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Software-engineering academics focussed for many years on the costs of de-
veloping the first version of a product, and ignored the costs of subsequent
maintenance. We taught our students the ‘waterfall model’, and biased research
towards the sort of tools and ideas that complemented it, such as formal methods.
Meanwhile the economics of software had changed. Software is now so complex
that the only way to build version N is to start with version N -1. Iterative de-
velopment methodologies now rule, and the tools that real developers say have
helped them most in the last fifteen years are not theorem provers, but auto-
mated regression-testing and bug-reporting systems. Nowadays, the maintenance
is the product.

Security engineers have been falling into a similar trap. For years, we thought
that the problem of authentication began and ended with trustworthy boot-
strapping. Once Alice and Bob shared that elusive session key – and could prove
mathematically that no-one else did – we could type up the research paper and
head for the pub. Again, the real world has changed. Security maintainability is
the elephant in the living room; people know there’s an awful problem but are
generally too polite to mention it (especially as we don’t really know what to do
with the beast). Vendors used to not care very much; after all, people replace
their mobile phones every year, and their PCs every three to five years, so why
not just wait for the vulnerable equipment to be thrown on the skip? With luck,
vulnerability scares might even help stoke the upgrade cycle.

But attitudes are changing. The hassles caused by vulnerable machines (both
directly and indirectly) continue to grow, and consumer expectations harden.
Meanwhile, all sorts of consumer durables are acquiring CPUs and communi-
cations. If an airconditioner turns out to have a stack overflow in its TCP/IP
code, how do you patch it? If you don’t, then how do you deal with a virus that
switches millions of airconditoners on and off simultaneously, causing a cascade
failure of the power grid? And even before we get to the nirvana of pervasive
computing, the economics of patching ordinary PCs has become a large and
growing topic in security economics.

A number of ideas have emerged recently about designing protocols for main-
tainability. In [1], for example, we explored what happens when a principal de-
ploys ‘smart dust’ in an area that is shortly afterwards attacked by an opponent.
Assuming that ultra-low-cost dust motes cannot be made tamper-resistant, the
opponent can recover shared secrets by reverse engineering a handful of motes
and can then eavesdrop on any links whose communications she happens to have



monitored. This turns out to be equivalent, in some sense, to a network whose
nodes must send initial key material to each other in the clear. Does this make
security impossible? Not at all. Under assumptions that are reasonable in many
applications of interest, the opponent will compromise only a small proportion
of the links, and this proportion can be kept both low and stable by combining
such techniques as key updating and multipath key combination.

A similar situation arises in peer-to-peer systems, where one might assume
that principals start out honest but that a small proportion of them may be
subverted once the network becomes busy. Here, the problem is not initial key
setup, but the design of mechanisms that limit the damage that a compromised
node can wreak.

A third type of problem is rate limiting. Many attacks nowadays consist of
the industrial-scale repetition of acts that are, on a small scale, not only harmless
but encouraged. Examples include downloading a web page, opening an email
account and even just sending an email. Here it is not the act that matters, so
much as the aggregate, and much of the mischief is perpetrated by machines
that started out honest but were subverted along the way.

Economics can give us some insight into how we should analyse and prioritise
defence [2]. In the case of smart dust, for example, the game of attack and defence
will depend on both the initial and marginal costs, of both the attacker and
the defender. Equilibrium depends on marginal costs – attacker efforts versus
defender resilience – and the usual outcome will be either that the attacker gives
up, or the defender has to go all out to maintain his network. In many cases, it
will be rational for the defender to invest in resilience, rather than in more secure
bootstrapping. This is yet another reason why shipping an insecure system and
patching it later may be rational economic behaviour (in addition to the market
races that already provide one such reason in the case of industries with strong
first-mover advantages, such as software [3]).

In the specific case of security protocols, there are other difficult issues. Pro-
tocol upgrades can be extremely expensive – a change to a bank card payment
protocol, for example, can involve 20,000 financial institutions and dozens of
software vendors. The design work for a protocol upgrade can be fraught: fail-
ures often occur when so many features are inserted that they start interacting,
and from multiple backwards-compatibility modes [4]. And that’s in the simple
case, where the principals agree on the protocol’s goals! Where some principals’
interests conflict with others’ interests – as happens with applications from pri-
vacy enhancement through accessory control to DRM – the protocol specification
itself becomes the battlefield. How can we analyse all this?

Real-world failures of security protocols may sometimes be explained by eco-
nomics. Protocols are somewhat like infrastructure, yet are generally not regu-
lated by any government (they change too quickly). They also don’t, in general,
make their owner monopoly profits: recent attempts by Microsoft to capture the
spillover from their server-side networking protocols have been firmly rebuffed by



the competition authorities in Europe. So it’s unclear that any single principal
has sufficient incentive to undertake all the work (and liability) of protocol main-
tenance. And if one were to hope that collective effort might suffice, then beware
the tragedy of the commons: each developer will add features to help its clients
and ignore the side-effects on other developers and their clients. While a small
number of protocol maintainers might conceivably sort out their dependencies
by contract, this doesn’t help as complexity explodes, as many protocols rely on
other protocols, and the whole business gets tied up with business models such
as aftermarket control.

At the deepest level, it’s unclear what protocols are – or what they will
become once computers are embedded invisibly everywhere. Are protocols more
like roads, or more like laws, or more like mechanical interfaces, or more like
habits? Different stakeholders will have different views, and we are likely to see
some interesting tussles.
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