp 8048443
80483e3: mov eax, -0x8(ebp)
. . .

1-grams push, mov, sub, movl, jmp,...

2-grams push mov, mov sub, sub movl,
movl jmp, jmp movl,...

3-grams
push mov sub, mov sub movl,
sub movl jmp, movl jmp movl,
jmp movl movl,...

1-perms push, mov, sub, movl, jmp,...

2-perms push mov, mov sub, sub movl,
movl jmp,...

3-perms push mov sub, mov sub movl,
sub movl jmp, movl jmp movl,...

Fig. 3. Instruction mnemonics and 1-, 2-, and 3-grams and corresponding
n-perms for bubblesort (bottom) based on the first six instructions (top).

V. CONTROL FLOW SUB-GRAPHS

The second type of abstraction considered was control
flow. To construct the control flow graph (CFG), the basic
blocks (BBs) and their flow targets are extracted from the
disassembly. A BB is a continuous instruction sequence for
which there are no intermediate jumps into or out of the
sequence. Call instructions are one of the exceptions as they
are not treated as an external jump and are assumed to return.
Conditional instructions, such as cmov and loop are another
exception as they are treated as not producing additional
control flow edges. The BBs form the nodes in the graph and
the flow targets are the directed edges between nodes.

We do not index the whole CFG. Instead we extract sub-
graphs of size k, or k-graphs. Our approach is similar to the
one adopted by Krügel et al. [11]. We first generate from the
CFG a list of connected k-graphs. This is done by choosing
each block as a starting node and traversing all possible valid
edges beginning from that node until k nodes are encountered.

Next, each sub-graph is converted to a matrix of size k
by k. The matrix is then reduced to its canonical form via a
pre-computed matrix-to-matrix mapping. This mapping may
be computed off-line via standard tools such as Nauty [13],
or by brute force since k is small (3 to 7).

Each unique sub-graph corresponds to a k2-bit number. For
k = 4, we obtain a 16-bit value for each sub-graph. Figure 4
shows the CFG of bubblesort, two k-graphs, 1-2-3-5 and
5-6-7-8, and their canonical matrix forms 0x1214 and
0x1286 respectively. The canonical form in this example
is the node labelling that results in the smallest possible
numerical value.

One shortcoming of using k-graphs is that for small values
of k, the uniqueness of the graph is low. For instance, if
considering 3-graphs in the CFG of bubblesort, graphs 1-2-4,

1 2 3
1 0 1 0
2 0 0 1
3 0 0 0

1 2 3 V ∗

1 0 1 0 0
2 0 0 1 1
3 0 0 0 1
V ∗ 0 1 0 0

3 5 6
3 0 1 0
5 0 0 1
6 0 0 0

3 5 6 V ∗

3 0 1 0 0
5 0 0 1 0
6 0 0 0 1
V ∗ 1 1 0 0

Fig. 5. Differentiating bubblesort’s 3-graphs 1-2-3 and 3-5-6 with
extended k-graphs. The left column shows the adjacency matrices for the
k-graphs; the right column shows the corresponding extended k-graphs. The
V ∗ node represents all nodes external to the sub-graph.

1-2-3, 3-5-6 all produce an identical k-graph. To deal with
this issue, we propose an extension to the k-graph which we
call extended k-graphs. In addition to the edges solely between
internal nodes, an extended k-graph includes edges that have
one end point at an internal node, but have another at an
external virtual node, written as V ∗. This adds a row and a
column to our adjacency matrix. The additional row contains
edges that arrive from an external node; the extra column
indicates edges with an external node as its destination. This
allows us to now differentiate between the 3-graphs that we
mentioned before.

VI. DATA CONSTANTS

The motivation for using constants is the empirical ob-
servation that constants do not change with the compiler or
compiler optimisation. We considered two types of constants–
32-bit integers, and strings. We included integers used in
computation, as well as integers used as pointer offsets; the
strings we considered were ANSI single-byte null-terminated
strings.

Our extraction algorithm is as follows: All constants are
first extracted from an instruction. These include operands and
pointer offsets. We explicitly exclude offsets associated with
the stack and frame pointers, or esp and ebp as these depend
on the stack layout and hence vary with the compiler.

The constants are then separated by type. Since we are
considering a 32-bit instruction set the data could either be
a 32-bit integer or a pointer. An address look up is made to
ascertain whether the value v corresponds to a valid address
in the data or code segment, and if so the data dv is retrieved.
Since dv can also be an address, this process can continue
recursively by another address look up on dv . However, we do
not do a second look up but stop at the first level of indirection.
If dv is a valid ANSI string, that is with valid ASCII characters
and terminated by a null byte, we assign it as type string,
otherwise, we do not use dv . In all other cases, v is treated as
an integer. Figure 6 shows the constants of the usage function
of the vdir program compiled with gcc default options.

331

1

2

3 4

5

6

7

8

1

2

3

5

2 5 3 1
2 0 0 1 0
5 1 0 0 0
3 0 1 0 0
1 1 0 0 0

5

6

7

8

6 8 7 5
6 0 1 1 0
8 0 0 0 1
7 0 1 0 0
5 1 0 0 0

Fig. 4. CFG of bubblesort, two k-graphs, k = 4, and their canonical matrix ordering. The first sub-graph, 1-2-3-5, corresponds to 0x1214, and the second,
5-6-7-8, to 0x1286.

804eab5: movl 0x8(esp),0x5
804eabd: movl 0x4(esp),0x805b8bc
804eac5: movl (esp),0
804eacc: call 804944c <dcgettext@plt>
. . .
805b8bc: "Try ‘%s --help’..."
. . .

Constants 0x5, 0x0, "Try ‘%s --help’..."

Fig. 6. Data constants for a code snippet from the usage function of vdir.

VII. WHAT MAKES A GOOD MODEL?

How do we know when we have a good statistical model?
Given a corpus of executables and a query, a model is one
with high precision and recall. A true positive (tp) refers to
a correctly retrieved document relevant to the query; a true
negative (tn) is a correctly omitted irrelevant document; a false
positive (fp) is an incorrectly retrieved irrelevant document;
and a false negative (fn) is a missing but relevant document.
The precision and recall are defined as

precision =
tp

tp + fp

recall =
tp

tp + fn

In other words, a good model will retrieve many relevant
documents, omitting many other irrelevant ones. A measure
that combines both precision and recall is the F measure,
which comprises their harmonic mean.

F = 2 · precision · recall
precision + recall

This is also known as the F1 measure and both precision and
recall are weighted equally. For our purposes, we are interested
in the F2 measure, defined as the following.

WWW Indexer

Term Freq.

Inverted
Index

Query

Query
Engine

Search
results

Unknown
.exe

Indexing Querying

Fig. 7. Setup for indexing and querying.

F2 =
5 · (precision · recall)
(4 · precision + recall)

The reason that we use the F2 measure and not the F1

measure is we want to retrieve as many relevant documents
as possible and are less concerned about false positives. Thus
recall is of higher priority than precision, and F2 weights recall
twice as much as precision.

VIII. INDEXING AND QUERYING

What we have discussed so far covers the extraction of terms
from an executable. In this section, we describe how the tokens
are incorporated into a standard text-based index, and how
queries are made against this index that lead to meaningful
search results.

Figure 7 shows a summary of the indexing and querying
process. Since there are 52 different symbols, we can encode

332

a 32-bit integer as a 6-letter word for an alphabetic indexer.
The indexing process is a straight-forward one—the corpus
of binaries retrieved from the web is first processed to give
a global set of terms Sglobal. The terms are processed by an
indexer which produces two data mappings. The first is the
term frequency mapping which maps a term to its frequency
in the index; the second is the inverted index which maps a
term to the list of documents containing that term.

We considered two query models—the Boolean model
(BM), and the vector space model (VSM). BM is a set-based
model and the document weights are assigned 1 if the term
occurs in the document, or 0 otherwise. Boolean queries are
formed by combining terms with Boolean operators such as
AND, OR and NOT. VSM is distance-based and two documents
are similar if the inner product of their weight vectors is small.
The weight vectors are computed via the normalised term
frequencies of all terms in the documents. Our model is based
on the combination of the two: documents are first filtered via
the BM, then ranked and scored by the VSM.

Given an executable of interest, we first decompose it into
a set of terms in binary form. The binary terms are converted
into strings of alphabetic symbols to give a set of terms S.
For example, the mnemonic sequence push, mov, push,
push, sub corresponds to the 4-grams 0x73f97373,
0xf97373b3, which encodes as the query terms XvxFGF,
baNUAL.

A boolean expression Q is then constructed from the set
of terms S. Unlike a typical user-entered text query, our
problem is that the length of Q may be of the order of
thousands of terms long, or, conversely, too short as to be too
common. We employ three strategies which deal with these
two issues, namely term de-duplication, padding and unique
term selection.

Term de-duplication is an obvious strategy that reduces the
term count of the query. For a desired query length lQ, we
select the first term t0 and remove other occurrences of t0 up
to length 2 · lQ. This process is repeated until we reach lQ
terms.

One problem which may arise is if Q is too short it may
result in too many matches. To deal with this issue we add
terms of high frequency that are not in S, negated with the
logical NOT. For example, if lQ is 3, and our query has two
terms, A and B, we add the third term NOT C, where C is
the term with the highest term frequency in Sglobal. This
eliminates matches that may contain Q plus other common
terms.

At the end of these steps, we obtain a bag of terms for
each term category. We first construct the most restrictive
query by concatenating the terms with AND, e.g. XvxFGF
AND baNUAL, and the query is sent to the query engine which
in turn queries the index and returns the results in the form of
a ranked list. If this query returns no results, we proceed to
construct a second query with unique term selection.

The aim of unique term selection is to choose terms with
low document frequency, or rare terms. This is done if the
size of S is larger than the maximum query length, lQ. We

control the document frequency threshold, dfthreshold, which
determines which terms in S to include in the query. Only
terms whose frequency is below dfthreshold will be included.
If dfthreshold is set too low, not enough terms will make it
through, and conversely if dfthreshold is set too high, too
many will be included in Q. The resulting terms are then
concatenated with OR to form Q, e.g. XvxFGF OR baNUAL.

The rationale for using AND first is so that the query engine
will find an exact match if one exists and return that one result
purely based on BM. The second OR query is to deal with
situations where an exact match does not exist, and we rely
on VSM to locate the closest match.

Search results are ranked according to the default scoring
formula used by the open source CLucene text search engine.
Given a query Q and a document D, the similarity score
function is defined as the following.

Score(Q,D) = coord(Q,D) · C · V (Q) · V (D)

|V (Q)|
where coord is a score factor based on the fraction of all
query terms that a document contains, C is a normalisation
factor, V (Q)·V (D) is the dot product of the weighted vectors,
and |V (Q)| is the Euclidean norm. The |V (D)| term is not
used on its own as removing document length information
affects the performance. Instead, a different document length
normalisation factor is used. In our equation this factor is
incorporated into C. Other boost terms have been omitted for
brevity [14].

IX. IMPLEMENTATION

The tasks of disassembly, extracting n-grams, n-perms, con-
trol flow k-graphs, extended k-graphs and data constants were
performed using the open source dynamic instrumentation
library Dyninst version 8.0. The Nauty graph library [13] was
used to convert k-graphs to their canonical form. The tasks of
indexing and querying were performed using the open source
text search engine CLucene 2.3.3.4. The term frequency map
which was used in unique term selection was implemented
as a Bloom filter [15] since it is a test of membership. In
other words, the Bloom filter consisted of all terms below
dfthreshold. A total of 10,500 lines of C++ were written for
the implementation of disassembly and code abstraction, and
1,000 lines of C++ for indexing and querying.

X. EVALUATION

This section describes the experiments we conducted to
answer the following questions.

• What is the optimal value of dfthreshold?
• What is the accuracy of the various code abstractions?
• What is the effect of compiler optimisation on accuracy?
• What is the effect of the compiler on accuracy?
• What is the efficiency of binary code indexing and

querying?
The first data set that we used for our evaluation were 2706

functions from the GNU C library version 2.16 comprising

333

1.18 million lines of code. The functions were obtained by
compiling the suite under GCC -O1 and -O2 options, or GCC1
and GCC2 respectively. We excluded all initialisation and fi-
nalisation functions generated by the compiler, and had names
such as _init, _fini and __i686.get_pc_thunk.bx.
All experiments on this set, which we refer to as the glibc
set, were conducted through two experiments. In the first
experiment we indexed GCC1 and queried this index using
GCC1 and GCC2. We then repeated this procedure with GCC2
as index and summed up the total over both experiments to
obtain the precision, recall and F2 measures.

The second data set was the coreutils 6.10 suite of tools, or
the coreutils set, which we compiled under gcc and clang
default configurations. This data set contained 98 binaries,
1205 functions, comprising 78,000 lines of code. To obtain
the precision, recall and F2 values we similarly indexed one
set of functions and queried with the other as with the glibc
set. All experiments were carried out on a Intel Core 2 Duo
machine running Ubuntu 12.04 with 1 Gb of RAM.

Our results at a glance is summarised in Table II.

TABLE II
RESULTS AT A GLANCE.

glibc coreutils
Model F2 F2

Best n-gram (4-gram) 0.764 0.665
Best k-graph (5-graph) 0.706 0.627
Constants 0.681 0.772
Best mixed n-gram (1+4-gram) 0.777 0.671
Best mixed k-graph (5+7-graph) 0.768 0.657
Best composite (4-gram/5-graph/constants) 0.867 0.830

A. Optimal df threshold
Recall that our query model is based on BM first, then

ranked by VSM. However, we can further influence the input
terms to the BM by varying df threshold which determines
which terms to include in the query.

To investigate the optimal value of df threshold, we ran an
experiment using glibc and 4-grams as our term type. We then
varied df threshold and measured the performance of the search
results. We restricted the ranked list to at most 5 results, that
is, if the correct match occurred lower than the top 5 results,
it was treated as a false negative. Table III shows the results
of this experiment. For example, df threshold ≤ 1 means that
only terms having a document frequency less than or equal to
1 were included, and df threshold ≤ ∞ means that all terms
were included.

Although there is an initial increase from df threshold ≤ 1
to df threshold ≤ 2, this was not sustained by increasing the
value of df threshold further, and F2 changes were insignificant.
Since there was no gain in varying df threshold, we decided to
fix df threshold at ∞ throughout our experiments.

B. Comparison of N -Grams Versus N -Perms

Firstly, we compared the accuracy of n-grams with n-perms
of instruction mnemonics, with n taking values from 1 to 4.

TABLE III
PERFORMANCE USING VARIOUS VALUES OF df threshold ON THE glibc SET

USING 4-GRAMS.

≤ df threshold Precision Recall F2

1 0.202 0.395 0.331
2 0.177 0.587 0.401
3 0.165 0.649 0.410
4 0.161 0.677 0.413
5 0.157 0.673 0.406
6 0.160 0.702 0.418
7 0.159 0.709 0.419
8 0.157 0.708 0.415
9 0.157 0.716 0.418

10 0.155 0.712 0.414
11 0.151 0.696 0.405
12 0.152 0.702 0.408
13 0.153 0.705 0.410
∞ 0.151 0.709 0.408

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

F-
2

 m
e
a
su

re

n (Size of n-gram)

ngram
nperm

Fig. 8. The F2 measures for n-grams and n-perms (glibc data set).

We did not consider values of n larger than 4. We used the
glibc test set to ascertain the accuracy of these two methods in
the presence of compiler optimisations. The results are shown
in Figure 8. The overall best F2 measure was 0.764, and was
obtained using the 4-gram model. Both 1-gram and 1-perm
models were identical as to be expected, but the n-gram model
out-performed n-perms for n > 1. One explanation for this
difference was that the n-perm model was too normalising so
that irrelevant results affected recall rates, and this is evident
looking at the number of unique terms generated by the two
models (Table IV). The 2-gram model generated 1483 unique
terms whilst the 4-perm model generated only 889.

We proceeded to analyse 2-grams and 4-perms in more
detail. We varied the precision and recall rates by adjusting

TABLE IV
THE NUMBER OF UNIQUE TERMS FOR n-GRAMS AND n-PERMS (glibc

DATA SET).

n n-gram n-perm
1 121 121
2 1483 306
3 6337 542
4 16584 889

334

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n
 /

 R
e
ca

ll
/

F-
2

 m
e
a
su

re

Highest r-ranked results

2-gram precision
2-gram recall

2-gram F-2

(a) 2-gram

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

P
re

ci
si

o
n
 /

 R
e
ca

ll
/

F-
2

 m
e
a
su

re

Highest r-ranked results

4-perm precision
4-perm recall

4-perm F-2

(b) 4-perm

Fig. 9. The precision, recall rates and the F2 measures for 2-grams and
2-perms of instruction mnemonics (glibc data set).

the threshold of the r highest ranked results obtained. For
example, if this threshold was 1, we only considered the
highest ranked result returned by the query engine and ignored
the rest. The value of r was varied from 1 to 10. Figures 9a and
9b show that the maximum F2 measure obtained for 2-grams
was 0.684 at r = 1, and the precision and recall rates were
0.495 and 0.756 respectively. The corresponding maximum F2

value was 0.585 for 4-perms also at r = 1.
We observe that there is a tension between precision and

recall. As r increases the number of successful matches
increases causing the recall to improve, but this also causes
the false positives to increase, reducing precision.

The second larger coreutils data set was similarly tested with
the n-gram and n-perm models, with n = 1, 2, 3, 4. Similar
observations were made—n-grams out-performed n-perms for
all n.

C. Mixed N -Gram Models

We next looked at mixed n-gram models to see if com-
bining n-grams produced better performance. If we consider
combining 1-gram to 4-gram models, there are a total of 6
possible paired permutations. These combined models were
tested on the glibc and coreutils set and the results are shown
in Table V. The two highest scores were obtained using 1- and
4-grams (1+4-gram) and 2- and 4-grams (2+4-gram) for the
two data sets. This was surprising since 1-grams generated a
small fraction of terms, e.g. 121, compared to 4-grams, e.g.

TABLE V
PERFORMANCE OF MIXED n-GRAM MODELS BY F2 MEASURE.

glibc coreutils
1+2-gram 0.682 0.619
1+3-gram 0.741 0.649
1+4-gram 0.777 0.671
2+3-gram 0.737 0.655
2+4-gram 0.777 0.675
3+4-gram 0.765 0.671

TABLE VI
RESULTS FOR k-GRAPHS AND EXTENDED k-GRAPHS.

glibc
k-graph extended k-graph

Precision Recall F2 Precision Recall F2

3-graph 0.070 0.133 0.113 0.022 0.062 0.046
4-graph 0.436 0.652 0.593 0.231 0.398 0.348
5-graph 0.730 0.700 0.706 0.621 0.600 0.604
6-graph 0.732 0.620 0.639 0.682 0.622 0.633
7-graph 0.767 0.609 0.635 0.728 0.610 0.631

coreutils
k-graph extended k-graph

Precision Recall F2 Precision Recall F2

3-graph 0.110 0.200 0.172 0.042 0.080 0.068
4-graph 0.401 0.586 0.537 0.218 0.360 0.318
5-graph 0.643 0.623 0.627 0.553 0.531 0.535
6-graph 0.617 0.527 0.543 0.660 0.602 0.613
7-graph 0.664 0.560 0.578 0.663 0.566 0.583

16584. Also notable was the fact that almost all mixed n-gram
models performed better than the single n-gram models.

D. Control Flow K-Graphs Versus Extended K-Graphs

In the next set of experiments, we evaluated the control
flow k-graphs, and extended k-graphs for k = 3, 4, 5, 6, 7. The
results are summarised in Table VI. The model which gave the
highest F2 was 5-graphs for the glibc data set at 0.706, and 5-
graphs also for the coreutils data set at 0.627. This consistency
was surprising given that there were thousands of different
functions being considered.

The second observation was that the performance of ex-
tended k-graphs was lower than that of regular k-graphs. This
difference was more marked for glibc than for coreutils, at
7 and 1.4 percentage points respectively. The implication is
that extended k-graphs were in fact more normalising than
k-graphs.

E. Mixed K-Graph Models

As with n-grams, we considered mixed k-graph models as
a possible way to improve performance on single k-graph
models. We limited mixed models to a combination of at most
two k-graph models, giving us a total of 10 possibilities.

Again, the best mixed model was the same for both data
sets. The 5+7-graph model gave the best F2 value for both
glibc (0.768) and coreutils (0.657) (Table VII). Lastly, the
mixed k-graph models performed better than the single k-
graph models.

335

TABLE VII
RESULTS FOR MIXED k-GRAPH MODELS.

glibc coreutils
F2 F2

3+4-graphs 0.607 0.509
3+5-graphs 0.720 0.630
3+6-graphs 0.661 0.568
3+7-graphs 0.655 0.559
4+5-graphs 0.740 0.624
4+6-graphs 0.741 0.624
4+7-graphs 0.749 0.649
5+6-graphs 0.752 0.650
5+7-graphs 0.768 0.657
6+7-graphs 0.720 0.624

TABLE VIII
RESULTS OF USING DATA CONSTANTS TO IDENTIFY FUNCTIONS IN THE

glibc AND coreutils DATA SETS.

Precision Recall F2

glibc 0.690 0.679 0.681
coreutils 0.867 0.751 0.772

F. Data Constants

Table VIII shows the results of using the third type of
code abstraction, data constants, to match functions compiled
using different optimisations (glibc) and different compilers
(coreutils). The performance was better for coreutils at
0.772 compared to glibc at 0.681. One possible explanation
for this difference is the fact none of the functions in the
glibc had strings, whilst 889 functions, or 40.3% of functions
in the coreutils did. Also as a consequence of this, the number
of functions having more than 110 terms was higher for
coreutils—11.1% compared to only 5.3% in glibc.

G. Composite Models

Building upon the observation that mixed models were more
successful than single models, the last set of models consid-
ered were composite ones, i.e. models that combined n-grams,
k-graphs and constants. The terms from each individual model,
for example 4-grams, were abstracted then concatenated to
form a composite document for each function.

We considered two composite models for each data set. The
first composite model was made up of the highest performing
single model from each of the three categories; the second
composite model was made up of the highest performing
mixed model, except for constants. Thus, we tested the models
comprising 4-gram/5-graph/constants and 1-gram/4-gram/3-
graph/5-graph/constants for the glibc set. The corresponding
models for the coreutils set were 4-gram/5-graph/constants
and 2-gram/4-gram/5-graph/7-graph/constants. The results are
given in Table IX.

Overall, the best composite model out-performed the best
mixed models, giving an F2 score of 0.867 and 0.830 for
glibc and coreutils respectively. The highest scores for mixed
models were 0.777 (1-gram/4-gram) and 0.772 (constants).
One observation was that including more models did not

necessarily result in better performance. This was evident from
the fact that the composite models with 3 components fared
better than the model with 5.

Instead of maximising F2, we were also interested in the
recall rates when the value of r, the number of ranked results,
was 10, since we do not expect users of the search engine to
venture beyond the first page of results. Considering only the
top 10 ranked results, the recall rates were 0.925 and 0.878
respectively for glibc and coreutils.

Of the 342 false negatives from the glibc set, we found that
206 were small functions, having 6 instructions or less. Since
Rendezvous uses a statistical model to analyse executable
code, it is understandable that it has problems differentiating
between small functions.

One of the largest functions in this group was getfsent
from glibc (Figure 10). The output for gcc -O1 and gcc
-O2, or getfsentO1 and getfsentO2 respectively, dif-
fer significantly due to several factors. Firstly, the function
fstab_fetch was inlined, causing the mov and call
instructions in getfsentO1 to be expanded to 8.

Secondly, there were two instruction substitutions: instruc-
tion mov eax, 0x0 in getfsentO1 was substituted by
the xor eax, eax instruction which utilises 2 bytes instead
of 5; the call to fstab_convert was substituted by an
unconditional jump. In the latter substitution, the call was
assumed to return, whereas the jump did not. This was evident
from the fact that the stack was restored immediately prior to
the jump. This altered the control flow graph since the edge
from the jmp instruction to the final BB was no longer there
in getfsentO2.

Thirdly, there were two occurrences of instruction reorder-
ing: The first being the swapping of the second and third
instructions of both functions; the second was the swapping
of the test and mov instructions following the call to
fstab_init.

The sum of these changes resulted in the fact that there were
no 3-grams, 4-grams nor data constants in common between
the two functions, and the two 4-graphs did not match. In such
cases, the matching could benefit from a more accurate form
of analysis, such as symbolic execution [16], but this is left
to future work.

TABLE IX
RESULTS OF THE COMPOSITE MODELS. WHERE INDICATED, VARIABLE r
IS THE NUMBER OF RANKED RESULTS CONSIDERED, OTHERWISE r = 1.

Precision Recall F2

glibc 4-gram/5-graph/constants 0.870 0.866 0.867
1-gram/4-gram/5-graph/
7-graph/constants

0.850 0.841 0.843

4-gram/5-graph/constants
(r = 10)

0.118 0.925 0.390

coreutils 4-gram/5-graph/constants 0.835 0.829 0.830
2-gram/4-gram/5-graph/
7-graph/constants

0.833 0.798 0.805

4-gram/5-graph/constants
(r = 10)

0.203 0.878 0.527

336

struct fstab *getfsent(void){
struct fstab_state *state;
state = fstab_init(0);

if(state == NULL)
return NULL;

if(fstab_fetch(state) == NULL)
return NULL;

return fstab_convert(state);
}

Fig. 10. Source code of getfsent

TABLE X
AVERAGE AND WORST-CASE TIMINGS FOR coreutils SET.

Average (s) Worst (s)

Abstraction

n-gram 46.684 51.881
k-graph 110.874 114.922
constants 627.656 680.148
null 11.013 15.135

Query construction 6.133 16.125
Query 116.101 118.005

Total (2410 functions) 907.448 981.081
Total per function 0.377 0.407

H. Timing

The final set of experiments was conducted to determine
the time taken for a binary program to be disassembled, for
the terms to be abstracted and for the query to return with the
search results. We timed the coreutils set for this experiment,
and included both the gcc-compiled code and the clang-
compiled code to give a total of 2410 functions. Table X shows
the average case as well as the worst-case timings for each
individual phase. The “null” row indicates the time taken for
Dyninst to complete the disassembly without performing any
further abstraction. The total time was computed by summing
the time taken by the three abstractions. Strictly speaking, our
time is an overestimate since the binary was disassembled two
more times than was necessary in practice. On the other hand,
we did not do end-to-end timings to take into consideration
the computational time required for the front-end system, so
the timings are an approximation at best.

We found that a significant portion of time was spent
in extracting constants from the disassembly. The reason is
because the procedure is currently made up of several different
tools and scripts, and we hope to streamline this procedure in
future.

XI. DISCUSSION

A. Limitations

An important assumption made in this paper is that the bi-
nary code in question is not actively obfuscated. The presence
of code packing, encryption or self-modifying code would
make disassembly, and therefore code abstraction, difficult to
perform. In practice, Rendezvous may require additional tech-
niques, such as dynamic code instrumentation and symbolic

execution, to analyse heavily obfuscated executables. How-
ever, as mentioned, we considered static analysis primarily
for its efficiency. In future we hope to look at efficient ways
to include dynamic methods in Rendezvous.

B. Threats to Validity

Threats to internal validity include the limited software
tested, and limited number of compilers and compiler opti-
misation levels used. The good performance may be due to
a limited sample size of software analysed, and future work
will involve analysing larger code bases. It is possible that the
gcc and clang compilers naturally produce similar binary
code. Likewise, the output of gcc -O1 and gcc -O2 could
be naturally similar.

The most important threat to external validity is the as-
sumption that there is no active code obfuscation involved
in producing the code under consideration. Code obfuscation,
such as the use of code packing and encryption, may be
common in actual binary code in order to reduce code size
or to prevent reverse engineering and modification. Such
techniques may increase the difficulty of disassembly and
identification of function boundaries.

XII. RELATED WORK

The line of work that is most closely related to ours is
that of binary clone detection. Sæbjørnsen et al. [17] worked
on detecting “copied and pasted” code in Windows XP bi-
naries and the Linux kernel by constructing and comparing
vectors of features comprising instruction mnemonics, exact
and normalised operands located within a set of windows in
the code segment. The main goal was to find large code clones
within the same code base using a single compiler and hence
their method did not need to address issues with multiple
compilers and their optimisations. In contrast, since the goal
of Rendezvous is to do binary clone matching across different
code bases, we needed to address the compiler optimisation
problem and we believe our technique to be sufficiently
accurate to be successful. Hemel et al. [18] looked purely at
strings in the binary to uncover code violating the GNU public
license. The advantage of their technique was that it eliminated
the need to perform disassembly. However, as our experiments
show, using only string constants we were only able to identify
between 60 to 70% of functions. Other approaches include
directed acyclic graphs [9], program dependence graphs [19]
and program expression graphs [20]. We did not consider these
approaches as the computational costs of these techniques are
higher than what Rendezvous currently uses.

A closely related area is source code clone detection and
search, and techniques may be divided into string-based,
token-based, tree-based and semantics-based methods [21].
Examples include CCFinder [22], CP-Miner [23], MUD-
ABlue [24], CLAN [25] and XIAO [26]. Rendezvous, how-
ever, is targeted at locating code in binary form, but borrows
some inspiration from the token-based approach.

A related field is malware analysis and detection, whose
goal is to classify a binary as being malicious, or belonging

337

to a previously known family. Code abstractions that have
been studied include byte values [27], opcodes [28], control
flow sub-graphs [11], call graphs [29], as well as run-time be-
havioural techniques [30]. Even though Rendezvous borrows
techniques from this field, our aim is to do more fine grain
analysis, and identify binary code at a function level. At the
moment, we are only considering code obfuscation up to the
level of the compiler and its different optimisations.

XIII. CONCLUSION

We present a prototype search engine called Rendezvous
that exploits three independent analyses to identify known
functions in a binary program. We have found conclusive
evidence that combining these analyses allows us to identify
code in a way that is robust against different compilers and
optimisations, and achieve F2 measures of 0.867 and 0.830
on two data sets. As an early prototype, Rendezvous takes
0.407s to analyse a function in the worst case. Future work
will involve improving its efficiency and performing further
evaluation.

XIV. ACKNOWLEDGEMENTS

We would like to thank Khilan Gudka for his comments on
an earlier draft. We would like to also thank the anonymous
reviewers for their constructive feedback. The first author ac-
knowledges the support of DSO National Laboratories during
his PhD studies.

REFERENCES

[1] “Github,” http://github.com/.
[2] A. Mockus, “Large-scale code reuse in open source software,” in

Emerging Trends in FLOSS Research and Development, 2007. FLOSS
’07. First International Workshop on, may 2007, p. 7.

[3] H. Welte, “Current developments in GPL compliance,” http://taipei.
freedomhec.org/dlfile/gpl compliance.pdf, 2012.

[4] “Google Code Search,” http://code.google.com/codesearch.
[5] Ohloh, “The open source network,” http://www.ohloh.net/.
[6] M. Mock, “Dynamic analysis from the bottom up,” in Proc. 1st ICSE

Int. Workshop on Dynamic Analysis (WODA). IEEE C.S., 2003, pp.
13–16.

[7] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for
malware detection,” in ACSAC, 2007, pp. 421–430.

[8] B. Schwarz, S. K. Debray, and G. R. Andrews, “Disassembly of
executable code revisited,” in 9th Working Conference on Reverse
Engineering (WCRE 2002), A. van Deursen and E. Burd, Eds. IEEE
Computer Society, 2002, pp. 45–54.

[9] G. Myles and C. Collberg, “K-gram based software birthmarks,” in
Proceedings of the 2005 ACM symposium on Applied computing, ser.
SAC ’05. ACM, 2005, pp. 314–318.

[10] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, “Malware
phylogeny generation using permutations of code,” Journal in Computer
Virology, vol. 1, no. 1–2, pp. 13–23, 2005.

[11] C. Krügel, E. Kirda, D. Mutz, W. K. Robertson, and G. Vigna, “Poly-
morphic worm detection using structural information of executables,” in
RAID, 2005, pp. 207–226.

[12] B. Buck and J. K. Hollingsworth, “An API for runtime code patching,”
Int. J. High Perform. Comput. Appl., vol. 14, no. 4, pp. 317–329, Nov.
2000.

[13] B. D. McKay, “Practical graph isomorphism,” Congressus Numerantium,
vol. 30, pp. 45–87, 1981.

[14] Apache Software Foundation, “Similarity (Lucene 3.6.2 API),”
http://lucene.apache.org/core/3 6 2/api/core/org/apache/lucene/search/
Similarity.html.

[15] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[16] S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A. Clarke, “Combining
symbolic execution with model checking to verify parallel numerical
programs,” ACM Trans. Softw. Eng. Methodol., vol. 17, no. 2, pp. 10:1–
10:34, May 2008.

[17] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, “Detecting
code clones in binary executables,” in Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis, ser. ISSTA
’09. ACM, 2009, pp. 117–128.

[18] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding
software license violations through binary code clone detection,” in
Proceedings of the 8th International Working Conference on Mining
Software Repositories (MSR 2011), A. van Deursen, T. Xie, and T. Zim-
mermann, Eds. IEEE, 2011, pp. 63–72.

[19] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: detection of software
plagiarism by program dependence graph analysis,” in Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’06. ACM, 2006, pp. 872–
881.

[20] C. Gautier, “Software plagiarism detection with PEGs,” Master’s thesis,
University of Cambridge, 2011.

[21] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the 29th
International Conference on Software Engineering, ser. ICSE ’07. IEEE
Computer Society, 2007, pp. 96–105.

[22] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
Software Engineering, IEEE Transactions on, vol. 28, no. 7, pp. 654 –
670, jul 2002.

[23] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: a tool for finding
copy-paste and related bugs in operating system code,” in Proceedings
of the 6th conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, ser. OSDI’04. USENIX Association, 2004,
pp. 20–20.

[24] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue, “MUDABlue:
an automatic categorization system for open source repositories,” J. Syst.
Softw., vol. 79, no. 7, pp. 939–953, Jul. 2006.

[25] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” in Proceedings of the 2012 International Con-
ference on Software Engineering, ser. ICSE 2012. Piscataway, NJ,
USA: IEEE Press, 2012, pp. 364–374.

[26] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie, “XIAO: tuning
code clones at hands of engineers in practice,” in Proceedings of the
28th Annual Computer Security Applications Conference, ser. ACSAC
’12. New York, NY, USA: ACM, 2012, pp. 369–378.

[27] W.-J. Li, K. Wang, S. Stolfo, and B. Herzog, “Fileprints: identifying file
types by n-gram analysis,” in Information Assurance Workshop, 2005.
IAW ’05. Proceedings from the Sixth Annual IEEE SMC, june 2005, pp.
64 – 71.

[28] D. Bilar, “Opcodes as predictor for malware,” Int. J. Electron. Secur.
Digit. Forensic, vol. 1, no. 2, pp. 156–168, Jan. 2007.

[29] T. Dullien and R. Rolles, “Graph-based comparison of executable
objects,” in Proceedings of Symposium sur la sécurité des technologies
de l’information et des communications (SSTIC’05), 2005.

[30] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Krügel, and E. Kirda,
“Scalable, behavior-based malware clustering,” in Proceedings of the
16th Annual Network and Distributed System Security Symposium
(NDSS’09), 2009.

338

