Verified Programming in Agda

Ian Orton

UNIVERSITY OF CAMBRIDGE
Computer Laboratory

Research Students’ Lecture Series, 2017
Agda

- Dependently typed functional programming language
- Originally developed by Ulf Norell in 2007
- Both a programming language and a proof assistant
- Total - all functions terminate!
Agda

- Dependently typed functional programming language
- Originally developed by Ulf Norell in 2007
- Both a programming language and a proof assistant
- Total - all functions terminate!

Not Turing complete
Type systems

- Assign types to expressions
e.g. `int f(string input) {...}`
- Check at compile time that types match
e.g. `f("abc") f(42)`
- Usually involves more work for the programmer
- But lets us find bugs at compile time
Inductive types

- Main way of adding new types in a functional language
- Describe how terms are built up from a series of constructors
- E.g. lists are either:
 - The empty list
 - The first element and the tail of the list
Lists

Lists in OCaml can be defined like so:

\[
\text{type 'a list} = \text{Nil} | \text{Cons of 'a * 'a list}
\]

So, for example, the empty list is:

\[
\text{let emp} = \text{Nil}
\]

And the list \([0,1,2,3]\) is:

\[
\text{let upto3} = \\
\text{Cons (0, Cons (1, Cons (2, Cons (3, Nil)))))}
\]
Lists

Lists in Agda can be defined like so:

```agda
infixr 4 _∷∷_
data List(A : Set) : Set where
  [] : List A
  _∷∷_ : A → List A → List A
```

So, for example, the empty list is:

```agda
empty : List ℕ
empty = []
```

And the list [0,1,2,3] is:

```agda
upto3 : List ℕ
upto3 = 0 ∷ 1 ∷ 2 ∷ 3 ∷ []
```
Pattern matching

You use inductive types by pattern matching. Essentially case analysis on the outermost constructor of an argument.
Pattern matching

You use inductive types by pattern matching. Essentially case analysis on the outermost constructor of an argument.

For example, we can define the append function by pattern matching on the first argument:

\[
\text{append} : \forall \{A\} \rightarrow \text{List } A \rightarrow \text{List } A \rightarrow \text{List } A
\]

\[
\text{append } [] \quad ys = ys
\]

\[
\text{append } (x :: xs) \quad ys = x :: \text{append} \ xs \ ys
\]
Getting the head of a list

Let’s try writing a function to get the head of a list:

\[
\text{first} : \forall \{A\} \to \text{List } A \to A
\]

\[
\text{first } \text{xs} = \{ \} 0
\]
Getting the head of a list

Let’s try writing a function to get the head of a list:

\[
\text{first} : \forall \{A\} \to \text{List } A \to A
\]

\[
\text{first } [] = \{ \}
\]

\[
\text{first } (x :: xs) = \{ \}
\]
Getting the head of a list

Let’s try writing a function to get the head of a list:

\[
\text{first} : \forall \{A\} \rightarrow \text{List } A \rightarrow A \\
\text{first } [] = \{\} 0 \\
\text{first } (x :: _) = x
\]
Getting the head of a list

Let’s try writing a function to get the head of a list:

```haskell
data Option(A : Set) : Set where
  Some : A → Option A
  None : Option A

first : ∀ {A} → List A → Option A
first [] = None
first (x :: _) = Some x
```
A problem

Sometimes the type system can get in our way:

```plaintext
... let queue = insert input queue in
let min = first queue in
let x = min + 5 in
...
```
A problem

Sometimes the type system can get in our way:

```
... let queue = insert input queue in
let min   = first queue in
let \(X\) = min + 5 in
...
```

Option \(\mathbb{N} \nRightarrow \mathbb{N}\) of type Set when checking that the expression \(\text{min}\) has type \(\mathbb{N}\)
Dependent types

- Types which depend on a value
- Allow us to enforce stronger constraints at compile time
- For example: lists of length n
Dependent types - Vectors

Recall the definition of lists in Agda:

```agda
data List(A : Set) : Set where
  []    : List A
  _∷:_  : A → List A → List A
```
Dependent types - Vectors

Recall the definition of lists in Agda:

\[
\text{data } \text{List}(A : \text{Set}) : \text{Set} \text{ where} \\
\text{[]} \quad : \text{List } A \\
:: \quad : A \to \text{List } A \to \text{List } A
\]

We can define lists of length \(n \) like so:

\[
\text{data } \text{Vec}(A : \text{Set}) : \mathbb{N} \to \text{Set} \text{ where} \\
\text{[]} \quad : \text{Vec } A \ 0 \\
:: \quad : \forall \ \{n\} \to A \to \text{Vec } A \ n \to \text{Vec } A \ (1 + n)
\]
Vectors

Nothing changes about the examples from before except the type:

\[
\text{empty} : \text{Vec } \mathbb{N} \ 0 \\
\text{empty} = []
\]

\[
\text{upto3} : \text{Vec } \mathbb{N} \ 4 \\
\text{upto3} = 0 :: 1 :: 2 :: 3 :: []
\]
Vectors

Similarly for append, nothing changes except the type:

\[
\text{append} : \forall \{A \ m \ n\} \rightarrow \\
\text{Vec} \ A \ m \rightarrow \text{Vec} \ A \ n \rightarrow \text{Vec} \ A \ (m + n)
\]

\[
\text{append} \ [\] \ ys = ys
\]

\[
\text{append} \ (x :: xs) \ ys = x :: \text{append} \ xs \ ys
\]
Getting the head of a list - revisited

Using vectors we can define first like so:

\[
\text{first} : \forall \{A \ n\} \rightarrow \text{Vec} \ A \ (1 + n) \rightarrow A
\]

\[
\text{first } xs = \{ \} 0
\]
Getting the head of a list - revisited

Using vectors we can define first like so:

\[
\text{first} : \forall \{A \ n\} \rightarrow \text{Vec} \ A \ (1 + n) \rightarrow A \\
\text{first} \ (x :: xs) = \{\}0
\]
Getting the head of a list - revisited

Using vectors we can define first like so:

\[
\text{first} : \forall \{A \ n\} \rightarrow \text{Vec} \ A \ (1 + n) \rightarrow A \\
\text{first} \ (x :: _) = x
\]
A problem - revisited

Consider the code from before:

```plaintext
... let queue = insert input queue in
let min    = first queue in
let x      = min + 5 in
...
```
A problem - revisited

Consider the code from before:

```
let queue = insert input queue in
let min   = first queue in
let x     = min + 5 in
```

A problem - revisited

Consider the code from before:

∀\{n\} \rightarrow \mathbb{N} \rightarrow
Vec \mathbb{N} n \rightarrow Vec \mathbb{N} (1+n)

...
let queue = \textcolor{red}{\textbf{insert}} \textcolor{blue}{\textbf{input}} queue \textcolor{red}{\textbf{in}}
let min = \textcolor{red}{\textbf{first}} queue \textcolor{red}{\textbf{in}}
let x = min + 5 \textcolor{red}{\textbf{in}}
...

Vec \mathbb{N} n
A problem - revisited

Consider the code from before:

\[\forall \{n\} \rightarrow \mathbb{N} \rightarrow \quad Vec \ \mathbb{N} \ n \rightarrow Vec \ \mathbb{N} \ (1 + n) \]

... let queue = insert input queue in
let min = first queue in
let x = min + 5 in
...

\[Vec \ \mathbb{N} \ (1 + n) \]
Generalising the problem

The previous example was an instance of a more general problem: **out of bounds** errors. Using vectors we can solve this problem more generally.
Generalising the problem

The previous example was an instance of a more general problem: out of bounds errors. Using vectors we can solve this problem more generally.

We would like to define the following:

\[
!: \forall \{A \ n\} \to \text{Vec} \ A \ n \to \mathbb{N}< \ n \to A
\]

How can we define the type \(\mathbb{N}<\)?
The type $\mathbb{N}<$

What is a number less than n? Can we give an inductive definition?
The type \(\mathbb{N}^< \)

What is a number less than \(n \)? Can we give an inductive definition?

```agda
data \( \mathbb{N}^< \) : \( \mathbb{N} \rightarrow \text{Set} \) where
    zero : \( \forall \, \{n\} \rightarrow \mathbb{N}^< \, (1 + n) \)
    1+   : \( \forall \, \{n\} \rightarrow \mathbb{N}^< \, n \rightarrow \mathbb{N}^< \, (1 + n) \)

three  : \( \mathbb{N}^< \) 7
three  = 1+ (1+ (1+ zero))

three' : \( \mathbb{N}^< \) 10
three' = 1+ (1+ (1+ zero))
```
Now we can define the lookup function \(_!_\):

\[
! : \forall \{A \ n\} \to \text{Vec} \ A \ n \to \mathbb{N} < n \to A \\
(x :: _) ! \ \text{zero} = x \\
(_ :: xs) ! (1+ m) = xs ! m
\]

Out of bounds errors are now caught at compile time:
Lookup

Now we can define the lookup function

\[_!_ : \forall \{A \ n\} \to \text{Vec} \ A \ n \to \mathbb{N} \to n \to A \]
\[(x :: _) \! _ \quad \text{zero} = x \]
\[(_ :: xs) \! _ \to (1 + m) = xs \! _ \to m \]

Out of bounds errors are now caught at compile time:

\[
\begin{align*}
\text{one} &= \text{upto3} \! _ \to (1 + \text{zero}) \\
\text{out-of-bounds} &= \\
&\text{upto3} \! _ \to (1 + (1 + (1 + (1 + \text{zero}))))
\end{align*}
\]
Now we can define the lookup function `__!__`:

\[
! : \forall \{A \ n\} \to \text{Vec} \ A \ n \to \mathbb{N} < n \to A \\
(x :: _) ! \text{ zero } = x \\
(_ :: xs) ! (1+ m) = xs ! m
\]

Out of bounds errors are now caught at compile time:

\[
\text{one } = \text{upto3 ! (1+ zero)} \\
\text{out-of-bounds } = \\
\text{upto3 ! (1+ (1+ (1+ (1+ \text{zero})\))))}
\]
Proofs

As well as refining types, dependent types can be used to encode proofs. For example, proofs that one number is less than another.

In Agda, proofs are actual data that we can compute with. This is known as proof relevance.
Consider the definition of insert:

\[
\text{insert} : \forall \{n\} \rightarrow \mathbb{N} \rightarrow \text{Vec} \ \mathbb{N} \ n \rightarrow \text{Vec} \ \mathbb{N} \ (1 + n) \\
\text{insert} \ x \ \text{[]} = x :: \text{[]} \\
\text{insert} \ x \ (y :: \text{ys}) \ \text{with} \ x \leq? \ y \\
\ldots \ | \ \text{yes} \ _ = x :: y :: \text{ys} \\
\ldots \ | \ \text{no} \ _ = y :: \text{insert} \ x \ \text{ys}
\]
Consider the definition of insert:

\[
\text{insert} : \forall \{n\} \to \mathbb{N} \to \text{Vec} \ \mathbb{N} \ n \to \text{Vec} \ \mathbb{N} \ (1 + n)
\]

\[
\text{insert} \ x \ [] = x :: []
\]

\[
\text{insert} \ x \ (y :: ys) \ \text{with} \ x \leq? \ y
\]

\[
\ldots \ | \ \text{yes} \ _ = x :: y :: ys
\]

\[
\ldots \ | \ \text{no} \ _ = y :: \text{insert} \ x \ ys
\]

\[
\leq : \mathbb{N} \to \mathbb{N} \to \text{Set}
\]

\[
\leq?_ : (x \ y : \mathbb{N}) \to \text{Dec} \ (x \leq y)
\]
Less than or equal

When is $m \leq n$?
What would a proof of this look like?
Less than or equal

When is \(m \leq n \)?
What would a proof of this look like?

In Agda:

```agda
data _≤_ : ℕ → ℕ → Set where
  0≤n : ∀ {n} → 0 ≤ n
  1+≤ : ∀ {m n} → m ≤ n → (1 + m) ≤ (1 + n)
```
\[\mathbb{N}^- \] - revisited

Another way to define the type \(\mathbb{N}^- \):

```
record \( \mathbb{N}^- \langle n \rangle \) : Set where
  field
  m : \mathbb{N}
  m\leq n : m < n
```
Sortedness

When is a list sorted?
What would a proof of this look like?
Sortedness

When is a list sorted?
What would a proof of this look like?

```haskell
data Sorted : List ℕ → Set where
  emp : Sorted []
  con : ∀{x : ℕ}{xs : List ℕ} → x ≤-all xs → Sorted xs → Sorted (x :: xs)
```
Sortedness

When is a list sorted?
What would a proof of this look like?

```
data Sorted : List N → Set where
  emp : Sorted []
  con : ∀{x : N}{xs : List N} → x ≤-all xs → Sorted xs → Sorted (x :: xs)

data _≤-all_ (x : N) : List N → Set where
  ≤[] : x ≤-all []
  ≤:: : ∀{y : N}{ys : List N} → x ≤ y → x ≤-all ys → x ≤-all (y :: ys)
```
Insert preserves sortedness

Now we can prove the following:

\[
\text{insert-preserves-sortedness} : \\
\forall (x : \mathbb{N})(ys : \text{List } \mathbb{N}) \\
\rightarrow \text{Sorted } ys \rightarrow \text{Sorted } (\text{insert } x \ ys)
\]
Insert preserves sortedness

Not quite as simple as previous examples:

```
insert-preserves-sortedness : 
  ∀ (x : N)(ys : List N) 
    → Sorted ys → Sorted (insert x ys)
insert-preserves-sortedness x [] emp = con ≤ [] emp
insert-preserves-sortedness x (y :: ys) (con y≤ys ys-sorted) with x ≤? y
  ... | yes x≤y = con (≤:: x≤y (lemma y≤ys ys-sorted)) (con y≤ys ys-sorted) where
    lemma : (ys : List N) → y ≤-all ys → x ≤-all ys
    lemma [] ≤ [] = ≤ []
    lemma (y' :: ys) (≤:: y≤y' y≤ys) = ≤:: (≤-trans x≤y y≤y') (lemma y≤ys)
  ... | no ¬x≤y = con (lemma y≤ys) (insert-preserves-sortedness x ys ys-sorted) where
    y≤x : y ≤ x
    y≤x with ≤-total x y
    y≤x | inj₁ x≤y = contradiction x≤y ¬x≤y
    y≤x | inj₂ y≤x = y≤x
    lemma : (ys : List N) → y ≤-all ys → y ≤-all insert x ys
    lemma [] ≤ [] = ≤:: y≤x ≤ []
    lemma (y' :: ys) (≤:: y≤y' y≤ys) with x ≤? y'
      ... | yes x≤y' = ≤:: y≤x (≤:: y≤y' y≤ys)
      ... | no ¬x≤y' = ≤:: y≤y' (lemma y≤ys)
```
No silver bullet
No silver bullet

We could have defined insert like so:

\[
\text{insert'} : \mathbb{N} \rightarrow \text{List} \mathbb{N} \rightarrow \text{List} \mathbb{N} \\
\text{insert'} x ys = ys
\]
No silver bullet

We could have defined insert like so:

\[
\text{insert'} : \mathbb{N} \to \text{List } \mathbb{N} \to \text{List } \mathbb{N} \\
\text{insert'} x \text{ ys} = \text{ys}
\]

And we could have proved:

\[
\text{insert'}\text{-preserves-sortedness} : \\
\forall (x : \mathbb{N})(\text{ys} : \text{List } \mathbb{N}) \\
\rightarrow \text{Sorted } \text{ys} \rightarrow \text{Sorted (insert'} x \text{ ys)} \\
\text{insert'}\text{-preserves-sortedness } x \text{ ys sorted } = \text{ sorted}
\]
Thanks for listening!

In conclusion, Agda’s type system:

▶ Allows you to track static information e.g. length
▶ Allows you to constrain and refine your types
▶ Allows you to prove properties of your code
▶ Is not a silver bullet

Any Questions?