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Abstract—A significant body of literature has reported
research on the potential correlates of deception and bodily
behavior. The vast majority of these studies consider discrete
bodily movements such as specific hand or head gestures. While
differences in the number of such movements could be an
indication of a subject’s veracity, they account for only a small
proportion of all performed behavior. Such studies also fail to
consider quantitative aspects of body movement: the precise
movement direction, magnitude and timing are not taken into
account. In this paper, we present and discuss the results of a
systematic, bottom-up study of bodily correlates of deception.
We conducted a user experiment where subjects either were
deceptive or spoke the truth. Their body movement was
measured using motion capture suits yielding a large number
of global and local movement descriptors. We present statistical
results on the mining of bodily cues. Our analyses support the
feasibility, and report the performance, of automatic deception
classification from body movement.
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I. INTRODUCTION

There is much interest in estimating whether a subject
is telling the truth, for example in police interviews or in
border security. Currently, judgements of subjects’ veracity
are made manually by humans. This introduces subjectivity
and limited detection skills; human observers often ignore
or misinterpret nonverbal behavior cues [13]. Overall, they
perform only slightly better than chance in lab settings [22].

We investigate whether measuring a subject’s nonverbal
behavior automatically might be of use, for example in
automatic screening and interviewing [17]. This could have
several advantages over the manual systems used at present.
First, an automated interviewing system can screen for
subjects that appear more likely to be deceptive, so that
human investigators personnel can focus on them. Second,
automatic measurement allows for a more fine-grained anal-
ysis: instead of focusing on a limited set of behaviors, it can
take many cues at various levels into account, such as the
precise direction, magnitude and timing of movements [19].
Thus more subtle cues can be evaluated. Third, an objective,
numerical representation of behavior allows analysis to be
more free from potentially biasing factors such as (facial)
appearance, clothing and ethnicity.

Researchers have therefore begun to tackle the automatic
measurement of behavior. Eye gaze [7], facial behavior [16]

and body movement [14] can be measured unobtrusively,
which makes them suitable for automatic screening. The
identification of specific cues indicate deceptive behavior
has received a significant amount of research attention, but
a meta-analysis revealed that the vast majority of researched
cues are indicative of both deceptive and truthful accounts,
which makes them unsuitable as single signals for decep-
tion detection [6]. This observation is also true for bodily
movements.

There are several reasons for the current lack of suitable
cues. Among those is the fact that the identification and
verification of potential cues has predominantly taken a top-
down approach. Candidate behavior cues are coded from
video by hand, which is time-consuming and subjective;
subtle but meaningful cues may be missed.

The alternative, which we explore here, is a bottom-
up approach. Modern “big data” systems are built with
the philosophy of collecting as much data as possible,
extracting as many signals from it as possible, and then
using statistical machine-learning techniques on a large
training set to work out which combinations of signals
have discriminatory power. Rather than a few bits of data
(whether the subject averted their gaze or not) we collect
many megabytes (precise position and orientation of 23 tags
on the subject’s body). These new analytic techniques do
have some new problems, of course: the analysis of high-
dimensional data (as where the number of possible cues is
high compared to the number of subjects involved) has to be
done carefully in order to manage the risk of false positives
– chance findings that do not generalize across subjects and
settings.

In the current study, we mine motion capture data for
cues to deception. We consider a large number of signals
– body pose and movement features – and investigate
how their number and type influence detection results. Our
analyses are aimed at assessing the tradeoff between false
positives and false negatives for deception detection. While
the data used in the mining of the features might be obtained
under controlled conditions (e.g., in the lab using dedicated
measurement equipment), the aim is to apply this work in
less-constrained settings. We therefore explicitly analyze the
factors that potentially hamper generalization.

The paper is organized as follows. We first discuss cues



to deception and their automatic measurement. Then we
describe the data used in our systematic analyses, which
are presented in Section IV. We conlude by discussing our
findings and their application in automatic screening.

II. CUES TO DECEPTION

The first step is to consier what signals we will attempt
to extract from the mas of raw data. Fortunately there is
a significant literature on the analysis of deception from
observable verbal and nonverbal cues [6], [22]. We do not
consider verbal signals – whether language use or content
analysis, or whether from written accounts or transcripts of
verbal accounts – as they might be hard to get in automated
applications of interest. Nonverbal signals deception can
roughly be divided into bodily, facial and paraverbal cues.
Being deceptive is generally assumed to be more cognitively
demanding [23], and might lead to higher levels of arousal
[18]. These, in turn, might affect bodily, facial and paraver-
bal behavior, thereby “leaking” cues to deception [11].

Unfortunately, there is much debate over which signals
correlate with deceptive behavior. A meta-analysis by De-
Paulo et al. [6] reveals that very few cues are correlated
consistently, which may be caused in part by the different
processes associated with lying. These include emotional
responses, increased cognitive load and attempted behav-
ioral control, each of which can lead to different types
of behavior [22]. For example, if people are aware that
lying-induced arousal can cause an increase in movements
seen as indicative of lying, the behavioral control theory
predicts that liars will try to control their movements in
order to appear honest. This will lead to rigid and unnatural
movement [3]. Such processes may elicit contradicting cues,
and several of them can occur simultaneously, leading to a
subjects behavior being a combination of both controlled and
uncontrolled movement. We hypothesize that, if this is the
case, differences in behavior between liars and truth-tellers
are subtle and may have contributed to the low accuracy
rates reported in deception research [2].

A. Automatic Behavior Analysis

Some identified cues to detection can only be measured
intrusively, such as fMRI and skin conductance. Others,
such as eye movements [12] and respiration, require close
measurement that might be unrealistic in practical settings.
We therefore focus on cues that can be observed both
robustly and unobtrusively. The automatic measurement
analysis of facial and bodily cues from video data has
seen a lot of work in recent years [15]. Notably, Bartlett
et al. investigated the detection of deception from facial
expressions; by training machine learning classifiers on auto-
matically measured facial expression features, they improved
performance significantly over human judgement (85% and
55%, respectively) [1].

Facial expression analysis benefits from existing coding
schemes such as FACS [10], platforms that enable re-
searchers to build on each others’ work. For the analysis
of body movement, this work is largely still to be done. It
is more complex than facial expression analysis because of
the large number of degrees of freedom which gives a wide
range of possible body poses; we have no agreed coordinate
scheme for describing these quantitatively. There have been
some recent efforts in this direction [5], [19] but they are
still not commonly used. There is the further complexity
that while we can infer body pose from video, this is a
challenging task.

We anticipate that the increasing sophistication of motion
analysis software will reduce the performance gap between
motion capture and video in the near future [18]. But to
circumvent issues with inaccuracy for the time being, our
starting point is the automatic measurement of body pose
and motion using motion capture equipment. Our work is
therefore related to Duran et al. [9], who also employ motion
capture data to find patterns of behavior. In contrast, we
explicitly focus on gaining insight in the type of signals that
can be used in a practical application. We do not focus on
obtaining the best classification rates but explicitly explore
parameters that affect the quality of the features we use as
cues, in terms of generalization.

III. DATA COLLECTION AND CODING

We use the data described in [21]. In the experiment, pairs
of two subjects (the interviewer and interviewee) were seated
facing each other. Interviewees were randomly assigned to a
truth or lie condition. Prior to the interview, interviewees in
the truth condition played a computer game and delivered a
wallet to the lost-and-found. In the lie condition, they only
looked at a description of the game, and were instructed
to take a 5 pound note from the wallet. In the interview,
the interviewer asked the interviewee a number of questions
in a fixed order. For the game session, these questions
were in reversed chronological order, adding to the difficulty
of the task [24]. In the wallet session, questions were
asked in normal order. In both the truth and lie conditions,
interviewees were tasked with convincing the interviewer
that they were telling the truth. Sessions lasted about 2.5
minutes, and were then stopped.

In total, 180 students and employees, divided into n = 90
pairs, took part in the experiment. We explicitly included
people with different cultural backgrounds (i.e., White
British and South Asian). Moreover, subjects were both male
and female adults. In the present study, we do not consider
the cultural background and gender of the subjects.

The body movements of both interviewers and inter-
viewees were recorded with Xsens MVN motion capture
systems. These employ inertial sensors placed in straps
around the body to measure the 3D position of 23 joints
in the body. Fig. 1 shows the locations of these joints. In



Figure 1. Location of the 23 joints. Root joint joint in red. Body parts
are indicated with different colors.

this study, we use only the data of the interviewee. There
might be meaningful patterns in the coordination of the
behavior of both interactants (e.g. [20], [25]); but given that
we consider the scenario where the interviewer could be a
virtual character [17], we only want to take into account the
behavior of the interviewee in this initial analysis.

A. Space Dimension

In line with [19], we normalized postures for global
position by expressing joint postions relative to the root (i.e.,
pelvis). We also scaled all body parts to average lengths, to
overcome differences in body dimensions between subjects.
These transformations can be made without any knowledge
of the subject, but help in the generalization. The resulting
representation is a 66-dimensional coordinate system (22 3D
joint positions). From this representation, we calculated a
number of features in four different feature types:

• Movement For each of the 22 joints, we calculate the
Euclidian distance between two subsequent frames. Ad-
ditionally, we calculate the total amount of movement
for the body parts left/right leg, left/right arm, torso
and head, and for the upper and full body. The body
parts are visualized with different colors in Fig. 1. The
upper body contains both arms, the torso and the head.
Full body contains all body parts. The total number of
features of the movement type is 30.

• Joint angle Body movement occurs at the joints. Each
joint has between one and three degrees of freedom,
determined by the number of axes around which the
joint can revolve. Here, we do not regard these degrees
of freedom, but rather calculate the smallest angle
directly by only considering the plane in which the
two neighboring segments of a joint reside. We then
calculate the angle between the vectors of the two
neighboring segments. For example, for the left elbow
we consider the vector shoulder-elbow and the vector

elbow-wrist. The joint angles that we consider are those
of the neck, shoulders, elbows, hips and knees. We also
include the mean of these 9 angles, which brings the
number of joint angle features to 10.

• Joint distance For a number of pairs of joints, we
calculate the Euclidian distance between them. These
pairs are head-left/right elbow, left hand-right hand, left
hand-right elbow, right hand-left elbow, left hand-left
knee, right hand-right knee, left knee-right knee, left
ankle-right ankle and pelvis-right/left ankle. Including
the mean over these distances, we obtain 12 features.

• Symmetry The joint positions are such that the x-axis
runs from left to right. We mirrored the joint positions
in the plane through the root, orthogonal to the x-axis.
We then compared the mirrored positions of all joints to
the unmirrored positions of their left/right counterpart.
We use the distance between each pair as a feature.
Given that these are equal for left-right counterparts,
we only calculated the features for the left limbs. We
finally also calculated the mean over these distances.
This mean is a measure for the symmetry of the whole
body pose. In sum, this 15 symmetry features.

The total number of features that we extract is 67.
Although these features are somewhat arbitrarily chosen,
they cover the whole body, include both local and global
descriptions and carry a broad range of information. We
will later investigate whether this set is optimal in terms
of performance.

B. Time Dimension

The Xsens motion capture suits record data at a rate of 60
measurements per second. When using vision-based motion
analysis, such high frequencies are currently not possible.
To ensure that the findings of our study are more conviently
scalable to video technology, we re-sampled our data down
to 5 frames per second.

Not much is known about the time scale over which
deception should be observed. We therefore include the
length of our observation window as a parameter. Smaller
windows allow for good representation and identification of
brief, salient movements, such as a face touch or a posture
shift; but they might often be devoid of discriminative
movement and thus uninformative. They may also fail to
capture significant longer-term behavior. For larger windows,
the opposite is true. To be able to compare our findings to
those reported in the literature, one window setting considers
the entire session duration of approximately 2.5 minutes; we
also use increasingly smaller window lengths of 1 minute,
30 seconds, 10 seconds, 5 seconds and 1 second. For each
window, we calculate the mean, minimum, maximum, range
and standard deviation of the feature values, which we
will call window types in the remainder of the paper. The
total dimensionality of a feature vector for each window,
independent on the window size, is therefore 335 (67× 5).



IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the various computational
experiments. We first explain the classification procedure.
We then present the results, followed by a discussion of the
influence of window length, feature and window type and
noise.

A. Classification Procedure

We are interested in finding cues that can discriminate
between truthful and deceptive accounts. To this end, we
train classifiers for each feature individually on a training
set, and subsequently evaluate the classifiers on test data.
The data in the training and test sets are thus disjoint, which
allows for the analysis of the generalization of the learned
classifiers to unseen data, typically from other subjects. We
use a leave-one-out cross-validation (LOOCV) approach,
with the data of one pair (i.e., two sessions) in each fold.
Specifically, we train on the data of n = 89 pairs and test
on the remaining pair. We do this for all pairs and present
results as the average scores over all test folds.

Our classifier is a Gaussian Naive Bayes Classifier [8],
which models each class as a normal distribution. For each
class c (truth or lie) and each feature i (1 ≤ i ≤ 335),
we determine the mean value and standard deviation of the
feature on all training samples. Given a feature value xi in
the test set, we can determine the most likely class ĉi as:

ĉi = argmax
c

1

σc,i
√
2π
e− (xi − µc,i)

2

2σ2
c,i

(1)

We assume equal prior probabilities for the two classes. This
is common in lab settings, to which we compare our work.

With per-feature classification, we can classify our test
data based on a single feature. This allows us to look at
the predictive quality of an individual feature; features with
higher correct classification rates can be considered more
promising features for deception detection. Additionally, we
consider all features together using two different measures.
First, we take the majority vote over the binary class
estimates; the class which has been estimated by the majority
of the per-feature classifiers is the guessed class. Second,
we take the majority vote but only over the features whose
distributions are statistically dissimilar with a probability of
at least 95%. Typically, these should be the features for
which the data of the two classes are further apart. We will
refer to these two different classifiers as all and stat-95,
respectively. At this point, we do not consider correlations
between features.

B. Classification Results

Initially, we consider three sets of data: (1) from both tasks
together, (2) only from the game sessions and (3) only from
the wallet sessions. We evaluate all combinations of training
and test sets, to gain insight in the potentially different nature
of the three sets. We use one feature vector per session,

Table I
CLASSIFICATION RATES OF DIFFERENT TRAINING AND TEST SETS (IN

PERCENTAGES), OBTAINED USING ALL (LEFT) / STAT-95 (RIGHT)
FEATURES.

Training
Test Both Game Wallet
Both 60.0 / 65.0 58.9 / 61.7 62.2 / 66.1
Game 64.4 / 67.8 62.2 / 64.4 64.4 / 68.9
Wallet 55.6 / 62.2 55.6 / 58.9 60.0 / 63.3

corresponding to a window length of 2.5 minutes on average.
As such, we use all available data. Classification results for
both all and stat-95 appear in Table I. Overall classification
performance is 60.0% when training and testing on both
sets on all features, and improves with another 5% when
only statistically significant features are considered. In the
remainder, we will therefore focus on the stat-95 features.
Compared to the baseline of 50%, there is a modest but
important improvement. The classification performance is
also better than that of humans: in this experiment, the
interviewers also estimated the veracity of the interviewees,
and their judgements were correct in 52.8% of the sessions.

The scores for the game task are higher than those of
the wallet sessions (67.8% and 62.2%, respectively). This
can be explained due to the more difficult nature of having
to deceptively answer questions in reverse order [24]. This
difficulty may have made the changes in behavior more
salient than in the lies of the easier wallet sessions. The
difference between the two tasks is also reflected in the
human performance: 44.4% of the game and 61.1% of the
wallet sessions were judged correctly.

Table II
CONFUSION MATRICES FOR THE GAME (LEFT) AND WALLET (RIGHT)

SESSIONS, WHEN TRAINED ON STAT-95 FEATURES OF BOTH.

Actual
Guessed Truth Lie
Truth 40.0% 22.2%
Lie 10.0% 27.8%

Actual
Guessed Truth Lie
Truth 40.0% 27.8%
Lie 10.0% 22.2%

Overall, the best results are obtained when training on
the wallet sessions. Generalization typically improves when
more data is available for training, which results in better
classification rates. However, the additional availability of
the game sessions does not improve the results. Rather, the
game sessions appear to negatively affect the learning of
the classifiers, as witnessed from the lower scores when
training only on these sessions. This might be due to the
more proncounced nature of the behavior in these sessions.
The differences between truthful and deceptive accounts
apparently do not generalize to other settings, specifically
the wallet sessions. Table II shows the confusion matrices
of the classifier, as trained on both features and tested on
the game and wallet data separately.

In both cases there is a truth bias. In the game and wallet



sessions respectively, 62.2% and 67.8% of the classifications
is truthful. This leads to high recall rates for truthful accounts
(80%), but markedly lower recall for deceptive ones (55.6%
and 44.4%, respectively). We hypothesize that this truth bias
is due to the more varied nature of deceptive accounts.

C. Window Length

In the previous section, we used a single feature vector
that covered the entire duration of the session. Ideally, we
would like to consider smaller windows as they would
reduce the time needed to make a decision regarding the
truthfulness of a subject’s account. We thus evaluate several
window lengths. Results are summarized in Fig. 2. In the
figure, we also included stat-99 results: the majority vote
over the features that have a different distribution between
truth and lie samples with 99% chance.
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Figure 2. Classification scores in percentages for different window sizes
(in second), obtained using all, stat-95 and stat-99 features.

Classification scores increase with increasing window
length: the additional information that is accumulated over
time is beneficial for decision performance. So decisions
about a subject’s veracity become more reliable when the
subject’s behavior is observed longer. The fact that there is
more training data available for smaller windows does not
help in the classification. Between the smallest (1 second)
and the largest (2.5 minute) windows, there is a factor
150 more training samples. We hypothesize that many of
these windows are uninformative, which might reduce the
effectivity of the classifier. For windows of 1 second, the
performance is barely above chance level. This increases
steadily as the windows become larger, although with di-
minishing returns; an upper bound to the performance is to
be expected.

Compared to stat-95 scores, approximately twice the
window size is needed to achieve similar results using
all features. For smaller windows, a similar trend can be
observed between stat-99 and stat-95. As the number of
features decreases from all to stat-95 to stat-99, it appears
that fewer features is beneficial to the classification. To
test this, we systematically varied the number of selected
features from 1 to 200. Features were sorted on the sig-
nificance level of the difference between the truth and lie
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Figure 3. Classification scores in percentages for different numbers of
ordered features, obtained when training and testing on both sessions with
a window size of 2.5 minute.

feature distributions. Fig. 3 shows the classification rate as
a function of the number of features used. Note that this
number is constant over all cross-validation folds, whereas
the number of features selected in stat-95 and stat-99 is
generally slightly different between folds. For a window
size of 2.5 minutes, the number ranges between 127 and
153 for stat-95, and between 85 and 110 for stat-99. The
optimal number seems to be around 30, judging from Fig. 3.
Including more features appears to decrease the classification
performance as these features are less discriminating.

Table III
PERCENTAGE OF SELECTED FEATURES (IN STAT-95) AND THE AVERAGE

CLASSIFICATION RATE PER BODY PART.

Body part Selected Classification rate
Left arm 70.0% 60.2%
Right arm 62.8% 58.6%
Left leg 29.3% 57.0%
Right leg 28.6% 56.8%
Head 51.3% 58.2%
Torso 44.8% 58.6%

D. Feature Type

The pool of features we evaluated covers all parts of the
body. We first analyze whether some body parts are more
informative than others in the detection of deception. To
this end, we indicated for each feature which body parts it
considers. For example, a left elbow angle considers the left
arm, whereas the distance between the left hand and the right
knee considers both the left arm and the right leg. Averages
over all joints or distances take into account all body parts.
Given that we thus linked features to body parts, we analyze
how often these features contribute to the classification. We
calculated, for each body part, the percentage of features
linked to it that occur in stat-95. Results are summarized in
Table III and visually represented in Fig. 4(a).

There are large differences between body parts in the
percentage of features that are selected. Approximately 70%
of the features in the arms are selected, whereas a mere 30%
of the leg features is found statistically different between the



(a) (b)

Figure 4. Visual representation of the percentage features significant at
the 0.05 level (a) and their classification performance (b). Darker colors
correspond to higher percentages.

truth and lie conditions. We can therefore conclude that the
upper body plays a more important role in distinguishing
truthful and deceptive accounts. However, the mere selection
of a feature does not say anything about its quality in the
classification. To this end, we present the classification rates
for each body part in Table III and Fig. 4. There is little
difference between body parts. The features in the arms
remain the most reliable but it appears that features selected
in the other body parts add to the classification. When using
features from all body parts, the classification rate is 65.0%.
None of the body parts alone achieves comparable rates so it
is likely that different body parts are partly complementary
in terms of the classification.

Table IV
PERCENTAGE OF SELECTED FEATURES (IN STAT-95) AND THE AVERAGE
CLASSIFICATION RATE FOR DIFFERENT NUMBERS OF INVOLVED BODY

PARTS.

Extent Selected Classification rate
Single body part 27.9% 57.6%
Two body parts 49.8% 57.0%
Three or more body parts 70.6% 61.2%

Some feature take into account a single body part whereas
others use the postions of joints in two or more parts.
We analyzed whether the extent of the feature, expressed
in the number of body parts it takes into account, is of
influence to the classification performance. See Table IV for
a breakdown of the results. Clearly, the probability that a
feature is selected increases with the number of body parts
involved. This can be explained as the variance of a single
feature is probably larger than the average ofr a number
of features, possibly in different body parts. Consequently,
differences between truthful and deceptive accounts are more
often significant when considering more than a single body

part. For classification performance, the involvement of three
or more body parts seems to be advantageous. The most
discriminating features seem to be those that average over
all body parts, such as the average movement or the average
symmetry. Apparently, global information is more reliable
than local information.

Table V
PERCENTAGE OF SELECTED FEATURES (IN STAT-95) AND THE AVERAGE

CLASSIFICATION RATE PER FEATURE TYPE.

Feature type Selected Classification rate
Movement 35.5% 58.4%
Joint angle 22.8% 57.1%
Joint distance 47.5% 58.2%
Symmetry 58.4% 56.4%

We used four feature types: movement, joint angle, joint
distance and symmetry features. In Table V, we summarize
the number of selected features and their average classifica-
tion rates. Joint angles prove to be the least selected, whereas
the majority of the symmetry features are selected in stat-
95. Differences in classification rate between these feature
types are again small. All types appear to contribute to the
classification. Again, given that these individual types all
score below the combined score of 65.0%, we expect that
they are partly complementary.

Table VI
PERCENTAGE OF SELECTED FEATURES (IN STAT-95) AND THE AVERAGE

CLASSIFICATION RATE PER WINDOW TYPE.

Window type Selected Classification rate
Mean 53.2% 57.8%
Maximum 43.9% 58.4%
Minimum 26.8% 52.7%
Range 37.9% 59.4%
Standard deviation 42.6% 58.0%

E. Window Type

Besides the evaluation of different window sizes, each
feature was evaluated per window, for which we used
five types: mean, maximum, minimum, range and standard
deviation. From Table VI, it becomes clear the minimum
value of a feature is often not significantly different be-
tween truthful and deceptive accounts. Especially for longer
windows, the probability that values of movement are near-
zero at some point is rather high. As such, it is difficult
to distinguish between the two conditions. The performance
of minimum features alone is also lower compared to the
other window types. In contrast, more mean, maximum and
standard deviation features are selected, and they also appear
more promising in the classification of truths and lies. Still,
the features are complementary in terms of performance.

It should be noted that different window types might
become relevant for different window sizes. For smaller
windows, the maximum or standard deviation might be more



meaningful as these reflect sudden movement better in the
feature types used.

F. Amount of Noise

While training data can typically be obtained in controlled
settings, it is more likely that test data will be obtained
in less-controlled settings, using convential sensors such as
cameras. The accuracy of vision-based body measurements
is typically lower [18]. One way to model the less accurate
measurement in our analysis is to add noise on the motion
captured test data. We add, to each feature, Gaussian noise
with a zero mean and a standard deviation r times the
standard deviation of the feature in the training data. Adding
Gaussian noise is somewhat artificial as noise is typically
correlated in space and time, but it shows how robust the
classification is to inaccurate measurements.
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Figure 5. Classification scores in percentages for added noise with different
factors r, obtained using all and stat-95 features. Scores are averaged over
5 repetitions.

Fig. 5 shows an approximately linearly decreasing classi-
fication rate for increasing noise factor r. The stat-95 clas-
sification continues to outperform a full set of features even
with noise added. It is likely that a smaller set of features
would be even more robust, in line with the findings reported
in Section IV-C. The robustness to noise is reasonable. Even
when adding noise with a standard deviation equal to that
of the original data, the classification performance is still
approximately 57% for stat-95. It should be noted that,
especially for larger windows, the mean features are not
affected much as the added noise has a mean of zero.

V. CONCLUSION

This paper reports an initial experiment in mining bodily
cues to deception. Based on a large set of features, obtained
using motion capture equipment, we have derived simple
statistical classifiers to distinguish between truthful and
deceptive accounts. Overall classification with all features
yielded a classification performance of 60.0%, compared
to a baseline of 50% and human performance of 52.8%.
The selection of features based on their statistical difference
between the two conditions resulted in a smaller set with an
improved classification rate of 65.0%. We observed that a

reduction to around 10% of the most statistically significant
features would lead to a further improvement of 2-3%.

We found that features in the upper body, especially
the arms, were more often significantly different between
the truth and lie conditions. However, they proved to be
as informative as features from other body parts in terms
of classification performance. Features of a single body
part scored 5-8% lower compared to the combination of
features of all body parts. We therefore believe that differ-
ent body parts contain complementary information for the
classification. A similar observation can be made for the
different feature types (e.g., movement or joint distance) and
window types (e.g., mean and maximum). Despite different
ratios of selected features for each type, the classification
performances are comparable but consistently lower than
when using all features. We also evaluated the effect of noise
and found that classification rates decrease linearly in the
standard deviation of the noise.

The main limitation of the current work is that we
investigated features individually, and only considered clas-
sification using majority voting. We have thus ignored
potential correlations between these features. Moreover, we
have not looked specifically at features with complementing
information. We have found that feature type, place on the
body, window length and window type each carried partly
complementary information that improved the classification.
Exploiting combinations of features could yield more robust
and, importantly, better classification rates. Currently, we
considered features at a single temporal scale: we have not
combined features across window sizes. It is likely that
some discriminative movements are more saillant in one
temporal scale while other movements are more prominent
in another. There might also be patterns of behaviors over
time. These patterns can be mined automatically as well, and
have been shown to be promising in distinguishing truthful
from deceptive accounts [4], [9]. A combination of our work
with the mining of patterns seems promising.

While our analyses followed a bottom-up approach, we
have only touched upon the possibilities offered in big data
analysis. There is a wealth of machine learning techniques
that are suitable for the type of high-dimensional data
that we have considered. The current paper can aid in
the selection of relevant features, time scales and design
of the machine learning classifier. Eventually, these results
might be used in practice, for example in automated border
screening. We explicitly consider a scenario with a virtual
immigration officer, and automatic measurement and analy-
sis of the veracity of a traveller’s account. This would require
a different way of balancing false positives and negatives
as the occurrence of deception is generally much lower
than the 50% in lab settings. In a practical setting, we also
underline the importance of the combination of modalities.
For example, the fusion with facial expressions and eye gaze
appears fruitful [12].



In sum, we have shown that truthful and deceptive ac-
counts can be distinguished based on bodily cues that we can
mine automatically. We have also shown that improvements
can be made. With the directions of further research we
have outlined, we expect that bodily cues to deception can
improve the current performance of automatic screening.
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