Protocols

It is impossible to foresee the consequences of being clever.
— Christopher Strachey

Every thing secret degenerates, even the administration of justice; nothing is safe
that does not show how it can bear discussion and publicity.

— Lord Acton

3.1 Introduction

If security engineering has a deep unifying theme, it is the study of security
protocols. We’ve come across a few protocols informally already — I've men-
tioned challenge-response authentication and Kerberos. In this chapter, I'll
dig down into the details. Rather than starting off with a formal definition of
a security protocol, I will give a rough indication and then refine it using a
number of examples. As this is an engineering book, I will also give many
examples of how protocols fail.

A typical security system consists of a number of principals such as people,
companies, computers and magnetic card readers, which communicate using
a variety of channels including phones, email, radio, infrared, and by carrying
data on physical devices such as bank cards and transport tickets. The security
protocols are the rules that govern these communications. They are typically
designed so that the system will survive malicious acts such as people telling
lies on the phone, hostile governments jamming radio, or forgers altering
the data on train tickets. Protection against all possible attacks is often too
expensive, so protocols are typically designed under certain assumptions
about the threats. For example, the logon protocol that consists of a user

63



64

Chapter 3 = Protocols

entering a password into a machine assumes that she can enter it into the right
machine. In the old days of hard-wired terminals in the workplace, this was
reasonable; now that people log on to websites over the Internet, it is much
less so. Evaluating a protocol thus involves answering two questions: first, is
the threat model realistic? Second, does the protocol deal with it?

Protocols may be extremely simple, such as swiping a badge through a
reader in order to enter a building. They often involve interaction, and do
not necessarily involve technical measures like cryptography. For example,
when we order a bottle of fine wine in a restaurant, the standard wine-waiter
protocol provides some privacy (the other diners at our table don’t learn the
price), some integrity (we can be sure we got the right bottle and that it wasn’t
switched for, or refilled with, cheap plonk) and non-repudiation (it’s hard for
the diner to complain afterwards that the wine was off). Blaze gives other
examples from applications as diverse as ticket inspection, aviation security
and voting in [185].

At the technical end of things, protocols can be much more complex. The
world’s bank card payment system has dozens of protocols specifying how
customers interact with cash machines and retail terminals, how a cash machine
or terminal talks to the bank that operates it, how the bank communicates with
the network operator, how money gets settled between banks, how encryption
keys are set up between the various cards and machines, and what sort of
alarm messages may be transmitted (such as instructions to capture a card).
All these protocols have to work together in a large and complex system.

Often a seemingly innocuous design feature opens up a serious flaw. For
example, a number of banks encrypted the customer’s PIN using a key known
only to their central computers and cash machines, and wrote it to the card
magnetic strip. The idea was to let the cash machine verify PINs locally, which
saved on communications and even allowed a limited service to be provided
when the cash machine was offline. After this system had been used for many
years without incident, a programmer (who was playing around with a card
reader used in a building access control system) discovered that he could
alter the magnetic strip of his own bank card by substituting his wife’s bank
account number for his own. He could then take money out of her account
using the modified card and his own PIN. He realised that this enabled him
to loot any other customer’s account too, and went on to steal hundreds of
thousands over a period of years. The affected banks had to spend millions
on changing their systems. And some security upgrades can take years; at
the time of writing, much of Europe has moved from magnetic-strip cards to
smartcards, while America has not. Old and new systems have to work side
by side so that European cardholders can buy from American stores and vice
versa. This also opens up opportunities for the crooks; clones of European
cards are often used in magnetic-strip cash machines in other countries, as the
two systems’ protection mechanisms don’t quite mesh.



3.2 Password Eavesdropping Risks

65

So we need to look systematically at security protocols and how they fail. As
they are widely deployed and often very badly designed, I will give a number
of examples from different applications.

3.2 Password Eavesdropping Risks

Passwords and PINs are still the foundation on which much of computer
security rests, as they are the main mechanism used to authenticate humans
to machines. I discussed their usability and ‘human interface” problems of
passwords in the last chapter. Now let us consider some more technical
attacks, of the kind that we have to consider when designing more general
protocols that operate between one machine and another. A good case study
comes from simple embedded systems, such as the remote control used to open
your garage or to unlock the doors of cars manufactured up to the mid-1990’s.
These primitive remote controls just broadcast their serial number, which also
acts as the password.

An attack that became common was to use a ‘grabber’, a device that would
record a code broadcast locally and replay it later. These devices, seemingly
from Taiwan, arrived on the market in about 1995; they enabled thieves lurking
in parking lots to record the signal used to lock a car door and then replay it
to unlock the car once the owner had left'.

One countermeasure was to use separate codes for lock and unlock. But
this is still not ideal. First, the thief can lurk outside your house and record
the unlock code before you drive away in the morning; he can then come
back at night and help himself. Second, sixteen-bit passwords are too short.
It occasionally happened that people found they could unlock the wrong car
by mistake (or even set the alarm on a car whose owner didn’t know he
had one [217]). And by the mid-1990’s, devices appeared which could try all
possible codes one after the other. A code will be found on average after about
2" tries, which at ten per second takes under an hour. A thief operating in a
parking lot with a hundred vehicles within range would be rewarded in less
than a minute with a car helpfully flashing its lights.

So another countermeasure was to double the length of the password from
16 to 32 bits. The manufacturers proudly advertised ‘over 4 billion codes’. But
this only showed they hadn’t really understood the problem. There was still

!With garage doors it's even worse. A common chip is the Princeton PT2262, which uses 12
tri-state pins to encode 312 or 531,441 address codes. However implementers often don’t read
the data sheet carefully enough to understand tri-state inputs and treat them as binary instead,
getting 2!2. Many of them only use eight inputs, as the other four are on the other side of the
chip. And as the chip has no retry-lockout logic, an attacker can cycle through the combinations
quickly and open your garage door after 27 attempts on average.



66

Chapter 3 = Protocols

only one code (or two codes) for each car, and although guessing was now
impractical, grabbers still worked fine.

Using a serial number as a password has a further vulnerability: there may
be many people with access to it. In the case of a car, this might mean all the
dealer staff, and perhaps the state motor vehicle registration agency. Some
burglar alarms have also used serial numbers as master passwords, and here
it’s even worse: the serial number may appear on the order, the delivery note,
the invoice and all the other standard commercial paperwork.

Simple passwords are sometimes the appropriate technology, even when
they double as serial numbers. For example, my monthly season ticket for
the swimming pool simply has a barcode. I'm sure I could make a passable
forgery with our photocopier and laminating machine, but as the turnstile is
attended and the attendants get to know the ‘regulars’, there is no need for
anything more expensive. My card keys for getting into the laboratory where
I work are slightly harder to forge: the one for student areas uses an infrared
barcode, while the card for staff areas has an RFID chip that states its serial
number when interrogated over short-range radio. Again, these are probably
quite adequate — our more expensive equipment is in rooms with fairly good
mechanical door locks. But for things that lots of people want to steal, like cars,
a better technology is needed. This brings us to cryptographic authentication
protocols.

3.3 Who Goes There? — Simple Authentication

A simple example of an authentication device is an infrared token used in some
multistorey parking garages to enable subscribers to raise the barrier. This first
transmits its serial number and then sends an authentication block consisting
of the same serial number, followed by a random number, all encrypted using
a key which is unique to the device. We will postpone discussion of how to
encrypt data and what properties the cipher should have; we will simply use
the notation {X}x for the message X encrypted under the key K.

Then the protocol between the access token in the car and the parking garage
can be written as:

T— G: T,{T,N}KT

This is the standard protocol engineering notation, and can be a bit confusing
at first, so we'll take it slowly.

The in-car token sends its name T followed by the encrypted value of
T concatenated with N, where N stands for ‘number used once’, or nonce.
Everything within the braces is encrypted, and the encryption binds T and
N together as well as obscuring their values. The purpose of the nonce is
to assure the recipient that the message is fresh, that is, it is not a replay of



3.3 Who Goes There? — Simple Authentication

67

an old message that an attacker observed. Verification is simple: the parking
garage server reads T, gets the corresponding key KT, deciphers the rest of the
message, checks that the nonce N has not been seen before, and finally that
the plaintext contains T (which stops a thief in a car park from attacking all
the cars in parallel with successive guessed ciphertexts).

One reason many people get confused is that to the left of the colon, T
identifies one of the principals (the token which represents the subscriber)
whereas to the right it means the name (that is, the serial number) of the token.
Another is that once we start discussing attacks on protocols, we can suddenly
start finding that the token T’s message intended for the parking garage G was
actually intercepted by the freeloader F and played back at some later time. So
the notation is unfortunate, but it’s too well entrenched now to change easily.
Professionals often think of the T — G to the left of the colon is simply a hint
as to what the protocol designer had in mind.

The term nonce can mean anything that guarantees the freshness of a
message. A nonce can, according to the context, be a random number, a serial
number, a random challenge received from a third party, or even a timestamp.
There are subtle differences between these approaches, such as in the level
of resistance they offer to various kinds of replay attack, and they increase
system complexity in different ways. But in very low-cost systems, the first
two predominate as it tends to be cheaper to have a communication channel
in one direction only, and cheap devices usually don’t have clocks.

Key management in such devices can be very simple. In a typical garage
token product, each token’s key is simply its serial number encrypted under a
global master key KM known to the central server:

KT = {T}xm

This is known as key diversification. It's a common way of implementing
access tokens, and is very widely used in smartcard-based systems as well.
But there is still plenty of room for error. One old failure mode that seems
to have returned is for the serial numbers not to be long enough, so that
someone occasionally finds that their remote control works for another car in
the car park as well. Having 128-bit keys doesn’t help if the key is derived by
encrypting a 16-bit serial number.

Weak ciphers also turn up. One token technology used by a number of car
makers in their door locks and immobilisers employs a block cipher known as
Keeloq, which was designed in the late 1980s to use the minimum number of
gates; it consists of a large number of iterations of a simple round function.
However in recent years an attack has been found on ciphers of this type, and
it works against Keelogq; it takes about an hour’s access to your key to collect
enough data for the attack, and then about a day on a PC to process it and
recover the embedded cryptographic key [172]. You might not think this a
practical attack, as someone who gets access to your key can just drive off with



68

Chapter 3 = Protocols

your car. However, in some implementations, there is also a terrible protocol
vulnerability, in that the key diversification is not done using the block cipher
itself, but using exclusive-or: KT = T @& KM. So once you have broken a single
vehicle key for that type of car, you can immediately work out the key for any
other car of that type. The researchers who found this attack suggested ‘Soon,
cryptographers will drive expensive cars.’

Indeed protocol vulnerabilities usually give rise to more, and simpler,
attacks than cryptographic weaknesses do. At least two manufacturers have
made the mistake of only checking that the nonce is different from last time,
so that given two valid codes A and B, the series ABABAB... was interpreted
as a series of independently valid codes. A thief could open a car by replaying
the last-but-one code. A further example comes from the world of prepayment
utility meters. Over a million households in the UK, plus many millions in
developing countries, have an electricity or gas meter that accepts encrypted
tokens; the householder buys a token, takes it home and inserts it into the
meter, which then dispenses the purchased quantity of energy. One electricity
meter widely used in South Africa checked only that the nonce in the decrypted
command was different from last time. So the customer could charge the meter
up to the limit by buying two low-value power tickets and then repeatedly
feeding them in one after the other [59].

So the question of whether to use a random number or a counter is not as easy
as it might seem [316]. If you use random numbers, the lock has to remember
a reasonable number of past codes. You might want to remember enough of
them to defeat the valet attack. Here, someone who has temporary access to the
token — such as a valet parking attendant — can record a number of access
codes and replay them later to steal your car. Providing enough nonvolatile
memory to remember hundreds or even thousands of old codes might push
you to a more expensive microcontroller, and add a few cents to the cost of
your lock.

If you opt for counters, the problem is synchronization. The key may be
used for more than one lock; it may also be activated repeatedly by jostling
against something in your pocket (I once took an experimental token home
where it was gnawed by my dogs). So there has to be a way to recover after the
counter has been incremented hundreds or possibly even thousands of times.
This can be turned to advantage by allowing the lock to ‘learn’, or synchronise
on, a key under certain conditions; but the details are not always designed
thoughtfully. One common product uses a sixteen bit counter, and allows
access when the deciphered counter value is the last valid code incremented
by no more than sixteen. To cope with cases where the token has been used
more than sixteen times elsewhere (or gnawed by a family pet), the lock will
open on a second press provided that the counter value has been incremented



3.3 Who Goes There? — Simple Authentication

69

between 17 and 32,767 times since a valid code was entered (the counter rolls
over so that 0 is the successor of 65,535). This is fine in many applications, but
a thief who can get six well-chosen access codes — say for values 0, 1, 20,000,
20,001, 40,000 and 40,001 — can break the system completely. So you would
have to think hard about whether your threat model includes a valet able to
get access codes corresponding to chosen counter values, either by patience or
by hardware hacking.

A recent example of design failure comes from TinyOS, an operating system
used in sensor networks based on the IEEE 802.15.4 ad-hoc networking
standard. The TinySec library commonly used for security protocols contains
not one, but three counters. The first is lost as the radio chip driver overwrites
it, the second isn’t remembered by the receiver, and although the third is
functional, it’s used for reliability rather than security. So if someone monkeys
with the traffic, the outcome is ‘error’ rather than ‘alarm’, and the network will
resynchronise itself on a bad counter [340].

So designing even a simple token authentication mechanism is not at all
straightforward. There are many attacks that do not involve ‘breaking’ the
encryption. Such attacks are likely to become more common as cryptographic
authentication mechanisms proliferate, many of them designed by program-
mers who thought the problem was easy and never bothered to read a book
like this one. And there are capable agencies trying to find ways to defeat
these remote key entry systems; in Thailand, for example, Muslim insurgents
use them to detonate bombs, and the army has responded by deploying
jammers [1000].

Another important example of authentication, and one that’s politically con-
tentious for different reasons, is ‘accessory control’. Many printer companies
embed authentication mechanisms in printers to ensure that genuine toner
cartridges are used. If a competitor’s product is loaded instead, the printer
may quietly downgrade from 1200 dpi to 300 dpi, or simply refuse to work at
all. Mobile phone vendors make a lot of money from replacement batteries,
and now use authentication protocols to spot competitors” products so they
can be blocked or even drained more quickly. All sorts of other industries are
getting in on the act; there’s talk in the motor trade of cars that authenticate
their major spare parts. I'll discuss this in more detail in Chapter 22 along
with copyright and rights management generally. Suffice it to say here that
security mechanisms are used more and more to support business models,
by accessory control, rights management, product tying and bundling. It is
wrong to assume blindly that security protocols exist to keep ‘bad” guys ‘out’.
They are increasingly used to constrain the lawful owner of the equipment in
which they are built; their purpose may be of questionable legality or contrary
to public policy.



70

Chapter 3 = Protocols

3.3.1 Challenge and Response

Most cars nowadays have remote-controlled door unlocking, though most
also have a fallback metal key to ensure that you can still get into your car
even if the RF environment is noisy. Many also use a more sophisticated two-
pass protocol, called challenge-response, to actually authorise engine start. As
the car key is inserted into the steering lock, the engine controller sends a
challenge consisting of a random n-bit number to the key using short-range
radio. The car key computes a response by encrypting the challenge. So,
writing E for the engine controller, T for the transponder in the car key, K
for the cryptographic key shared between the transponder and the engine
controller, and N for the random challenge, the protocol may look something
like:

E—T: N
T—E: {T,Nx

This is still not bulletproof.

In one system, the random numbers generated by the engine management
unit turned out to be predictable, so it was possible for a thief to interrogate the
key in the car owner’s pocket, as he passed, with the anticipated next challenge.
In fact, many products that incorporate encryption have been broken at some
time or another because their random number generators weren’t random
enough [533, 395]. The fix varies from one application to another. It’s possible
to build hardware random number generators using radioactive decay, but
this isn’t common because of health and safety concerns. There are various
sources of usable randomness in large systems such as PCs, such as the small
variations in the rotation speed of the hard disk caused by air turbulence [358].
PC software products often mix together the randomness from a number of
environmental sources such as network traffic and keystroke timing and from
internal system sources [567]; and the way these sources are combined is often
critical [703]. But in a typical embedded system such as a car lock, the random
challenge is generated by encrypting a counter using a special key which is
kept inside the device and not used for any other purpose.

Locks are not the only application of challenge-response protocols. In HTTP
Digest Authentication, a web server challenges a client or proxy, with whom
it shares a password, by sending it a nonce. The response consists of the
hash of the nonce, the password, and the requested URI [493]. This provides a
mechanism that’s not vulnerable to password snooping. It’s used, for example,
to authenticate clients and servers in SIP, the protocol for Voice-Over-IP
(VOIP) telephony. It is much better than sending a password in the clear,
but suffers from various weaknesses — the most serious being middleperson
attacks, which I'll discuss shortly.



3.3 Who Goes There? — Simple Authentication

71

A much more visible use of challenge-response is in two-factor authentication.
Many organizations issue their staff with password generators to let them
log on to corporate computer systems [1354]. These may look like calculators
(and some even function as calculators) but their main function is as follows.
When you want to log in to a machine on the network, you call up a logon
screen and are presented with a random challenge of maybe seven digits. You
key this into your password generator, together with a PIN of maybe four
digits. The device encrypts these eleven digits using a secret key shared with
the corporate security server, and displays the first seven digits of the result.
You enter these seven digits as your password. This protocol is illustrated in
Figure 3.1. If you had a password generator with the right secret key, and you
entered the PIN right, and you typed in the result correctly, then the corporate
computer system lets you in. But if you do not have a genuine password
generator for which you know the PIN, your chance of logging on is small.

Formally, with S for the server, P for the password generator, PIN for the
user’s Personal Identification Number that bootstraps the password generator,
U for the user and N for the random nonce:

S—UuU: N

U— P: N,PIN
P— U: {N,PIN}x
U— S: {N,PIN}x

{N, PIN}¢

Figure 3.1: Password generator use



72

Chapter 3 = Protocols

These devices appeared from the early 1980s and caught on first with phone
companies, then in the 1990s with banks for use by staff. There are simplified
versions that don’t have a keyboard, but just generate a new access code every
minute or so by encrypting a counter: the RSA SecurlD is the best known.
One sector after another has been adopting authentication tokens of one kind
or another to replace or supplement passwords; the US Defense Department
announced in 2007 that the introduction of an authentication system based
on the DoD Common Access Card had cut network intrusions by 46% in the
previous year [225].

The technology is now starting to spread to the customer side of things. By
2001, password generators were used by some exclusive private banks, such
as Coutts, to authenticate their online customers. These banks never suffered
any phishing fraud. By 2006, some banks in the Netherlands and Scandinavia
had rolled out the technology to all their millions of customers; then the frauds
started. The phishermen typically use real-time man-in-the-middle attacks
(which TI'll describe in the next section) to take over a session once the user
has authenticated herself to the bank. As of late 2007, some banks in the
UK and elsewhere in Europe have been introducing the Chip Authentication
Program (CAP), which is implemented by giving bank customers a calculator
that uses their bank card to do crypto?. This calculator, when loaded with a
bank card, will ask for the customer’s PIN and, if it’s entered correctly, will
compute a response code based on either a counter (as a one-off authentication
code for a card transaction, or a one-step logon to a banking website) or a
challenge (for a two-step logon). There is also a third mode of operation: if
session takeover becomes a problem, the CAP calculator can also be used to
authenticate transaction data. In this case, it’s planned to have the customer
enter the amount and the last eight digits of the payee account number into
her CAP calculator.

But the result might not be as good in banking as it has been in the armed
forces. First, when your wallet is stolen the thief might be able to read your
PIN digits from the calculator — they will be the dirty and worn keys. If you
just use one bank card, then the thief’s chance of guessing your PIN in 3 tries
has just come down from about 1 in 3000 to about 1 in 10. Second, when you
use your card in a Mafia-owned shop (or in a shop whose terminals have been
quietly reprogrammed without the owner’s knowledge), the bad guys have
everything they need to loot your account. Not only that — they can compute
a series of CAP codes to give them access in the future, and use your account
for wicked purposes such as money laundering. Third, someone who takes
your bank card from you at knifepoint can now verify that you’'ve told them

2Bank cards in many European countries have an EMV smartcard chip on them, and new UK
bank cards have software to compute authentication codes as well as to operate ATMs and shop
terminals.



3.3 Who Goes There? — Simple Authentication

73

the right PIN. A further problem is that the mechanisms can be used in a
range of protocols; if you have to give a one-off authentication code over the
phone to buy a book with your bank card, and the bookseller can then use
that code to log on to your bank, it’s clearly a bad thing. A deeper problem
is that once lots of banks use one-time passwords, the phishermen will just
rewrite their scripts to do real-time man-in-the-middle attacks. These have
already been used against the early adopter banks in the Netherlands and
Scandinavia. To see how they work, we will now look at a military example.

3.3.2 The MIG-in-the-Middle Attack

The ever-increasing speeds of warplanes in the 1930s and 1940s, together
with the invention of the jet engine, radar and rocketry, made it ever more
difficult for air defence forces to tell their own craft apart from the enemy’s. This
led to a serious risk of ‘fratricide’ — people shooting down their colleagues
by mistake — and drove the development of systems to ‘identify-friend-or-
foe” (IFF). These were first fielded in World War II, and in their early form
enabled an airplane illuminated by radar to broadcast an identifying number
to signal friendly intent. In 1952, this system was adopted to identify civil
aircraft to air traffic controllers and, worried about the loss of security once
it became widely used, the U.S. Air Force started a research programme to
incorporate cryptographic protection in the system. Nowadays, the typical air
defense system sends random challenges with its radar signals, and friendly
aircraft have equipment and keys that enable them to identify themselves
with correct responses. The chapter on electronic warfare has more details on
modern systems.

It’s tricky to design a good IFF system. One of the problems is illustrated
by the following story, which I heard from an officer in the South African
Air Force (SAAF). After it was published in the first edition of this book,
the story was disputed —as I'll discuss below. Be that as it may, similar
games have been played with other electronic warfare systems since World
War 2. The ‘Mig-in-the-middle” story has in any event become part of the
folklore, and it nicely illustrates how attacks can be carried out in real time on
challenge-response authentication protocols.

In the late 1980’s, South African troops were fighting a war in northern
Namibia and southern Angola. The goals were to keep Namibia under white
rule, and impose a client government (UNITA) on Angola. Because the South
African Defence Force consisted largely of conscripts from a small white
population, it was important to limit casualties, so most South African soldiers
remained in Namibia on policing duties while the fighting to the north was
done by UNITA troops. The role of the SAAF was twofold: to provide tactical
support to UNITA by bombing targets in Angola, and to ensure that the
Angolans and their Cuban allies did not return the compliment in Namibia.



74

Chapter 3 = Protocols

Suddenly, the Cubans broke through the South African air defenses and
carried out a bombing raid on a South African camp in northern Namibia,
killing a number of white conscripts. This proof that their air supremacy had
been lost helped the Pretoria government decide to hand over Namibia to the
insurgents — itself a huge step on the road to majority rule in South Africa
several years later. The raid may also have been the last successful military
operation ever carried out by Soviet bloc forces.

Some years afterwards, a SAAF officer told me how the Cubans had pulled
it off. Several MIGs had loitered in southern Angola, just north of the South
African air defense belt, until a flight of SAAF Impala bombers raided a target
in Angola. Then the MIGs turned sharply and flew openly through the SAAF’s
air defenses, which sent IFF challenges. The MIGs relayed them to the Angolan
air defense batteries, which transmitted them at a SAAF bomber; the responses
were relayed back in real time to the MIGs, who retransmitted them and were
allowed through — as in Figure 3.2. According to my informant, this had a
significant effect on the general staff in Pretoria. Being not only outfought by
black opponents, but actually outsmarted, was not consistent with the world
view they had held up till then.

After this tale was published in the first edition of my book, I was contacted
by a former officer in SA Communications Security Agency who disputed the
story’s details. He said that their IFF equipment did not use cryptography
yet at the time of the Angolan war, and was always switched off over enemy
territory. Thus, he said, any electronic trickery must have been of a more
primitive kind. However, others tell me that "‘Mig-in-the-middle” tricks were
significant in Korea, Vietnam and various Middle Eastern conflicts.

In any case, the tale illustrates the basic idea behind an attack known
to the cryptographic community as the man-in-the-middle or (more recently)
the middleperson attack. It applies in a straightforward way to the challenge-
response authentication performed by password calculators: the phishing site
invites the mark to log on and simultaneously opens a logon session with his
bank. The bank sends a challenge; the phisherman relays this to the mark,
who uses his device to respond to it; the phisherman relays it to the bank,
and is now authenticated to the bank as the mark. This is why, as I discussed
above, European banks are introducing not just a simple response to a single
challenge, but an authentication code based on input fields such as the amount,
the payee account number and a transaction sequence number.

However, once the protocol-level vulnerabilities are fixed by including all
the transaction data, the big problem will be usability. If it takes two minutes
and the entry of dozens of digits to make a payment, then a lot of customers
will get digits wrong, give up, and then either call the call center or send paper
checks — undermining the cost savings of online banking. Also, the bad guys
will be able to exploit the fallback mechanisms, perhaps by spoofing customers



3.3 Who Goes There? — Simple Authentication

75

N?

ANGOLA

MIG

SAAF

NAMIBIA

Figure 3.2: The MIG-in-the middle attack

into calling voice phishing phone numbers that run a middleperson attack
between the customer and the call center.

We will come across the man-in-the-middle attack again and again in
applications ranging from pay-TV to Internet security protocols. It even
applies in online gaming. As the mathematician John Conway once remarked,
it’s easy to get at least a draw against a grandmaster at postal chess: just play
two grandmasters at once, one as white and the other as black, and relay the
moves between them!

In many cases, middleperson attacks are possible but not economic. In the
case of car keys, it should certainly be possible to steal a car by having an
accomplice follow the driver and electronically relay the radio challenge to
you as you work the lock. (One of our students has actually demonstrated



76

Chapter 3 = Protocols

this for our RFID door locks.) But, for the average car thief, it would be a lot
simpler to just pick the target’s pocket or mug him.

In early 2007, it became clear that there is a practical middleperson attack on
the protocols used by the EMV smartcards issued to bank customers in Europe.
A bad man could build a wicked terminal that masqueraded, for example, as
a parking meter; when you entered your card and PIN to pay a £2.50 parking
fee, the transaction could be relayed to a crook loitering near a self-service
terminal in a hardware store, who would use a card emulator to order goods.
When you get your statement, you might find you’ve been debited £2,500 for
a wide-screen TV [915]. The basic problem here is the lack of a trustworthy
user interface on the card; the cardholder doesn’t really know which terminal
his card is doing business with. I'll discuss such attacks further in the chapter
on Banking and Bookkeeping.

3.3.3 Reflection Attacks

Further interesting problems arise with mutual authentication, that is, when
two principals have to identify each other. Suppose, for example, that a sim-
ple challenge-response IFF system designed to prevent anti-aircraft gunners
attacking friendly aircraft had to be deployed in a fighter-bomber too. Now
suppose that the air force simply installed one of their air gunners’ challenge
units in each aircraft and connected it to the fire-control radar. But now an
enemy bomber might reflect a challenge back at our fighter, get a correct
response, and then reflect that back as its own response:

F—B:N
B— F:N
F — B:{N}k

B — F:{N)

So we will want to integrate the challenge system with the response gener-
ator. It is still not enough just for the two units to be connected and share a list
of outstanding challenges, as an enemy attacked by two of our aircraft might
reflect a challenge from one of them to be answered by the other. It might also
not be acceptable to switch manually from “attack” to ‘defense” during combat.

There are a number of ways of stopping this ‘reflection attack’: in many cases,
it is sufficient to include the names of the two parties in the authentication
exchange. In the above example, we might require a friendly bomber to reply
to the challenge:

F—B:N



3.3 Who Goes There? — Simple Authentication

77

with a response such as:
B — F:{B,N}x

Thus a reflected response {F,N} (or even {F/,N} from the fighter pilot’s
wingman) could be detected.

This is a much simplified account of IFF, but it serves to illustrate the
subtelty of the trust assumptions that underlie an authentication protocol. If
you send out a challenge N and receive, within 20 milliseconds, a response
{N}, then — since light can travel a bit under 3,730 miles in 20 ms — you
know that there is someone with the key K within 2000 miles. But that’s all you
know. If you can be sure that the response was not computed using your own
equipment, you now know that there is someone else with the key K within two
thousand miles. If you make the further assumption that all copies of the key
K are securely held in equipment which may be trusted to operate properly,
and you see {B, N}k, you might be justified in deducing that the aircraft with
callsign B is within 2000 miles. A clear understanding of trust assumptions
and their consequences is at the heart of security protocol design.

By now you might think that the protocol design aspects of IFF have been
exhaustively discussed. But we’ve omitted one of the most important prob-
lems — and one which the designers of early IFF systems did not anticipate. As
radar returns are weak, the signal from the IFF transmitter on board an aircraft
will often be audible at a much greater range than the return. The Allies learned
this the hard way; in January 1944, decrypts of Enigma messages revealed that
the Germans were plotting British and American bombers at twice the normal
radar range by interrogating their IFF. So many modern systems authenticate
the challenge as well as the response. The NATO mode XII, for example, has
a 32 bit encrypted challenge, and a different valid challenge is generated for
every interrogation signal, of which there are typically 250 per second. Theo-
retically there is no need to switch off over enemy territory, but in practice an
enemy who can record valid challenges can replay them as part of an attack.
Relays are also possible, as with the Mig in the middle.

Many other IFF design problems are less protocol-related, such as the
difficulties posed by neutrals, error rates in dense operational environments,
how to deal with equipment failure, how to manage keys, and how to cope
with multinational coalitions such as that put together for Operation Desert
Storm. I'll return to IFF in Chapter 19. For now, the spurious-challenge problem
serves to reinforce an important point: that the correctness of a security protocol
depends on the assumptions made about the requirements. A protocol that
can protect against one kind of attack (being shot down by your own side) but
which increases the exposure to an even more likely attack (being shot down
by the other side) does more harm than good. In fact, the spurious-challenge
problem became so serious in World War II that some experts advocated
abandoning IFF altogether, rather than taking the risk that one bomber pilot



78

Chapter 3 = Protocols

in a formation of hundreds would ignore orders and leave his IFF switched on
while over enemy territory.

3.4 Manipulating the Message

We've now seen a number of middleperson attacks that reflect or spoof the
information used to authenticate a participant’s identity — from ATM cards
that could be reprogrammed to ‘identify” the wrong customer, to attacks on
IFF. However, there are more complex attacks where the attacker does not just
obtain false i