Denotational Semantics Supervision 1

Ian Orton (rio22)
Based on an exercise sheet by Ohad Kammar (ok259)

1. Solve exercise 2.5.1
2. Solve exercise 2.5.2

3. We say that a chain, \(x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \ldots \), is \emph{eventually constant} if there exists a natural number \(k \) such that for all natural numbers \(n \geq k \), \(x_n = x_k \).
 (a) Show that every eventually constant chain has a lub.
 (b) Hence, explain why every finite poset is a CPO.
 (c) Show that every monotone function preserves lubs of eventually constant chains.
 (d) Deduce the following result: Let \(D, E \) be CPOs such that all chains in \(D \) are eventually constant. Show that all monotone functions \(f : D \to E \) are continuous.

4. Solve exercise 2.5.3

5. Let \(D, D' \) be domains. We say that a function \(f : D \to D' \) is a \emph{continuous isomorphism} if it is continuous, bijective, and its inverse \(f^{-1} : D' \to D \) is also continuous.
 (a) Show that if \(f \) is continuous and bijective, and \(f^{-1} \) is monotone, then \(f \) is a continuous isomorphism.
 (b) Find an example for a continuous and bijective \(f \) that is not a continuous isomorphism.

6. (Due to Meseguer) Let \(A \triangleq \{ a_0, a_1, \ldots \} \), \(B \triangleq \{ b_0, b_1, \ldots \} \) and \(\{ \infty \} \) be pairwise disjoint sets. Define a binary relation \(\sqsubseteq \) over \(D \triangleq A \cup B \cup \{ \infty \} \) by \(x \sqsubseteq y \) if and only if:
 - \(y = \infty \), or
 - \(x = y = b_n \), or
 - \(x = a_m \) and \(y = b_n \), for some \(m \leq n \), or
 - \(x = a_m \) and \(y = a_n \), for some \(m \leq n \).
 (a) Draw a Hasse diagram for \((D, \sqsubseteq) \).
 (b) Show that \((D, \sqsubseteq) \) is a domain. (Least upper bounds may be stated without proof).
 (c) Let \((E, \sqsubseteq_E) \) be any domain, and \(f, g : D \to E \) two continuous functions. Show that if, for all \(n \), \(f(b_n) = g(b_n) \), then also \(f(\infty) = g(\infty) \).

7. Question 6, Paper 7, 2014

8. (Optional extension) Question 6, Paper 7, 2015