
Security Analysis of Android Factory Resets

Laurent Simon
University of Cambridge

lmrs2@cam.ac.uk

Ross Anderson
University of Cambridge

rja14@cam.ac.uk

Abstract

With hundreds of millions of devices expected to be
traded by 20181, flaws in smartphone sanitisation functions
could be a serious problem. Trade press reports2 have al-
ready raised doubts about the effectiveness of Android “Fac-
tory Reset”, but this paper presents the first comprehensive
study of the issue. We study the implementation of Factory
Reset on 21 Android smartphones from 5 vendors running
Android versions v2.3.x to v4.3. We estimate that up to 500
million devices may not properly sanitise their data partition
where credentials and other sensitive data are stored, and
up to 630M may not properly sanitise the internal SD card
where multimedia files are generally saved. We found we
could recover Google credentials on all devices presenting a
flawed Factory Reset. Full-disk encryption has the potential
to mitigate the problem, but we found that a flawed Factory
Reset leaves behind enough data for the encryption key to
be recovered. We discuss practical improvements for Google
and vendors to mitigate these risks in the future.

I. INTRODUCTION

The extraction of data from resold devices is a growing
threat as more users buy second-hand devices1. A healthy
second-hand market is valuable for vendors as people are
more willing to buy expensive new devices if they know
they can trade them in later3. So data sanitisation problems
have the potential to disrupt market growth. If users fear
for their data, they may stop trading their old devices, and
buy fewer new ones; or they may continue to upgrade,
but be reluctant to adopt sensitive services like banking or
healthcare apps, thereby slowing down innovation. Last but
not least, phone vendors may be held accountable under
consumer protection or data protection laws. To sanitise
their devices, users are advised to use the built-in “Factory
Reset” function on device disposal. Previous reports [1]
have raised occasional doubts about the effectiveness of the
implementations of this in Android, with claims that data
can sometimes be recovered. This paper provides the first
comprehensive study of the problem. It (i) quantifies the
amount of data left behind by flawed implementations, (ii)
provides a detailed analysis of affected devices (versions,
vendors), (iii) reveals the drivers behind the flaws, and (iv)

1www.forbes.com/sites/connieguglielmo/2013/08/07/used-smartphone-
market-poised-to-explode-apple-iphone-holding-up-better-than-samsung-
galaxy

2blog.avast.com/2014/07/08/tens-of-thousands-of-americans-sell-
themselves-online-every-day

3blogs.which.co.uk/technology/phones-3/mobile-phone-price-tracking/

Flash memory

Controller

Device driver

File system

N N+1 N+2 N+3

MTD device Block device

ext4yaffs2

N N+1 N+2 N+3N N+1 N+2 N+3

N N+1 N+2 N+3

M

Mapping after overwrite
of block N

Original block mapping

Fig. 1. Yaffs2 with raw flash access vs. Ext4 with logical block access.
On an eMMC (right), the logical block N is mapped to the physical block
N +3 by the eMMC, and remapped to block M after an overwrite. MTD
stands for Memory Technology Device.

discusses practical solutions to mitigate these problems (Sec-
tion III and Section VI). Concretely, we find that a flawed
Factory Reset lets an attacker access a user’s Google account
and its associated data backed up by Google services, such
as contacts and WiFi credentials (Section IV). Our study
unveils five critical failures: (i) the lack of Android support
for proper deletion of the data partition in v2.3.x devices; (ii)
the incompleteness of upgrades pushed to flawed devices by
vendors; (iii) the lack of driver support for proper deletion
shipped by vendors in newer devices (e.g. on v4.[1,2,3]);
(iv) the lack of Android support for proper deletion of the
internal and external SD card in all OS versions; (v) the
fragility of full-disk encryption to mitigate those problems
up to Android v4.4 (KitKat).

In summary, our contributions are as follows:
• We present the first comprehensive study of Android

Factory Reset, by studying 21 Android smartphones
from 5 vendors running Android versions from v2.3.x
to v4.3.

• We highlight critical failures such as the lack of support
by the Android OS and/or vendor-shipped drivers for
secure deletion. These problems may affect devices
even after upgrades are received.

• We discuss practical improvements for Google and
vendors to mitigate these risks in the future.

II. TECHNICAL BACKGROUND

A. Flash & File Systems

Smartphones use flash for their non volatile memory
storage because it is fast, cheap and small. Flash memory
is usually arranged in pages and blocks. The CPU can
read or write a page (of typically 512+16 to 4096+128
data+metadata bytes), but can only erase a block of from
32 to 128 pages. Each block contains both data, and
“out-of-band” (OOB) data or metadata used for bad block

1

management, error correcting codes (ECC) and file system
bookkeeping. Blocks must be erased prior to being written
to; yet flash chips support only a finite number of program-
erase cycles, so wear-levelling algorithms are used to spread
the erase and write operations uniformly over all blocks.
It is also worth mentioning that flash storage is usually
over-provisioned, i.e. a chip has more internal space than
it advertises to the OS, in anticipation of bad blocks and to
further reduce wear.

Early Android devices (like Froyo, Android v2.2.x)
used the flash-aware file system yaffs2 that handles wear-
levelling and error correction. Since Gingerbread (v2.3.x),
devices generally come with an embedded MultiMediaCard
(eMMC) with proprietary wear-levelling algorithms imple-
mented in hardware. An eMMC does not give the OS access
to the raw flash, but exposes a block-like device, on top of
which the OS lays a block file system like ext4. Blocks only
give the OS a logical view of memory. Internally, each block
is mapped to a corresponding physical block on the flash
by the eMMC controller. When data in a logical block N is
updated by the OS (Fig. 1, right), the corresponding physical
block would typically be added to a “to-be-erased” list, then
remapped to a “clean” physical block M , thereby leaving
the original block content untouched. Therefore, to achieve
secure deletion, eMMC standards define specific commands
that must be used to remove data physically from memory.

B. Secure Deletion Levels
When removing a file, an OS typically only deletes its

name from a table, rather than deleting its content. The
situation is aggravated on flash memory because data update
does not occur in place, i.e. data are copied to a new block
to preserve performance, reduce the erasure block count
and slow down the wear. Therefore, there exist various
recommendations, guidelines and standards for sanitising
data. The following levels of data sanitisation are relevant
depending on the threat model considered [2].

The highest level of sanitisation is analog sanitisation,
this degrades the analog signal that encodes information,
so that its reconstruction is impossible even with the most
advanced sensing equipment and expertise. For example,
NIST’s Guidelines for Media Sanitization (NIST 800-88)
have a “purging” level that corresponds to analog sanitisa-
tion.

The second level is digital sanitisation. Data in digitally
sanitised storage cannot be recovered via any digital means,
including the bypass or compromise of the device’s con-
troller or firmware, or via undocumented drive commands.
Unimpeded physical access to a flash chip and the manufac-
turer’s data sheet may be required, but these are not available
for typical smartphones.

The third level is logical sanitisation. Data in logically
sanitised storage cannot be recovered via standard hardware
interfaces like standard eMMC commands. For example,
this corresponds to NIST 800-88’s “clearing” level. For
cellphones and PDAs, NIST 800-88 suggests “clearing”
them by manually deleting data followed by a Factory Reset.

In this study, we consider cheap data recovery attacks that
require neither expensive equipment to physically extract
data from the chip nor specific per-chip knowledge. Only
attacks that are oblivious to the underlying chip scale across
devices and are likely to be profitable if exploited at scale.
Therefore in the rest of this document, by “proper” or
“secure” sanitisation we mean logical sanitisation.

C. Linux Kernel Deletion APIs

Privileged userspace programs can erase flash blocks
through the ioctl() system call exposed by the Linux kernel.
On raw flash, the ioctl’s MEMERASE option provides digital
sanitisation. On an eMMC there are two possible options.
The first is BLKDISCARD which provides no security guar-
antees. Internally, the kernel generally implements BLKDIS-
CARD by passing the eMMC command “DISCARD” or
“TRIM” to the chip. These do not request the eMMC to
purge the blocks. They simply indicate that data is no
longer required so that the eMMC can erase it if necessary
during background erase events. They would typically be
used when unlinking a file. The second ioctl option is
BLKSECDISCARD and provides “secure” deletion. The
kernel implements BLKSECDISCARD by passing to the
chip one of the many “secure deletion” commands defined
by eMMC standards. The actual eMMC command used
depends on support by the chip. There is an “ERASE”
command for logical sanitisation and commands such as
“SECURE TRIM”, “SECURE ERASE” and “SANITIZE”
for digital sanitisation.

D. Data Partitions

Android smartphones share three common partitions for
data storage (Fig. 2). The first is the data partition, generally
mounted on /data/, that hosts apps’ private directories. An
app’s private directory cannot be read or written to by other
apps, so it is commonly used to store sensitive information
such as login credentials. On older phones with a small data
partition, one can also install apps on an external SD card;
but this is usually not the default behaviour.

The second partition storing user data is the internal
(primary) SD card. Despite its name, it is not an SD card
per se, but a partition physically stored on the same chip.
It is generally mounted on /sdcard/ or /mnt/sdcard/, which
is readable/writeable by applications. It is generally FAT-
formatted or emulated with the Filesystem in Userspace
(FUSE). In the latter case, files are physically stored on the
data partition. The internal SD card is mainly used to store
multimedia files made with the camera and microphone; it is
generally exposed to a computer connected via USB – via
Mass Storage, Media Transfer Protocol (MTP) or Picture
Transfer Protocol (PTP).

The last partition containing user data is the external,
removable SD card. It offers similar functionality to the
internal SD card, but can be physically inserted and removed
by the user. If there is no internal SD card on the device, the
external one becomes the “primary SD card”; otherwise it is

2

called the “secondary SD card”. The primary and secondary
SD cards are sometimes referred to as “external storage”.

Some devices also have hardware key storage. When
supported, it is used principally by the default Account
Manager app.

Recovery Bootloader boot /sdcard/ /data/

Code partitions Data partitions

image.jpg
video.mp4

system/
wifi/
private_dir_app0/
private_dir_app1/

Fig. 2. Common Android partitions. Each rectangle represents a partition
on the same flash storage.

III. ANALYSIS OF ANDROID FACTORY RESETS

A. Methodology

Between January and May 2014, we bought second-
hand Android phones from eBay and from phone recycling
companies in the UK, randomly selecting devices based on
availability. As the project might possibly uncover personal
information, it was first submitted to our ethics process for
approval. In the rest of the paper, we refer to a “device” as
the unique pair (phone name, OS version).

We studied 26 different devices (list provided in Appen-
dices) from 5 vendors4, running Android versions ranging
from v2.2 (Froyo) to v4.3 (Jelly Bean). These Android
versions are resold more frequently and are being traded
today. Fig. 4 shows the distribution of Android versions for
our samples, compared to active devices in June 2013 and
in March 2014, as reported by Google’s Dashboard5. Our
samples are not representative of the OS version distribution
at the time of acquisition, but are similar to the world-wide
distribution 6 months earlier, in June 2013 (as one might
expect from the time taken for new phones to enter the
secondhand market). In September 2013, Google announced
that one billion devices had been activated6. This represents
340M Gingerbread (GB, v2.3.x) devices, 230M Ice Cream
Sandwich (ICS, v4.0.x) devices and 380M Jelly Bean (JB,
v4.[1-3]) devices. Our samples are representative of the
second-hand market at the time of acquisition. We use the
number of devices and their distribution across versions (in
June 13) to approximate the number of devices affected by
flawed Factory Resets throughout the following sections.
Estimates are based on the assumption that each device
accounts for the same percentage of the overall device pop-
ulation. This is not true in practice, and this is a limitation
of our evaluation.

We tested each partition of interest (Section II-D) by
overwriting it with unique identifying patterns. Then we
sanitised the device with the Factory Reset function and
attempted to recover the written patterns. We investigated

4Samsung, HTC, LG, Motorola and Google
5developer.android.com/about/dashboards/index.html
6plus.google.com/+SundarPichai/posts/NeBW7AjT1QM

(a) Factory Reset in Settings. (b) Factory Reset in Recovery.

Fig. 3. Factory Resets provided by most devices.

Froyo
(v2.2.x)

KK
(v4.4)

GB
(v2.3.x)

ICS
(v4.0.x)

JB
(v4.[1-3])

Other
0

10

20

30

40

50

60

70

80

P
ro

p
o
rt

io
n
 o

f
d
e
v
ic

e
s

(%
)

June 2013

Our sample

March 2014

Fig. 4. Android OS distribution for Froyo, KitKat (KK), Gingerbread (GB),
Ice Cream Sandwich (ICS) and Jelly Bean (JB).

the Factory Reset suggested by vendors7, that is, the one
in Android Settings (Fig. 3(a) – recommended by 90%
of vendors) and the one in Recovery/Bootloader mode
(Fig. 3(b) – recommended by 70% of vendors if the phone
cannot be booted). The Recovery and Bootloader modes are
special modes a phone can be booted into via a combination
of hardware keys. The interested reader can refer to the
Appendices for details on each step (pattern generation,
flash reading and writing, pattern recovery). In the rest
of the study, we refer to a “Factory Reset” or a “wipe”
interchangeably.

B. Results and Discussion

1) Preliminary Results: We found that the sanitisation of
external storage occurs only if a user selects the additional

7Alcatel, BlackBerry, Apple, HTC, Samsung, Huawei, Nokia, Mo-
torola, Lenovo, Sony, LG

3

TABLE I
CHRONOLOGY OF FACTORY RESET IMPLEMENTATIONS IN AOSP.

OS Versions
Code Partition Froyo (2.2.x) GB (2.3.x) ICS (4.0.x) JB (4.1.[1-3]) KK (4.4)

Android primary SD format() 7 format() 7 format() 7 ioctl(BLKDISCARD) 7 ioctl(BLKDISCARD) 7
secondary SD none 7 none 7 none 7 none 7 none 7

Recovery data ioctl(MEMERASE) 3 ioctl(BLKDISCARD) 7 ioctl(BLKSECDISCARD) 3 ioctl(BLKSECDISCARD) 3 ioctl(BLKSECDISCARD) 3

Froyo
(v2.2.x)

GB
(v2.3.x)

ICS
(v4.0.x)

JB
(v4.[1-3])

0

20

40

60

80

100

D
e
v
ic

e
s

w
it

h
 i
n
se

cu
re

 d
e
le

ti
o
n
 (

%
) data

primary SD

secondary SD

Fig. 5. Percentage of devices with flawed logical sanitisation. Results for
primary and secondary SD cards (i.e. external storage) implicitly assume the
use of the Factory Reset in Settings since the Recover/Bootloader Factory
Reset only sanitises the data and cache partitions.

option “External Storage” in the Factory Reset in Settings.
In this case, the Android OS first performs the sanitisation of
external storage and then reboots into Recovery/Bootloader
mode where the data partition and the cache partition (which
contains mainly optimized .odex java classes) are sanitised.
If a user Factory Resets his device with Recovery/Bootloader
instead of Settings, external storage is not sanitised – subtle
difference between devices are provided in the following
paragraphs. Fig. 5 shows the results of built-in sanitisation
for all devices studied.

2) Sanitisation of the data partition: Recall from Sec-
tion II-D that the data partition stores sensitive information
from Google and third-party apps, such as credentials.

On devices running the oldest version of Android we
studied (Froyo, v2.2.x), the data partition was logically
sanitised. These devices use a raw flash with the yaffs2 file
system (Section II-A), where it is infeasible to reformat a
partition without first properly sanitising it. The Android
Open Source Project (AOSP8) reveals the use of the ioctl’s
MEMERASE command by the Recovery mode (Table I),
this provides digital sanitisation and confirms the results of
Fig. 5.

From Gingerbread onwards (≥ v2.3.x), all devices we
encountered use eMMCs (except one), where it is possible to
reformat a partition without properly sanitising it first. Fig. 5
shows that about 90% (≈300M) of Gingerbread (v2.3.x)
devices sanitise the data partition insecurely, in that at most
a few hundred MB are deleted, representing between 60%
and 99.9% of the data partition depending on its size. The

8android.googlesource.com

Android Open Source Project (AOSP) reveals the use of
the ioctl’s BLKDISCARD command by the Recovery mode
(Table I), this does not provides logical sanitisation and
therefore confirms the results of Fig. 5. The only device
in our sample that properly deletes the data partition is the
HTC Wildfire S (Gingerbread); and it is because it uses
yaffs2 rather than an eMMC.

As shown in Table I, the following Android version
(ICS, v4.0.x) marked the introduction of logical sanitisation
support via BLKSECDISCARD in the AOSP code. This
contradicts the results from Fig. 5 that show that 60%
(≈140M) of ICS (v4.0.x) devices incorrectly sanitise the
data partition. Many of these ICS devices in our sample were
initially released with GB (v2.3.x) and received upgrades
to ICS (v4.0.x). We verified that the phone binaries indeed
contained the newest code from AOSP, i.e. with logical
sanitisation support. We then turned our attention to lower-
level code, and found that vendor upgrades likely omitted
device drivers necessary to expose the logical sanitisation
functionality from the underlying eMMC. In practice, this
means that the secure command BLKSECDISCARD is not
supported by ioctl, i.e. it returns errno 95 (EOPNOTSUPP).
It could be the case that the eMMC itself does not support
secure deletion, but we think this is unlikely since the
2007’s 4.2 eMMC standard9 already provided the compul-
sory “ERASE” command for logical sanitisation. We found
evidence corroborating this claim on certain phones at least:
when unlocking the Bootloader10 of the HTC Sensation XE,
the data partition was properly sanitised whereas it was
not during a Factory Reset. Devices affected include the
Samsung Galaxy S Plus, S (25M units sold11) and S2 (40M
units sold11), and the HTC Sensation XE. Only the Google
Nexus S in our sample properly sanitised its data partition
after receiving upgrades to ICS. The problem is likely to
persist after further upgrades to Jelly Bean (JB, v4.[1-3]),
although we could not ascertain this as our samples did not
contain such devices.

Besides upgrade issues, devices shipped with newer An-
droid versions such as ICS (v4.0.x) and JB (v4.[1-3]) are
not free of problems either (Fig. 5). They too are not always
shipped with proper device drivers for secure deletion. For
example, the LG Optimus L5 shipped with ICS did return
errno EOPNOTSUPP when we attempted a secure deletion.
More intriguing, the Motorola Razr I, shipped with JB
(v4.[1-3]), did not return any errors, but the secure deletion

9www.jedec.org/standards-documents/docs/jesd-84-b42
10This procedure lets users install custom software, but wipes data to

prevent a thief from recovering user’s data via forensic software
11www.tomshardware.com/news/Samsung-Galaxy-S-S2-S3,20438.html

4

resulted in no block being deleted at all. Due to these driver
issues, Fig. 5 shows 15% (≈55M) of JB (v4.[1-3]) devices
improperly sanitise the data partition.

3) Sanitisation of the Primary SD Card: Recall from
Section II-D that the primary SD card corresponds either
to the internal one or to a physically removable one in the
absence of the former. It mainly hosts multimedia files made
with the camera and possibly third-party apps.

We found that no Froyo (v2.2.x) and Gingerbread (GB,
v2.3.x) devices we examined logically sanitised their pri-
mary SD card. This represents more than 340M devices.
The AOSP code reveals that in these versions, Android only
formats the primary SD card with a call to Fat::format()
(Table I), this confirms the results from Fig. 5. In practice,
a few dozen MB at most are logically sanitised.

As depicted in Table I, the AOSP reveals no code changes
in the sanitisation of the primary SD card in the following
Android version (ICS, v4.0.x). Yet, Fig. 5 shows about 40%
(≈90M) of ICS devices properly sanitise their primary SD
card (i.e. ≈140M of devices do not). One may conclude that
vendors have customised the AOSP code and added secure
deletion support for the primary SD card, but this is incor-
rect. This logical sanitisation is due to the following reasons:
(i) the primary SD card on these phones corresponds to the
internal one, (ii) these devices use an emulated SD card
physically stored on the data partition (Section II-D) and
(iii) proper sanitisation of the data partition is implemented
as per AOSP, and so gets “inherited” by the primary SD
card. Only when these three fortunate conditions are met
can we be confident that the primary SD card is logical
sanitised.

The following Android version (JB, v4.[1-3]) marked
the addition of insecure deletion via ioctl’s BLKDISCARD
command. This confirms why 40% (≈150M) of devices still
fail to logically sanitise their primary (internal or external)
SD card. At the time of writing, we are not aware of any
changes to the handling of the primary SD card, therefore
we expect these results to hold on all other Android versions.

4) Sanitisation of the Secondary SD Card: In our sample,
no devices properly sanitised the secondary (external) SD
card. We found that Android generally does not attempt to
sanitise it at all (Table I), which explains the results from
Fig. 5.

5) Vendor Customisation Inconsistencies: Besides the
various differences of sanitisation between versions and
models already highlighted, we discovered other vendor
issues. For example, we mentioned that only the Factory
Reset in Settings provides an option to sanitise the primary
SD card (Section III-B1). Therefore one might advise users
to use Settings rather than Recovery to sanitise devices.
Unfortunately, vendor customisations sometimes make Re-
covery more reliable. For example, the two HTC One-
series phones in our sample properly sanitised their primary
(internal) SD card in Recovery (contrary to AOSP), but not
in Settings (as we would expect from the AOSP source
code). It is likely that this result holds for many of the other

HTC One-series devices. This also violates HTC guidelines:
on its website12, it suggests its users to first try Settings,
and resort to Recovery only “if you can’t turn HTC One
[X] on or access settings”. HTC has put up a note to
discharge itself of any responsibility: “A factory reset may
not permanently erase all data from your phone, including
personal information”.

6) eMMC implementation of logical sanitisation: In gen-
eral, we found that devices in our sample logically sanitised
all bytes requested through the ioctl command, except for
one phone: the Google Nexus 4. This has an 6189744128B
data partition, fully used by the file system. The last 16KB
were not sanitised and fully recoverable about 20% of the
time after a Factory Reset. Our hypothesis is that this might
be a bug in the eMMC itself (or its corresponding drivers),
since we have not seen similar problems in other devices.

7) Number of logical blocks to sanitise: If issued with the
non-secure sanitisation command “DISCARD”, an eMMC
applies a “don’t care” policy to the block. According to
the standard, “the original data may be remained partially
or fully accessible to the host dependent on device”. This
further means that data originally exposed at a logical block
located at logical offset LOorg, could be re-mapped at a
different logical offset, say LOremapped as shown in Fig. 6.
If the file system of size M does not fill the entire partition,
there is a risk that the deleted block’s data “crosses” the
filesystem boundary. Therefore if the sanitisation only at-
tempts to securely sanitise the blocks used by the file system
([0,M] in our example), it is plausible that some remapped
blocks (within]M,S]) would not be purged. We stress that
we have not found evidence of this happening in our sample
devices. However in order to reduce the possibility of this
happening, we suggest vendors erase the entire partition,
rather than just the part used by the file system. In our device
sample, the HTC One-series phones left a few MB of space
at the end of the data partition. It would be more cautious
to sanitise the entire partition. Similarly, the AOSP code
currently truncates the partition size to a multiple of 4096B
when creating the file system and when computing the size
to wipe during Factory Reset. Sanitising the entire partition
would be more prudent.

Logical view seen by OS

Physical view in eMMC

MLOorg LOremapped S

Fig. 6. Cross file system boundary example for the data partition.

IV. DATA RECOVERY IN PRACTICE

Our objective here is not to implement new tools and
algorithms, but to evaluate the feasibility and scalability of

12www.htc.com/us/support/htc-one-s-t-mobile/howto/315367.html

5

TABLE II
PRACTICAL RECOVERY OF DATA

Storage Extraction Percentage Devices Attack usage Comments
Phone Owner data partition automated pattern matching on third-party 100% contact user to blackmail extraction through default

apps like Facebook or Google (assuming compromising data Phonebook app’s data generally
accounts app is recovered) requires some human intervention

Installed apps data partition automated pattern matching on 100% identify high-value targets /
/data/system/packages.xml adjust forensic strategy based

on easy-to-retrieve app-formatted data
Contacts data partition automated pattern matching on third-party 100% sell in underground markets associating names to contact details

apps like Facebook or WhatsApp (Fig. 7(a)) in Phonebook app data generally
requires some human intervention

Browsing data partition automated pattern matching 100% blackmail user

Credentials data partition automated pattern matching for 100% sell in underground markets Google master token recovered 80%
browser cookies, WiFi (Fig. 7(b)), of the time
Google (Fig. 7(c)) and other apps.

Multimedia data partition, automated file carving (Photorec [3]) for 100% blackmail user
primary SD camera-made images and video

and web thumbnails
Conversations data partition automated pattern matching for 100% blackmail or sell in underground identifying SMS required some

third party messaging apps and emails markets human intervention, emails recovered
in 80% of devices but only a few

attacks. Data on Android smartphones is generally stored in
SQLite databases and text-like files.

To extract SQLite files, we initially investigated the
use of file carving with Scalpel [4]. File carving is the
practice of searching for files by leveraging the knowledge
of their content and structure, rather than relying on file
system metadata13. In practice, we found that the database
file header and its content were not always contiguously
allocated, probably because of repetitive updates. Further-
more, each applications database has a different layout, and
records are not always located contiguously on the partition.
Therefore parsing the data from such fragments is not fully
reliable with simple techniques. So we used SQLite file
carving only as a preliminary step.

We quickly realised that most of the data (including
database files), exhibits specific and distinct formats. For
instance, the list of installed apps is stored in the file
/data/system/packages.xml with a well-defined structure of
the form <package name=“com.mycompany.myapp” code-
Path=“/system/app/myapp.apk” ...>. Therefore we primar-
ily used pattern matching to recover data on all second-hand
phones from Section III-A, and file carving solely to extract
multimedia files.

A. General Results

We hunted for the information shown in Table II in
devices with a flawed Factory Reset. For example, we re-
covered some “Conversations” (SMSes, emails, and/or chats
from messaging apps) in all devices (Column “Percentage
Devices”) using pattern matching (column “Extraction”).
Compromising conversations could be used to blackmail vic-
tims (column “Attack usage”). Gmail app emails were stored
compressed. By searching for relevant headers, we were able
to locate candidates and then decompress them. We found
emails in 80% of our sample devices, but generally only a
few per device (column “Comments”).

13A simple file carver would search for files’ headers and footers. More
advanced ones would also look for file fragment candidates and piece them
together using certain properties of the underlying data.

B. Case Study: Hijacking Google Accounts

To improve usability and user engagement, most smart-
phone apps replace passwords with authentication tokens the
first time a user enters his password. After the first password-
based authentication, users are automatically logged-in with
the authentication token; emails can be retrieved, calendar
notifications downloaded, etc. without user intervention.
These tokens are often stored on non-volatile flash storage
on the data partition. Some Google tokens for the account
username@gmail.com, are shown in Fig. 7(c). The first one,
which we call the “master token”, is the long random string
starting with “AFc”. It gives access to most Google user
data. As a test, we Factory Reset our own phone, then
recovered the master token. We then created the relevant
files and rebooted the phone. After the reboot, the phone
successfully re-synchronised contacts, emails, and so on. We
recovered Google tokens in all devices with flawed Factory
Reset, and the master token 80% of the time. Tokens for
other apps such as Facebook can be recovered similarly. We
stress that we have never attempted to use those tokens to
access anyone’s account.

C. Possible Attackers

Individuals buying devices on auction websites such as
eBay are possible attackers. They need to spend a non-
negligible time to bid and follow up on auctions. Fur-
thermore, they have to pay a few dollars for commis-
sion and shipping fees for each device. So low-value data
like contacts and email addresses do not seem profitable.
Recovery and analysis of conversations and images (to
blackmail victims) would generally require human interven-
tion or more advanced tools, with the possible exception
of browser history where simple keyword search can be
effective. Blackmailing users requires enough devices to hit
compromising data and enough users to hit a gullible mark.
But this requires (i) a significant time investment to bet
on/follow items and (ii) great logistics to buy, process, and
re-sell devices. Therefore we think that only people with

6

(a) Whatsapp contacts with name and phone number. (b) WiFi passwords. (c) Android tokens.

Fig. 7. Example of pattern matching results.

enough time on their hands could make extra cash on top of
an existing income this way. In general, high-value data like
banking credentials appear likely to be the most profitable
criminal option.

Smartphone salesmen in brick-and-mortar shops can re-
duce the cost of device acquisition, since it may be part of
their job to receive second-hand devices and they can scan
these devices without paying auction and shipping costs.
So low-value data may be profitable for them. As it is
common for merchants to talk to customers, they could
also identify higher-than-average-value targets suitable for
blackmail. Attackers who can add forensic software to the
recycling chain may further increase the number of devices
processed, and the amount of low-value data recovered.
Attackers with access to corporate devices could also gain
access to high-value data. On the other hand, shop staff
will be easier for the police to identify and arrest once a
complaint of blackmail is made. Thieves are yet another
category of attackers: data are less likely to be deleted from
a stolen device, so they are out of scope of this paper.

Although a lot of data can be recovered using pattern
matching, this does not necessarily translate into actual
profitability.

V. ALTERNATIVE SANITISATION METHODS

We considered the following methods to mitigate flawed
Factory Resets.

Filling up the partition of interest with random-byte files,
in the hope of overwriting all unallocated space, could be
achieved via third-party non-privileged apps after the built-
in Factory Reset. This would require the app to be installed
manually by users after a Factory Reset is performed.
Otherwise, Google credentials stored on the file system
(necessary to install an app from Google Play) will not be
erased by the procedure. This sanitisation procedure also
adds an additional layer of uncertainty because it uses the
file system rather than direct flash access. File systems
also vary across devices and may be proprietary (such as
Samsung’s RFS). We therefore felt this option would not
scale reliably across devices, and we discarded this method
in our tests.

Overwriting the entire partition “bit-by-bit” once did pro-
vide logical sanitisation for all devices and all partitions we
studied; it is therefore a reliable alternative. The drawback
of this method is that it requires privileged (i.e. root –
see Appendices) access to devices in practice. Therefore it
is likely to put off ordinary users. This method does not

provide thorough digital sanitisation, since the flash is over-
provisioned – but an attacker cannot recover data using
public APIs exposed by the Linux kernel. Furthermore,
the over-provisioning could differ even for instances of the
same device, for example if different grades of flash were
used. Since we are concerned only with massively scalable
attacks, we did not consider this issue further, but firms with
high assurance requirements might have to unless they can
use encryption, which we consider next.

Enabling Full Disk Encryption (FDE) on first use of the
device would be more appropriate for ordinary users if
devices support it. Enabling FDE only before performing
a Factory Reset (as suggested by Google14) may only
provide logical sanitisation, not thorough digital sanitisation
(plain-text data could still be present on the flash as it is
over-provisioned). FDE was introduced in ICS (v4.0.x) so
it cannot help the large number of affected GB (v2.3.x)
devices. On one HTC phone running GB (v2.3.x), we found
an encryption option, but it left all the data behind. We
assume this was a vendor customisation and may only
encrypt allocated space. FDE for the internal SD card is
not supported on all phones, and not all v4.x devices support
FDE on the data partition despite AOSP’s support. As a rule
of thumb, only devices with an emulated internal SD card
inherit the “encryption support” from the data partition when
supported. On supported Android versions, the encryption
key is stored encrypted with a key derived from a salt and
a user-provided PIN (or password). This encrypted blob is
referred to as the “crypto footer” in the AOSP source code.
An attacker who gains access to the crypto footer has enough
information to brute-force the user’s PIN offline. The footer
is stored in a dedicated partition or in the last 16KB of the
data partition – the exact location is configured by vendors
through the “encryptable=” option of the Android fstab file.
In either case, we found that the footer was not erased
after a flawed Factory Reset. Consequently, to logically
sanitise a device with encryption, it is essential to select
a strong password to thwart offline brute-force attacks. As
most people just use a 4-6 digit PIN, it would usually be
trivial to brute-force.

Mobile Anti-Virus (MAV) apps have a “remote wipe”
feature to sanitise data on lost or stolen smartphones. We
refer the reader to a study by Simon and Anderson [5]: at
the time of the publication (2015), they found that remote
wipe functions “are not an alternative to a flawed built-in

14www.bbc.com/news/technology-28264446

7

Factory Reset”.

VI. RECOMMENDATIONS

For vendors, our recommendations are to use a recent
eMMC with support for digital sanitisation, and to properly
expose it in the Bootloader, Recovery and Android kernels.
More generally, previous research has shown that vendors’
customisations are a source of security problems [6], [7], [8].
Therefore, we provide the following guidelines to the AOSP
developers, hoping they can reduce the chance of slip-ups
in the future:
1) Use an emulated primary SD card: this ensures that only

one partition needs to be properly sanitised on the phone,
reducing the space for mistakes.

2) Erase the entire partition, not only the part explicitly
used by the file system. This reduces the chance of
unfortunate surprises due to eMMC wear-levelling block
management and deletion implementation problems.

3) Implement sanitisation of all partitions in one place only;
for example in Recovery mode or Bootloader mode;
and have Settings simply have the phone reboot into
the appropriate mode with the right parameters. Having
the relevant code in one place eases testing and reduces
possible mistakes.

4) Expose an option to have the Recovery mode perform
a sanitisation validation, by reading back the entire
partition and checking it.

5) Provide test units for vendors to test sanitisation in the
Android Compliance Suite Test (CST). Have the tests
fail if secure sanitisation fails, e.g. if not supported or if
the verification step 4 fails.

6) Do not resort to an insecure sanitisation if the secure one
fails - as it is currently the case15.

7) Before a Factory Reset takes place, a broadcast Intent
could be sent to apps, so that they could take necessary
steps to invalidate their credentials – assuming that
Internet connection is available.

8) Store the encryption metadata at the start of the data
partition in a crypto header, rather than at the end in a
crypto footer. This reduces the risk of dictionary attacks
in the event of flawed sanitisation, since the first blocks
are generally overwritten during partition formatting.
Storing the metadata on the data partition also ensures
that there is only one partition to take care of, as above.

VII. RELATED WORK

Some previous studies looked at data recovery and users’
practices. Garfinkel and Shelat [9] studied sanitisation prac-
tices of second-hand magnetic hard disks and found no
standard practice in 2003, with only 9% of disk properly
sanitised. Breeuwsma et al. [10] discussed data acquisition
using low-level imaging techniques. Luke and Stokes [11],
Billard and Hauri [12] and Lewis and Kuhn [13, Chapter 5]
devised techniques to recover respectively generic files and

15source.android.com/devices/tech/security/best-practices.html

video files from flash-based media. Walls et al. [14], [15] de-
vised algorithms for forensic triage of non-sanitised feature
phones and smartphones.

Other studies looked at how secure deletion can be
performed. Wei et al. [2] empirically assessed the reliability
of hard drive techniques and of the SSDs’ built-in saniti-
sation commands. They found that all existing hard drive
techniques for individual file sanitisation fail; this was also
reported by Freeman and Woodward [16]. Gutmann [17]
looked at techniques to achieve analog sanitisation on
hard drives, and devised the well-known 35-pass overwrite
technique. File sanitisation techniques generally rely on
data encryption: storage sanitisation is then performed by
securely erasing keys using built-in commands or raw flash
access [18], [19], [20].

On Android, Mahajan et al. [21] used commercial soft-
ware on 5 different devices to recover Viber and Whatsapp
chats from non-sanitised Android smartphones. Simon and
Anderson [5] studied the reliability of remote wipe functions
provided by mobile anti-virus apps.

To the best of our knowledge, this is the first comprehen-
sive study of Android Factory Reset functions.

VIII. CONCLUSION AND FUTURE WORK

We presented the first thorough analysis of Android
factory reset functions by studying 21 Android smartphones
from 5 vendors running Android versions v2.3.x to v4.3.
We presented a detailed and chronological analysis of flaws
across Android versions. We tracked these issues to (i)
Android failures, (ii) inadequate vendor upgrade practices,
and (iii) improper vendor integration and testing practices.

Future research should continue to investigate the level
of security provided by smartphones’ built-in sanitisation
functions, to see whether the situation improves following
the disclosures reported here. It could also investigate the
level of security provided by these, i.e. whether they provide
digital sanitisation or not.

IX. ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their valu-
able suggestions and comments. This work was supported
by the Samsung Electronics Research Institute (SERI) [grant
number RG67002].

REFERENCES

[1] R. Schwamm and N. C. Rowe, “Effects of the factory reset on
mobile devices,” in The Journal of Digital Forensics, Security and
Law (JDFSL), 2014.

[2] M. Y. C. Wei, L. M. Grupp, F. E. Spada, and S. Swanson, “Reliably
erasing data from flash-based solid state drives.,” in FAST, vol. 11,
pp. 8–8, 2011.

[3] “Photorec.” http://www.cgsecurity.org/wiki/PhotoRec.
[4] G. G. Richard III and V. Roussev, “Scalpel: A frugal, high perfor-

mance file carver.,” in DFRWS, 2005.
[5] L. Simon and R. Anderson, “Security analysis of consumer-grade

anti-theft solutions provided by android mobile anti-virus apps,” in
4th Mobile Security Technologies Workshop (MoST), 2015.

[6] A. Pereira, M. Correia, and P. Brandão, “Usb connection vulnerabili-
ties on android smartphones: Default and vendors customizations,” in
Communications and Multimedia Security, pp. 19–32, Springer, 2014.

8

http://www.cgsecurity.org/wiki/PhotoRec

[7] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The peril of
fragmentation: Security hazards in android device driver customiza-
tions,” in IEEE Symposium on Security and Privacy, 2014.

[8] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact
of vendor customizations on android security,” in Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications
security, pp. 623–634, ACM, 2013.

[9] S. L. Garfinkel and A. Shelat, “Remembrance of data passed: A study
of disk sanitization practices,” IEEE Security & Privacy, vol. 1, no. 1,
pp. 17–27, 2003.

[10] M. Breeuwsma, M. De Jongh, C. Klaver, R. Van Der Knijff, and
M. Roeloffs, “Forensic data recovery from flash memory,” Small Scale
Digital Device Forensics Journal, vol. 1, no. 1, pp. 1–17, 2007.

[11] J. Luck and M. Stokes, “An integrated approach to recovering deleted
files from nand flash data,” Small Scale Digital Device Forensics
Journal, vol. 2, no. 1, pp. 1941–6164, 2008.

[12] D. Billard and R. Hauri, “Making sense of unstructured flash-memory
dumps,” in Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 1579–1583, ACM, 2010.

[13] A. B. Lewis, “Reconstructing compressed photo and video data,”
Tech. Rep. UCAM-CL-TR-813, University of Cambridge, Computer
Laboratory, Feb 2012.

[14] R. J. Walls, E. Learned-Miller, and B. N. Levine, “Forensic Triage
for Mobile Phones with DEC0DE,” in Proc. USENIX Security Sym-
posium, Aug 2011.

[15] S. Varma, R. J. Walls, B. Lynn, and B. N. Levine, “Efficient Smart
Phone Forensics Based on Relevance Feedback,” in Proc. ACM Work-
shop on Security and Privacy in Smartphones and Mobile Devices,
Nov 2014.

[16] M. Freeman and A. Woodward, “Secure state deletion: Testing the
efficacy and integrity of secure deletion tools on solid state drives,”
in Australian Digital Forensics Conference, p. 65, 2009.

[17] P. Gutmann, “Secure deletion of data from magnetic and solid-state
memory,” in Proceedings of the Sixth USENIX Security Symposium,
San Jose, CA, vol. 14, 1996.

[18] J. Lee, J. Heo, Y. Cho, J. Hong, and S. Y. Shin, “Secure deletion for
nand flash file system,” in Proceedings of the 2008 ACM symposium
on Applied computing, pp. 1710–1714, ACM, 2008.

[19] B. Lee, K. Son, D. Won, and S. Kim, “Secure data deletion for usb
flash memory,” J. Inf. Sci. Eng., vol. 27, no. 3, pp. 933–952, 2011.

[20] J. Reardon, S. Capkun, and D. A. Basin, “Data node encrypted
file system: Efficient secure deletion for flash memory,” in USENIX
Security Symposium, pp. 333–348, 2012.

[21] A. Mahajan, M. Dahiya, and H. Sanghvi, “Forensic analysis of
instant messenger applications on android devices,” arXiv preprint
arXiv:1304.4915, 2013.

[22] T. Vidas, C. Zhang, and N. Christin, “Toward a general collection
methodology for android devices,” Digit. Investig., vol. 8, pp. S14–
S24, Aug. 2011.

X. APPENDICES

A. List of devices

The list of devices for which we show results in Sec-
tion III:

Froyo (v2.2.x): HTC Nexus One, Motorola Defy.
Gingerbread (GB, v2.3.x): Galaxy S Plus, HTC Wildfire

S, HTC Desire S, Galaxy S, Galaxy S2, Galaxy ACE, LG
Optimus L3, Nexus S.

Ice Cream Sandwich (ICS, v4.0.x): HTC Sensation,
Galaxy S3, HTC Desire C, Galaxy S2, LG Optimus L5.

Jelly Bean (JB, v4.[1-3]): Nexus 4 (x2), Motorola Razr
I, LG Optimus L7, Nexus S, Galaxy Note 1, HTC One S,
HTC One X.

Other devices in our sample for which we do not present
results (too few devices) include the Motorola Defy (Eclair,
v2.1.x), Nexus 4 and Nexus 5 (KitKat, v4.4).

B. Pattern writing and validation from Section III-A

The following steps used to test each partition of interest
are detailed below:

Root Access: To be able to write to a partition bit-by-bit,
we first needed low-level access to the flash storage. In the
case of yaffs2, this means access to the raw flash, while for
an eMMC it means access to the logical blocks. Android
does not give such low-level access to apps. Rather, one
needs to “root” the device. We achieved this with known root
exploits or by booting a custom Recovery – in the latter we
would backup the stock Recovery first. Previous work [22]
suggested loading custom code via the Bootloader without
requiring root access within the Android OS. However this
only works on a handful of devices today.

Writing Patterns: We wrote identifying patterns on the
entire partition. Each pattern was 1/4th the device block
size. For external storage, we wrote the patterns with the An-
droid OS. For the data partition, devices would sometimes
crash and reboot: in this case we resorted to using a custom
Recovery booted in the previous step. All patterns are
delimited with common 10-byte HEADERs and FOOTERs
(Fig. 9), and uniquely identified by a 4-byte counter (ID). We
filled each pattern with random bytes (RANDOM) to avoid
the underlying chip using compression, and added a 16-byte
md5 DIGEST over the RANDOM bytes for verification.
Pattern generation was done on a laptop, and sent to the
phone via USB with the Android Debug Bridge (adb) utility
shipped with the Android SDK (Fig. 8).

laptop: forward port 12345 to device
$ adb forward tcp:12345 tcp:12345

device
$ /dev/busybox nc -l -p 12345 | \
/dev/busybox dd of=/dev/block/mmcblk0p2

laptop: pipe pattern to local port
$./echo_pattern | nc localhost 12345

Fig. 8. Pattern writing for Galaxy S’s data partition (i9000). Reading a
partition is achieved with similar commands.

HEADER ID DIGEST RANDOM ID FOOTER

Fig. 9. Pattern written to a partition of interest.

Sanitisation: We performed a wipe with one of the
recommended options given by vendors16, i.e. (i) the Factory
Reset in Settings, and (ii) in the Recovery/Bootloader mode.
Because of the lack of formatting and file system introduced
by our patterns, some devices would fail to perform the wipe
on external storage. In this case, we first re-formatted them
with the built-in Settings option. When we had installed a
custom Recovery, we would also take care of re-installing
the original one prior to the wipe (with the backup).

16Alcatel, BlackBerry, Apple, HTC, Samsung, Huawei, Nokia, Mo-
torola, Lenovo, Sony, LG

9

Imaging: We imaged the entire partition with similar
commands as presented in Fig. 8.

Validation: The last step is the recovery and validation
of patterns. We searched for non-deleted pattern candidates
using their known header and footer, then validated each
candidate by verifying the digest over the random data. We
also investigated which percentage of the disk was properly
sanitised (i.e. zeros for an eMMC or ones for a raw flash),
in order to confirm that it was consistent with the number
of patterns recovered.

10

	Introduction
	Technical Background
	Flash & File Systems
	Secure Deletion Levels
	Linux Kernel Deletion APIs
	Data Partitions

	Analysis of Android Factory Resets
	Methodology
	Results and Discussion
	Preliminary Results
	Sanitisation of the data partition
	Sanitisation of the Primary SD Card
	Sanitisation of the Secondary SD Card
	Vendor Customisation Inconsistencies
	eMMC implementation of logical sanitisation
	Number of logical blocks to sanitise

	Data Recovery in Practice
	General Results
	Case Study: Hijacking Google Accounts
	Possible Attackers

	Alternative Sanitisation Methods
	Recommendations
	Related Work
	Conclusion and Future Work
	Acknowledgements
	References
	Appendices
	List of devices
	Pattern writing and validation from Section III-A

