
Richard Thrippleton

Theory and implementation of
side-effect free Java

Computer Science Tripos, Part II

Churchill College

2003

Proforma

Name: Richard Thrippleton
College: Churchill College
Project title: Theory and implementation of side-effect free Java
Examination: Computer Science Tripos, Part II, June 2003
Approximate Word Count: 11000
Project Originator: Richard Thrippleton
Project Supervisor: Dr Tim Harris

Original aims
This project aims to extend the Java language to allow methods to be marked as side-
effect free, with respect to existing program state, and to produce/modify a compiler to
respect this language extension. By marking a method with the appropriate keyword
to assert that it is side-effect free, the compiler would attempt to prove this assertion,
and treat failure to construct a proof as being like any other compiler error due to
illegal Java.

Work completed
� The official Java compiler from Sun has been modified to accept this language

extension.

� A theoretical background to the theorem prover implemented within the com-
piler has been produced.

� An extra type of (useful) assertion has been added to the language extension and
theorem prover.

� An extension to the original project has been implemented to allow side-effect
free assertions to be added to methods in the standard Java API.

� The compiler has been tested on a wide variety of code examples, and found to
be widely applicable and useful.

i

Special difficulties
None

ii

Declaration of Originality
I Richard Thrippleton of Churchill College, being a candidate for Part II of the Com-
puter Science Tripos, hereby declare that this dissertation and the work described in
it are my own work, unaided except as may be specified below, and that the disserta-
tion does not contain material that has already been used to any substantial extend
for a comparable purpose.

Signed

Date

iii

iv

Contents

1 Introduction 1

2 Preparation 4
2.1 Requirements analysis . 4
2.2 Research . 5
2.3 Development tactics . 7

2.3.1 Resources . 7
2.3.2 Procedure . 8
2.3.3 Plan of testing . 9

2.4 Examining javac . 10
2.5 Summary of preparation . 10

3 Implementation 13
3.1 Theory . 13

3.1.1 Defining functions . 13
3.1.2 Local variable tracking . 15
3.1.3 Extending Hoare logic for unusual control flow 16
3.1.4 The eval

���
notation . 17

3.1.5 Special casing for constructors . 19
3.1.6 The proof rules . 20
3.1.7 The proof algorithm . 26

3.2 Compiler integration . 27
3.2.1 Bridging between Javac and the typechecker 27
3.2.2 The checker . 31
3.2.3 Non-invasive API tagging . 33
3.2.4 Debug mode . 34

3.3 Use of the system . 35
3.3.1 Creating functions and mutators 35
3.3.2 Error messages . 35

4 Evaluation 37
4.1 Behaviour of the compiler on standard Java code 37
4.2 Testing for intended use . 37

4.2.1 ML style lists . 38

v

4.2.2 A modification to ML style lists . 39
4.2.3 Polynomial arithmetic . 40

4.3 Rule oriented testing . 40
4.4 Summary . 41

5 Conclusion 42

A More proof rules 44
A.1 A Block . 44
A.2 New array . 44
A.3 Return . 45
A.4 Break . 45
A.5 Continue . 45
A.6 Switch/Case . 45
A.7 Conditional . 46
A.8 If-Then-Else . 46
A.9 While . 47
A.10 Do-While . 48
A.11 For . 48
A.12 Global assignment . 48
A.13 Try-Catch-Finally . 49
A.14 Evaluation of local variables . 49
A.15 Evaluation of object fields . 50
A.16 Evaluation of static fields . 50
A.17 Evaluation of literals . 50
A.18 Evaluation of unary operators . 50
A.19 Binary operators . 51
A.20 Bracketed expressions . 51
A.21 Logical operators . 51

B Sample code 52

C Testing 57
C.1 Modified Poly.java . 57
C.2 MLList.java . 62
C.3 Testing local variable rules . 64
C.4 Breaching function constraints . 65
C.5 Choices with if()then else . 66
C.6 Passing mutators . 67
C.7 Tricks of control flow . 68
C.8 Overriding functions . 69

vi

List of Figures

2.1 An example syntax tree within javac . 11

3.1 Illustrating program state informally against the execution of a function 14
3.2 The State notation . 15
3.3 A function that relies on local variable tracking to be accepted 16
3.4 Logic for local variable tracking . 17
3.5 The extended Hoare logic used in this project 18
3.6 Proving that function is a behavioural subtype of a mutator 21
3.7 Proving that mutator is a behavioural subtype of the normal method . 22
3.8 Adding the keyword to the Java method grammar 29
3.9 Adding to the table of recognised method flags 30

vii

Acknowledgements
I would like to thank my supervisor, Tim Harris, for all his advice and support
throughout this project

For his assistance in comprehending the source code to Sun’s Java compiler, I would
also like to thank Alan Lawrence

viii

Chapter 1

Introduction

In the world of high level programming languages, in addition to increasing ease of
implementing high level concepts, one language goal is restricting the environment
in such a way as to clamp down on programmer error to the benefit of the resulting
program. A trivial example of this is array bounds checking; in the Java language,
attempting to write to or read from an index beyond the array’s size will consistently
cause a comprehensive runtime error, as opposed to the undefined behaviour in lan-
guages such as C or C++ that could go undetected on a non-deterministic basis.

Of more relevance to this project is typing; in a typesafe language such as Java, a
programmer can be confident that if a non-null variable is of type T, then the value
of that variable will indeed behave like type T, be it a HashMap or a String. It is
considerably more difficult for a programmer to use a variable/object in a mistaken
fashion if they know with certainty what the type is.

This project and the resulting implementation is a form of behavioural typing;
similar to the Java typechecker’s confidence guarantees about types, it ensures that
any method declared to be side-effect free can be treated with absolute confidence as
being side-effect free by the programmer attempting to invoke it. In slightly more
detail, this means that the method’s invocation has no effects that modify existing
program data; it may return and create new data, but nothing else. This is one of
the properties of a function, as described in general mathematics or in functional
programming languages. To more experienced programmers, the use of this is quickly
apparent; in a language such as Java, the effects of all invocations must be carefully
considered by the conscientious programmer, but with liberal use of functions (the
term that shall be used from now on for side-effect free methods) where appropriate,
the journey to full confidence in the correct operation of a program is eased.

A small example of what is and is not a function:

class number
{

public number(int v)
{

value=v;
}

1

CHAPTER 1. INTRODUCTION

//Doubles the value of this number
public void doubleMe()
{

value=value*2;
}

//Returns a new number that is double the value of this one
public number doubleFunction()
{

return new number(value*2);
}

public int value;
}

The class “number” shown above encapsulates an integer, and can perform one oper-
ation; doubling the value. “doubleFunction” is a function, because it does not modify
anything that the program had access to before invocation. One can quite happily
invoke this method on one object as much as you wish, and no existing data will
be modified. “doubleMe” on the other hand changes the object it is invoked upon, a
noticeable side-effect.

The ML language is one example of a functional language; when refs are dis-
counted, all of its functions are in fact functions as defined above. The only effect
their invocation has on program behaviour is on that which uses the return value1.
Much past experience, both in demanded coursework and in personal interest use has
shown that writing bug free ML for a particular task is that much easier than with a
non-functional language; there is no hidden flow of data, and no unexpected or acci-
dental surprises that a function is able to cause. That said, writing useful programs
in such a stateless environment can prove awkward, in a way that they would not in
a procedural language with side effects such as Java. With this in mind, a hybrid of
their best features is justified; the fluid programming environment of Java, with the
safety guarantees of a functional language to be applied as much as the programmer
sees fit (i.e. until it becomes awkward and contrived).

In the remainder of this dissertation, the implementation of such behavioural
typing is realised as a modified compiler

Section 2 describes the planning and research, decisions on how the be-
havioural typing is to be realised

Section 3 presents the work that was actually done in this realisation

Section 4 attempts to judge how effective the project was at allowing a
programmer to correctly use functions

1When one discounts non-halting functions, which are not an issue covered by this project

2

CHAPTER 1. INTRODUCTION

Section 5 draws conclusions from the evaluation, both a recap of success
and a critical self assessment with suggestions on how the project could
have been done better

3

Chapter 2

Preparation

Before code was written, or theory developed, it was necessary to prepare; I needed
to know exactly what needed doing, how I might do it, and also learn about previous
related work, knowledge of which could possibly aid/optimise the implementation.

2.1 Requirements analysis
As this project can be seen as a Java typechecker for a specific category of behavioural
types, some requirements can be inferred from other typecheckers; these are, obvi-
ously, almost as numerous as compilers. One requirement that became rapidly ap-
parent from both programming experience and from consultation with my supervisor,
is the requirement that the checker have the property informally known as “safety”.
Further background to this theory was later taken from Part II of the Computer Sci-
ence course[6]. Safety concerns itself with the difference between what is known
about types of symbols in a program at runtime, and what is known at the time of
static analysis (i.e. at compile time). In a language as complex as Java, it is not possi-
ble to create a static checker so powerful that it can determine for all cases the most
specific type that a symbol may have at runtime, as that would often entail complete
program analysis, so it will err on the side of correct typechecking. This is safety of
type judgement, and can be expressed as

“s typechecks as type T” � “s instanceof T will always evaluate to true at runtime”

whereas the reverse is not necessarily so

“s instanceof T will always evaluate to true at runtime” � “s typechecks as type T”

This translates simply to the safety requirement that the implementation of the func-
tional extension must conform to. That is to say, any method declared to be a function
must indeed behave like a function, yet a method that behaves like a function may
not necessarily be permitted by the compiler to call itself a function. Such a type
judgement system therefore must be sound but not necessarily complete.

4

CHAPTER 2. PREPARATION 2.2. RESEARCH

There is a need to precisely define the behaviour of a “function”; the official Java
typing can be formally defined, so no less should be expected of added behavioural
typing. Ambiguity is not appropriate within a structured safe language such as Java.
It seems unlikely that one can create a definition that is both formal in nature and
is exactly equivalent to “all subsequent behaviour of the program, save that depend-
ing on the return value of the method, will be totally unaffected by invocation of a
function”, so to keep safety properties, the resulting definition used at compile time
will be one that is logically stronger (a stronger statement being one that implies the
other but not equivalent).

While it might not appear relevant at first glance, a compiler still has a user (or
“developer” if you prefer) interface, and as such should follow good HCI practices;
efficiency in the software development process is just as important as, if not more
so than John Q Public’s desktop productivity tasks. As the behavioural typechecker
will be implemented as an extension to an existing Java compiler, an important HCI
heuristic is that of consistency. The checker should be consistent with developer’s in-
tuition about “normal” Java compiler behaviour; being a typechecker, this will mean
being entirely silent when the behavioural typechecking succeeds, and outputting an
error when it fails, usually to console and in the same format as other Java compi-
lation errors. Additionally, the error output should be clear, and correspond to the
programmer’s way of thinking as opposed to being composed of internal implementa-
tion oriented terms.

2.2 Research
This section covers similar behavioural type systems that have previously been im-
plemented. The purpose is to inspire and lend past experience to the implementation
of the functional extension.

As described in the Standard C++ Bible[4], the const keyword describes a similar
form of behavioural typing to functions. Any value typed as being const is defined
as being immutable. For primitive values, such as int, char, bool etc., this is en-
forced by the compiler forbidding assignments to them, and this suffices. For aggre-
gates (class instances), on top of these constraints, the compiler forbids methods being
called upon them as they could change the instance internally. The exception to this
is methods declared as being const; this declares that the methods will not modify
fields of the instance they are invoked upon. The const modifier in this context is
itself the behavioural typing. This holds some similarity to side-effect free methods,
and some useful ideas can be picked out;

� A const method containing invocations to other const methods trusts these
declarations at checking time, allowing them to be invoked without harming its
own constness, forsaking any further program analysis. It is easily apparent
how this recursive trust concept can be applied to function methods.

� For all methods that dispatch dynamically (virtual methods) on runtime type,

5

2.2. RESEARCH CHAPTER 2. PREPARATION

const must be inherited1. That is to say, if type � is a subtype of type � , then if
virtual method ���	��
 is const then ���	��
 must also be const. Else otherwise
the const guarantees would not hold, as invoking
 on something typed as �
might well invoke non-const �
�	��
 where it was expected to be const based on
const ������
 . The lesson to learn here is that the inheritance/subtyping proper-
ties of behavioural typing must be considered in the realm of object orientation.

The Eiffel language[7] was an insightful case study into behavioural typing in a
language. Defining the behaviour of a method in Floyd-Hoare logic[3], it is not con-
strained to a limited range of behavioural types as other languages are. This is not
exactly a static typechecker as this project is, as the preconditions and postcondi-
tions are only checked at runtime. In this context though, this can be overlooked
and treated as an implementation detail that doesn’t detract from the significance
and utility of the principles behind it. This flexible typing system also copes well with
subtyping; methods in a subtype are only allowed to have stronger postconditions and
weaker preconditions than the methods that they override, if any. This is in keeping
with the Hoare logic axioms of postcondition weakening and precondition strength-
ening, inferring the properties of a method in the supertype from the behavioural
properties of the same method in the subtype. In this way, the “Is-A” property of sub-
typing is obeyed; when � is a supertype of � , one can properly say that “ � is a � ”
because you can treat it like a � and it will act like a � . ������
 will still be satisfied
by the stronger preconditions put in place for ���	��
 , and postconditions of �
�	��
 will
satisfy the weaker postconditions demanded of ������
 .

� Again, one must take care to consider subtyping when adding behavioural types
to a language.

� Floyd-Hoare logic is a powerful foundation for any sort of behavioural typing,
doubly so as there are already known and very flexible methods for reasoning
about behavioural subtyping within it.

Floyd-Hoare logic

Although Floyd-Hoare logic is referenced in the bibliography([3]), it is utilised suffi-
ciently in this section to justify a brief summary of what it is and does.

Floyd-Hoare logic is a way of reasoning about the behaviour of a given command/sequence
of commands in an arbitrary programming language. Behaviour is asserted in the
form of a Hoare triple. The most generalised Hoare triple looks like this:

���������������
1This is not strictly true; if you try to override a const method with a non-const, it will just treat the

non-const method as being a brand new method defined only in the subclass; calls that are expected to
be to a const method of the same name will still go to the parent class. But this is effectively the same
as forbidding overriding

6

CHAPTER 2. PREPARATION 2.3. DEVELOPMENT TACTICS

�
and

�
are boolean expressions, evaluating to either true or false, and convention-

ally contain some assertion about program state, like the value of variables or rela-
tionships among them.

�
is a command in the programming language. The above

statement means

“In all interpretations, if
�

is true at a certain time, and
�

is then imme-
diately executed after that time, then

�
will hold true immediately after

�
has finished executing if it halts”

More complex examples can be found in the referenced course notes, but the concept
can be demonstrated with a simple example:��� �"!�#�� �"!$�&%$')(*� �+!-,.�
This just shows how the value of the variable

�
will change if you increment it by

1 when it holds the value 2. If X starts of with any other value, that is undefined
behaviour as the above rule doesn’t cover it. To generalise the above, Hoare logic
allows one to instantiate arbitrary variables that are not necessarily part of the pro-
gram state, only relevant to the logic and rules, known as ghost variables. These are
traditionally lower case: �/� �0!213� �4!2�&%$')(*� �"!$15%$')�
Floyd-Hoare logic is most useful when used with inference rules, logic that infers a
conclusion given some hypotheses. An inference rule has the meaning that if the
hypotheses of the rule are true, then the conclusion is true. For example:�6�������879�����;:<�6�������>=*��?@��6�������87A(9�>=*��?@�
This is the Sequencing rule of Floyd-Hoare logic, and means that if

�B7
and

�>=
are

executed in sequence with precondition
�

holding, then postcondition
?

holds if you
can find

�
such that

�C7
and

�>=
execute individually as

�D�������C79�����
and

�E�������>=*��?@�
respectively.

More elaborate inference rules, more specifically related to Java and functional
behaviour were eventually used in the implementation of this project.

2.3 Development tactics

2.3.1 Resources
Implementing an entire Java compiler with functional extensions was out of the ques-
tion due to time constraints, but source code to other major Java compilers exists
which can be extended; then the work is cut down to the more feasible task of im-
plementing the functional extensions. Sun’s javac and IBM’s jikes were both con-
tenders; both of these were obtained and examined, and found to be acceptable with

7

2.3. DEVELOPMENT TACTICS CHAPTER 2. PREPARATION

respect to ease of understanding for the purposes of modification. The decision was
eventually made in favour of Sun’s javac, primarily because I knew for certain that
modification was actually feasible; I am in contact with a colleague who modified this
Java compiler for a previous part II project[1], which also covered typechecking. I had
no such assurances for jikes, but knew that my colleague could be contacted in the
event of trouble modifying the javac source.

The language of implementation was chosen to be standard Java. I do not believe
it to be the ideal language for implementing a typechecker/prover, but it is required
that the project be integrated with the compiler; Sun’s javac is itself written in Java,
a language which does not cleanly interface with others2 Before the project I was
already very familiar with the Java language, so the rate of implementation was not
likely to be hindered by a language learning curve.

The hardware and software requirements for development are not particularly
demanding. Enough filespace to hold the javac source (less than 10 megabytes) plus
the source code I myself developed, and a Java development environment (for my
particular development tastes, an unmodified standard Java(1.3) compiler and the
gvim editor). I always intended to use my own PC for this, with thorough planning
to ensure that work would not be significantly set back in the worst case scenario
of its total destruction. Before I wrote a single line of code, a script was installed
on my computer that automatically backed up all work to another filesystem on my
computer, as well as to the Pelican server run by Computing Services. This was run
daily. In the event of disaster, I resolved that I would retrieve my work off of Pelican
or whatever remained of my hard drive and use the Linux PWF system to continue
my work. I would work at either one of the workstations in the laboratory booted into
Linux, or using a public college workstation as a remote X terminal for running my
development efforts off of

�
linux2,linux3

�
.pwf.cl.cam.ac.uk. The PWF system

has enough personal filespace for my project, as well as all the software required3. I
consider this a more than adequate contingency plan, coping as it does with total
destruction of the primary development platform without the loss of any more than
24 hours of work.

2.3.2 Procedure
I expected much of the work to be in constructing the formalities of side-effect free
code, and theories/rules to be applied against code claiming to be side-effect free. The
implementation of these rules into code was planned to resemble the rules and no-
tation used in the theory as closely as possible; with rules already in place, it was
reasoned that they could be implemented in programming one at a time, and tested
against the rules, each of which would be an unambiguous model of how the code
should behave, giving confidence that the implementation followed the rules as de-

2Passing data structures, especially those as complex as syntax trees through JNI to another lan-
guage does not make for clean code. Sharing data structures across the Java/non-Java boundary is
most certainly not transparent, requiring explicit translation.

3Except for gvim, but installation of this into my personal space is an easy matter

8

CHAPTER 2. PREPARATION 2.3. DEVELOPMENT TACTICS

fined. To wit, the Iterative development model would be followed, with a very short
write-compile-test cycle. The task at hand would allow this model to work very well,
with the advantage that errors can be tracked down to the chunk of code recently
worked upon, as opposed to potentially being anywhere in the code if found in one
final testing stage.

Where many tried and tested development models exist for producing a software
product from an informal specification (in the case of industry, the type of document a
manager would deliver to his/her development team), similar methodologies are not
so numerous for development of formal theories. I did not take this as being much
of an issue, as the idea of correctness in theory development is far less fleeting. As
one develops a theory, one can check that it is true, owing to the precision of logic and
mathematics; I planned to do just this as I developed the theoretical backing for this
project. No such concept of correctness exists in the traditional models of software
development. At this time, I did not know what form of logic and reasoning I would
be applying, as I considered that choice to be dependent on the definition of side-effect
free that I would eventually decide upon.

The most difficult software challenge I expected to encounter was in integrating
the prover/typechecker into javac. Despite it being well documented, it is still an
enormously large and complex source tree, developed with years of manpower. I did
not expect that I would comprehend it in its entirety in the time allowed. The inten-
tion was to have as much of the project code disjoint from the javac source tree as
possible, analysing as little of it as possible, only enough to locate appropriate “hook”
points within the compile process where my methods could be invoked.

The plan in short:

Define “functional” in formal termsF
Develop formal rules and notation with the power to prove that a method

is “functional” or notF
Analyse javac source code with a view to locating the appropriate “hooks” where the

concept of functions in the language can be addedF
Rewrite rules into procedural code that applies themF

Integrate rule based code into the whole compiler using the hooks

2.3.3 Plan of testing
I did not expect to be able to produce a thorough plan of testing at this stage, as
much of the testing would involve passing source code utilising the behavioural typ-
ing extension through the compiler; this domain of testing would be dependent on
the decisions and definitions made at implementation time with respect to functions.

9

2.4. EXAMINING JAVAC CHAPTER 2. PREPARATION

However, there are still elements of the testing plan that can be and were set down
at preparation time:

� Verify that the modified compiler still behaves identically to javac when given
trivial and non-trivial normal Java code� Utilise the language extension to demonstrate and successfully compile non-
contrived functional style code; that is to say, ensure that the project fulfils its
purpose

2.4 Examining javac

Although at this point the theory had not been defined, examination of javac was
useful preparatory work, if only to determine what was feasible.

To this end, I had to traverse most of the javac source code, although not in a
great amount of detail. A cursory examination showed that it roughly approximated
the

Tokenise G Parse G Generate intermediate code G Generate target code

model of compilation[6], except that the last two stages are collapsed into one, as JVM
bytecode is used as both an intermediate and target machine code.

What was found:� Code being compiled is formed into a syntax tree(Figure 2.1), each node of which
contains an abundance of information, more than enough to reason about in
detail� Method keywords will need to be added, however the implementation is ap-
proached, to allow programmers to declare a method as functional: the tokenizer
is a work of clarity, and adding keywords for this should be no difficulty whatso-
ever� A clearly documented method for outputting errors in the program being com-
piled was found: it handles line number and method name reporting with little
effort required from the caller

2.5 Summary of preparation
� Soundness in the behavioural type judgements should be guaranteed, not nec-

essarily completeness� The behavioural type “function” should be formalised� Some HCI requirements should be considered during implementation

10

CHAPTER 2. PREPARATION 2.5. SUMMARY OF PREPARATION

For example:

while(x)
{

if(y)
{

x=x+1;
}
else
{

aMethod(y);
}

}

Becomes the syntax tree:

while

if−then−elsex

y assignment

x x+1

invoke

aMethod y

condition

condition then−code else−code

left−hand−side right−hand−side method symbol arguments

Figure 2.1: An example syntax tree within javac

11

2.5. SUMMARY OF PREPARATION CHAPTER 2. PREPARATION

� The checker should be implemented within Sun’s javac (Java Compiler)� The iterative development model is to be used in conjunction with the code mir-
roring the theory’s notation and logic

12

Chapter 3

Implementation

This chapter describes the creation of a theory that can determine if Java methods
are “side-effect free”, as well as the integration of this theory into a Java compiler
which applies it to specific methods at compile time.

3.1 Theory
This section describes the definitions, notations and proof rules that were created be-
fore any code was written, for the task of checking the behavioural type of function
against the implementation of the method that is asserted by the programmer to be
a function.

3.1.1 Defining functions
Creating a precise definition of “side effect free” (“function”) was the first task on the
agenda; all other tasks were dependent on this. Returning to the introduction,“the
function’s invocation has no effects that modify existing program data; it may return
and create new data, but nothing else”. The sort of data(or program state) constraints
demanded by a function are illustrated in Figure 3.1. Note that this does not preclude
functions from creating extra state, that is, creating new objects and modifying them
within its own execution, as this extra state did not exist before invocation and hence
evades the definition.

With this in mind, I started to design a more formal logic and notation for reason-
ing about program state, utilising set theory. The core of this is defined in Figure 3.2.

Lending from the example of Eiffel’s behavioural typing, the definition of a func-
tion seemed appropriate to express in Hoare logic. A small amount of thought lead to
the following definition:�

State
!�H)�

Function call
�
State I H)�

H
is defined as the State before invocation, and it is asserted that the same

H
exists

13

3.1. THEORY CHAPTER 3. IMPLEMENTATION

J J J J J J J J J JJ J J J J J J J J JJ J J J J J J J J JJ J J J J J J J J JJ J J J J J J J J JJ J J J J J J J J JJ J J J J J J J J JJ J J J J J J J J J

K K K K K K K K K KK K K K K K K K K KK K K K K K K K K KK K K K K K K K K KK K K K K K K K K KK K K K K K K K K KK K K K K K K K K KK K K K K K K K K K

L L L L L L L L L LL L L L L L L L L LL L L L L L L L L LL L L L L L L L L LL L L L L L L L L LL L L L L L L L L LL L L L L L L L L LL L L L L L L L L LL L L L L L L L L L

M M M M M M M M M MM M M M M M M M M MM M M M M M M M M MM M M M M M M M M MM M M M M M M M M MM M M M M M M M M MM M M M M M M M M MM M M M M M M M M MM M M M M M M M M M

N N NN N NN N NN N N
O OO OO OO O

P P P P P P P P P P P P PP P P P P P P P P P P P PP P P P P P P P P P P P PP P P P P P P P P P P P PP P P P P P P P P P P P P

Q Q Q Q Q Q Q Q Q Q Q Q QQ Q Q Q Q Q Q Q Q Q Q Q QQ Q Q Q Q Q Q Q Q Q Q Q QQ Q Q Q Q Q Q Q Q Q Q Q QQ Q Q Q Q Q Q Q Q Q Q Q Q

R R R R R R R R RR R R R R R R R RR R R R R R R R RR R R R R R R R R
S S S S S S S S SS S S S S S S S SS S S S S S S S SS S S S S S S S SExecution State

Code

Function
invocation

Function
execution

Function

Code

return
Invariant

Invariant

Figure 3.1: Illustrating program state informally against the execution of a function

14

CHAPTER 3. IMPLEMENTATION 3.1. THEORY

� fields: the set of all member fields of all Java objects that have been instanti-
ated thus far and all static fields of all loaded Java classes.� values: the set of all possible primitive values in Java; bytes, integers, charac-
ters, floating point numbers and object references.� State � fields G values. A property of the Java environment at a certain
point in time; it is a function from each existing variable to its values.� For any Java object T , it follows from the above that T@U State

Figure 3.2: The State notation

as a subset of the State after invocation (i.e. all fields existing before invocation have
the same value before and after).

3.1.2 Local variable tracking

To arrive at the decision that a method satisfies the given Hoare triple for a function,
a proof system was needed to operate over the code implementing the method. As the
definition was defined in Hoare logic, it followed that the proof rules should be defined
similarly; if Hoare triples asserting conditions about State for each Java program-
ming structure can be written, then they can be applied recursively on the method to
see if the Hoare triple matches the function definition.

When the first simple rules were being devised, it was quickly realised that there
was a danger of making rules that, while safe, simply didn’t allow the programmer
enough power. They would of course, make sure that non-functional code was not
allowed to be accepted as being a function (no false-positives), but a great deal of code
that always behave functionally would also not be accepted as as a function (too many
false-negatives). That is, safe but not complete. One example of such a rule follows,
for an assignment: �

State
!-H)�

lhs
!

rhs
�
State

!2VA�
It “taints” State to being a new value, with no extra information given; the reasoning
is that an assignment of a value might modify existing state, so this is sound (if
it doesn’t actually modify state, then this is still sound as

VXW!YH
is not necessarily

asserted). So if an assignment were the only command in the function, judgement
could only say that

V
was not necessarily equivalent to, or a superset of

H
, so it could

not accept this assignment as functional. The flaw here is easily apparent; Z\[H might
be a field in an object that has just been instantiated with new

���
, and]�[H is just a

constant so the assignment would have functional behaviour in all cases, as it does

15

3.1. THEORY CHAPTER 3. IMPLEMENTATION

public void function aFunction()
{

Thing loc=new Thing();
l.a=2;
l.b=4;

}

Figure 3.3: A function that relies on local variable tracking to be accepted

not modify any State that existed in the precondition. This rule is naı̈ve and simply
not powerful enough for real functional code.

A distinction needs to be drawn between objects that are obviously not subsets of
the State in the precondition and those that are, to allow sound and useful assign-
ment rules. Attention also needs to be paid to local variables; it is common idiom to
assign object references to local variables to access them later. It would be desirable
for the code in Figure 3.3 to be accepted as a function. If the values of local variables
were tracked in preconditions and postconditions in a similar manner to State as-
signments and similar Java constructs can be reasoned about with far more context
than the previous simpler scheme, hopefully resulting in less false-negatives.

The notation for local variable tracking is defined in Figure 3.4.

3.1.3 Extending Hoare logic for unusual control flow
The next step was in dealing with the shortcomings of Hoare logic with respect to
unusual control flow. As soon as it was decided to introduce local variable tracking,
these shortcomings became apparent. When one has a Hoare triple

�������������
,
�

only
describes the conditions that must hold when control flow goes normally through

�
and exits normally e.g. in the case of a sequence, the last instruction executed is the
last instruction in the sequence if

�
is definitely to hold. Were

�
to contain a break

or throw , control flow would leave abnormally, and re-enter elsewhere in the method
possibly. This is unhelpful within a method that we are trying to reason about for
functionality; we have no potential precondition for the code that abnormal control
flow will re-enter at. While the logic could be modified to treat the postcondition as
holding for normal exit or exceptional exit, this weakens the logic far too much and
would make for exceedingly weak preconditions at re-entry points. Inspired by the
work of Michael Norrish in reasoning about the C language[8], an extended Hoare
logic was defined, with multiple postconditions that hold for each way of exiting the
code being reasoned about (Figure 3.5).

By observing that control flow can leave a method by either running to the end of
code, a return statement or a throw , but not by break or continue statements,

16

CHAPTER 3. IMPLEMENTATION 3.1. THEORY

� vars: the set of all local variables currently within scope� values needs defining further.
values

!
�
Unknown

:
undefined/NULL

:
reference to ^ �� Unknown � a value that is not known at the time of proof� undefined/NULL � the “uninitialised” value taken by new variables that have

not yet been assigned to, or an object reference to null� reference to dom
� ^ � � an object reference to ^ such that ^_U State

(Parameterising references by only the domain of the State relation allows the
references to remain valid while field values change)� Local � vars G values. A property of the Java environment at a certain point
within execution of a method, concerning the value taken by each local variable
currently within scope

Figure 3.4: Logic for local variable tracking

we can rewrite the earlier function definition into the extended Hoare logic to get
this: �

State
!�H)�

Function call�
State I H)���

EX:State I H�:
BREAK:f

:
RETURN:f

:
CONT:f

�
BREAK:f and CONT:f are simply present to assert that control flow cannot leave a
function invocation by those routes. Leaving via the other routes (exception throwing
and explicit returns) still respects the fact that a function must be side-effect free.

3.1.4 The eval `Aa notation
A final piece of notation that the proof rules require is, eval

�b�
, which takes any Java

expression and maps it to values, essentially evaluating the expression as specifi-
cally as possible with the information available (that that information being the con-
text of the conditions in the current proof rule).

eval
���

handles local variables:

c5d dom
�
Local

� � eval
� c � ! Local

� c �
Also new objects:

eval
�
new egf�h�iAi �kj*jljm�n� ! reference to

1
17

3.1. THEORY CHAPTER 3. IMPLEMENTATION

������ �������
EX:

?;:
BREAK: o : RETURN: � :

CONT: � �
If logical statement

�
is true, immediately before

�
executes, then if program flow

exits
�

normally, statement
�

will hold. If program flow leaves via an exception being
thrown,

?
will hold. If exit from

�
is caused by a break , o will hold. If a return

statement causes exit of this code block, � will hold. And finally, if a continue
statement causes an exit, � will hold.
There exist some convenient abbreviation rules for this notation:
In ������ ��������pq�
p

is an abbreviation for the full
�
EX:

p8r*:
BREAK:

ptsn:
RETURN:

pvul:
CONT:

ptw9�
, where one

does not wish to reason about each of the exceptional control flow conditions sepa-
rately. If used elsewhere in the same inference rule, the meaning of any operation on
it is to unfold into constituent parts and apply individually:��p2xzy��|{ �

EX:
p}r~x�y3r�:

BREAK:
pts�xzy�sA:

RETURN:
pvu3x�y�u*:

CONT:
p}w�x�y3w9�

The rule of postcondition weakening in Hoare logic also applies to the extra postcon-
ditions in the same way it does to the postconditions for normal exiting of control flow.
So for example: ������ � �������

EX:
p5:Ay�� :<p � p��

������ � �������
EX:

p��\:Ay��
Figure 3.5: The extended Hoare logic used in this project

18

CHAPTER 3. IMPLEMENTATION 3.1. THEORY

However, this is in the context of the proof rule for instantiating objects:���5�
State

���
State � : State !

State
���z1��� �

reference to dom
�
n
�n���

<init>
�
C1

: jlj*j :
Cm

���������pq� ������
new egf�h�iAi � C1 : jljlj : Cm ���������p��

Also, null has special meaning:

eval
�
null

� !
undefined/NULL

If none of these rules match the expression, there is the default evaluation, which is
both true and less helpful:

eval
� p � !

Unknown

Complementing evaluation of references, an extra dereferencing function ‘ � ’ is briefly
utilised in the proof rules:

!
�
reference to dom

� T �n� ! T
3.1.5 Special casing for constructors
Another important issue not covered so far is the consequences of instantiating ob-
jects within methods, where the object has a constructor method1. While the rules
have not been set down thus far, it is intuitively obvious that with the system we
have so far, the constructor cannot be a normal (non-functional method), otherwise
this would prevent the enclosing method from being passed as a function; as far as
the proof system knows, calling of any non-function could taint all state arbitrarily.
This however implies a useless constructor; constructors have no return values, so
their only useful effects involve modifying state, usually that belonging to the newly
instantiated object that the constructor2 has been invoked upon. While there may
exist any number of ways of allowing useful constructors through special casing for
constructors, it was decided to exploit this issue to further increase the power3 of the
function proof system by adding an extra behavioural type to go alongside function;
the mutator type. It is expected that all constructors useful within a function will be
of type mutator, with the additional power of allowing other arbitrary methods to be
typed as mutators.

1As a refresher, a constructor in Java is a method that is called upon an object immediately after
it is instantiated. The identity and arguments of this method are selected from the constructors in
that class and determined by how the new ���k�m�) statement is used. A constructor is typically used to
initialise an object into a consistent state.

2Or more correctly, the appropriate <init> method within the class; a Java new operation involves
allocation of a blank object followed by invocation of init upon it

3As elsewhere in this dissertation, this refers to decreasing the number of false-negatives judged by
the system; thus allowing more code to pass as functional while still being sound

19

3.1. THEORY CHAPTER 3. IMPLEMENTATION

Informally, a mutator may only modify the object that it is being instantiated
upon. The behaviour of a mutator is set down more formally below:�

State
!�H���VA��

Mutator call upon object
V�

State I H����
EX:State I H�:

BREAK:f
:
RETURN:f

:
CONT:f

�
By splitting initial state into two distinct chunks, and declaring that one of them is
the object that the mutator is being invoked upon, the above asserts that only part
of the state need be invariant, while allowing the object that the mutator is being
invoked upon to be modified without violating the specified behaviour. For the sake
of consistency, if a mutator is a static method, we shall take

V�!-�
in the above rule.

At this point, it is appropriate to say that function is a behavioural subtype(Section
2.2) of mutator. It is enough to show that a function is a mutator. The proof for
this is in Figure 3.6.

To fit entirely normal Java methods (those that the programmer hasn’t asserted
behaviour for), we have the following definition:�

State
!-H���VA��

Normal method call on object
V�

State I �����
EX:State I ��:

BREAK:f
:
RETURN:f

:
CONT:f

�
That is, a normal method with no assertions about side effects or otherwise is treated
as unreliable, and can potentially modify any and all elements of State. Completing
the subtyping relations, it can be shown (Figure 3.7) that mutator is a behavioural
subtype of normal methods. Knowing that function is a mutator, and mutator is
a normal method, this subtyping is transitive, with function also being a subtype of
normal methods.

3.1.6 The proof rules
This section contains a selection of inference rules in Floyd-Hoare logic over Java;
this selection is considered to contain the more interesting rules. The remainder are
covered in Appendix A. All of these rules together are sufficient to reason about any
Java method and judge if it is a mutator or function.

Function invocation

This rules specifies the behaviour of a statement invoking a function.

�_�
is a function

: ������
O
(
arg1

(
arg2

(j*jlj (
argn ��������

EX:
p5:
BREAK:

yv:
RETURN: � :

CONT: � �������
O
j����

arg1
: jljlj :

argn
��������

EX:
p2xz�q:

BREAK:
yv:
RETURN: � :

CONT: � �
20

CHAPTER 3. IMPLEMENTATION 3.1. THEORY

Start with the assertion: �
is a function

By the definition allows us to infer:�
State

!-H)��
call

��
State I H����

EX:State I H�:
BREAK:f

:
RETURN:f

:
CONT:f

�
Knowing that

�
must be being invoked on a subset of

H
(either an object, or

�
for

static methods), we split State into chunks such that
H�!
V3�_

, with

as the object�
is being invoked upon and

V
being the remainder of State:�

State
!$V��z ¡��

call
�

upon
 �

State I V¡�� ~���
EX:State I V��z ~:

BREAK:f
:
RETURN:f

:
CONT:f

�
Following on, postcondition weakening with State I H���V � State I H

allows us to
infer: �

State
!2V¡�� ¡��

call
�

upon
 �

State I VA���
EX:State I V¢:

BREAK:f
:
RETURN:State I V¢:

CONT:f
�

Which leads us on to: �
is a mutator

By its definition.
Note that this process cannot be reversed; State I H � State I H���V

is not true. So
we cannot show that a mutator is a function.

Figure 3.6: Proving that function is a behavioural subtype of a mutator

21

3.1. THEORY CHAPTER 3. IMPLEMENTATION

Starting with, �
is a mutator

By definition, �
State

!-H>��VA��
call

�
upon

V�
State I H����

EX:State I H�:
BREAK:f

:
RETURN:f

:
CONT:f

�
Postcondition weakening using State I H � State I �

,�
State

!£H���VA��
Normal method call on object

V�
State I �����

State I ���
By definition, �

is a normal method

Figure 3.7: Proving that mutator is a behavioural subtype of the normal method

The Hoare triple of the invocation is composed from the sequencing of evaluation of
all the arguments (that any one of them could taint state or modify local variables
should not be overlooked), plus the expression evaluating to the object being invoked
upon, followed by the actual function call. The function call leaves invariant4 all
the variables in our logic (State and Local) and so the postcondition of the total
invocation is in fact just the precondition of the call (the postcondition of the argument
evaluation),

�
.

The abnormal exit conditions are simply those of the argument and expression
evaluation, disjuncted(logical or applied) with those of the call itself (exception) which
due to the invariant nature of the call is again its precondition,

�
.

The
�

mentioned in the top part of the rule refers to a method within a particular
class. That class can only be deduced to be the type of O, whereas at runtime it
may in fact be a subclass. This implies the possibility that it may not be method

�
being called, but one in a subclass overriding it. Hence, this rule can only hold with
the further constraint that all methods overriding a function must themselves be a
function.

4The earlier definitions only mention state, not mentioning Local, the other variant in our logic.
However, Java local variables are scoped by the method that is currently executing, so ¤ could not
possibly modify Local in the context of the calling method

22

CHAPTER 3. IMPLEMENTATION 3.1. THEORY

Function implementation

This rule specifies what properties must hold for the code within a method if it is to
behave as a function.�

State
!�H���V¢:

Local
!
� �

this
:
reference to

V � : �
arg1

:
undefined/NULL

� : jlj*j :�
argn

:
undefined/NULL

� ���� �
body code�

State I H>��VA���
EX:State I H<��V¢:

BREAK:f
:
RETURN:f

:
CONT:f

��_�
is a function

Use of this proof rule in the implementation of the typechecker does not need
to prove the implementation (the top of the proof rule) of

�
when it comes across

an invocation within another method that is currently being checked, but instead
assumes that the method has been implemented this way if it has been declared as
such by the programmer, in the source code. This is not a weakness; if it is not actually
implemented correctly, it will be caught out later by the checker. This also applies to
the mutator implementation rule.

Mutator invocation

This rule specifies the behaviour of the code implementing a method if it is to behave
as a mutator when called, and also the behaviour of code invoking such a method.

�_�
is a mutator

: ������
O
(
arg1

(
arg2

(j*jlj (
argn ��������

EX:
p5:
BREAK:

yv:
RETURN: � :

CONT: � �:�¥��¦��5�
State

�§�
State ��¨ State I �

State
��©
!
�
eval

��ª;���n�������
O
j«�
�

arg1
: jlj*j :

argn
����¥�\���

EX:
p2xz���\:

BREAK:
yv:
RETURN: � :

CONT: � �
That is, the sequencing of evaluating

ª
and the arguments, but this time the call itself

is not invariant, so that needs composing into the postconditions of the invocation
triple. Specifically,

�
with knowledge of state reduced further5, as the object being

invoked upon may or may not have been tainted by the mutator, as specified (Section
3.1.5).

The same warnings and demands about subclassing and overriding of methods
as for functions also apply here for mutators with the added freedom that the
overriding methods may be functions rather than just mutators due to behavioural
subtyping; remember that function is a mutator(Figure 3.6).

5The renaming of State to State ¬ in Q was a logical idiom merely used to discard any assertions­
was making about state, and to use it to construct a new value of State from the old one.

23

3.1. THEORY CHAPTER 3. IMPLEMENTATION

Mutator implementation

This rule specifies how the body code of a method must behave if it is to be accepted
as a mutator.�

State
!�H���V¢:

Local
!
� �

this
:
reference to

V � : �
arg1

:
undefined/NULL

� : jlj*j :�
argn

:
undefined/NULL

� ���� �
body code�

State I H)���
EX:State I H�:

BREAK:f
:
RETURN:f

:
CONT:f

��_�
is a mutator

Normal method invocation

Specified here is the behaviour of code invoking a normal (that is, not a function or
mutator) method.

�z�
is a normal method

: ������
O
(
arg1

(
arg2

(jljlj (
argn ��������

EX:
pq:
BREAK:

yv:
RETURN: � :

CONT: � �:���®¦��5�
State

���
State ��¨ State I �������

O
j«�
�

arg1
: jlj*j :

argn
����¥�\���

EX:
p2xz���\:

BREAK:
yv:
RETURN: � :

CONT: � �
Sequencing

This rule is concerned with the behaviour of a flat sequence of statements.������
C1����7A����p|7¢� : ����79��

C2����=¯����pt=*� : jlj*j : ���B°²±³7¢��
Cn���B°.����pv°��������

C1
(
C2

(jljlj (
Cn���¥°�����p|7¡xzpt=3x jlj*j xzpv°.�

For the preconditions and postconditions, this is simply the (extended) sequencing
rule of Floyd-Hoare logic. For the abnormal exit conditions, it is trivial that if any of
the statements within the sequence may leave the sequence with exceptional control
flow, with the given conditions being true, then exceptional control flow will leave the
entire sequence with any one of these being true, hence the disjunctions.

Local variable definition������ ´�µA¶³·C¸q(���5�
Local

���
Local �.¨ Local !

Local
��� � ¸�:

undefined/NULL
� ���

f
�

24

CHAPTER 3. IMPLEMENTATION 3.1. THEORY

When a local variable is declared, the only difference to any asserted condition is that
the Local relation has an extra entry in it, for the variable and its value (which in
Java is undefined/NULL).

Local assignment ������
C��������pq� :�¸ d dom

�
Local

�
������ ¸
!

C
(���5�

Local
�§�
Local ��¨ Local !

Local
��� � ¸�:

eval
�
C
��� ����p��

Assigning the result of an expression to a local variable will obviously be composed
of the evaluation of the expression, followed by setting the variable. Hence the same
conditions as the evaluation, with the postcondition modified such that any statement
asserting the value of Local has this value updated to reflect a Local with the new
value of the variable in it.

New object

eval
�
new egf�h�iAi � C1 : jljlj : Cm �n� ! reference to dom

�
n
�

���5�
State

���
State � : State !

State
���z1��� �

reference to dom
�
n
�n���

<init>
�
C1

: jlj*j :
Cm

���������pq� ������
new egf�h�iAi � C1 : jljlj : Cm ���������p��

This is essentially sequencing the allocation of a new object (
1
) with calling the con-

structor method on it.

Throw ������
C�������

EX:
p��\:Apq�������

throw C�
f
���
EX:

�2x�p��\:Apq�
Remaining rules. . .

The rules shown here are just a small subset of all those used in the project. The
remaining rules can be found in Appendix A.

25

3.1. THEORY CHAPTER 3. IMPLEMENTATION

3.1.7 The proof algorithm
The previous section contained rules that stood on their own, defining truth in the
context of this behavioural type system. This section defines how the rules can be
used together to determine algorithmically the behaviour of a method with respect to
State. The design goal of the algorithm; it has to look at the body code of any method
that a programmer has declared to be a function or mutator and attempt to prove
the hypothesis (top half) of the appropriate implementation rule(3.1.6) to prove the
conclusion that “

�
is a function/mutator”.

When one has a rule of the form ¹ 7�: ¹ =l: jlj*j : ¹ °º
, where

¹ 7
to

¹ °
and

º
are statements in logic, showing that all

¹ 7
to

¹ °
(your hypothe-

ses) are true is sufficient to show that
º

(your conclusion) is true. If the hypotheses
themselves are not axioms (that is, by definition true within the current system of
logic), then they themselves must be conclusions in another rule, and hence your
proof must recurse up along an expanding tree of rules, terminating with axioms or
other truths at the nodes. Only then can you say that

º
is true.

This lends itself easily to a structurally recursive algorithm, a procedure that
works upon a conclusion, and recursively executes itself upon the hypotheses, with
the base case of axioms and truth. The procedure needs to return more information
than just truth though; take for example the sequencing rule, in which the hypothe-
ses need to be evaluated with preconditions based on the postconditions of a previous
hypothesis. In fact, the procedure does not have to make a decision about truth6,
instead returning postconditions that make it true. This can be satisfied by having
the reasoning procedure return the postconditions (normal and abnormal exit) of the
code/rule it has been given. All the rules in this system allow this; they are all capable
of resolving postconditions given a precondition and Java code to reason over.

6With the exception of the root of the inference tree, which will be either function implementation
or mutator implementation. Here, truth is resolved outside the scope of the REASON procedure by
supplying the appropriate preconditions and checking that the postconditions match those demanded
by the implementation rule.

26

CHAPTER 3. IMPLEMENTATION 3.2. COMPILER INTEGRATION

The following pseudo-code illustrates this algorithm:

procedure REASON(precondition , java_expression)
returns (normal_postcondition,exception_condition,

return_condition,break_condition,
continue_condition,eval() value)

{
rule = the rule containing java_expression as its conclusion

if (rule is an axiom)
{

calculate final_postconditions
return final_postconditions , eval(java_expression)

}
else
{

foreach (sub_expression) in (hypotheses of rule)[]
{

expression = sub_expression from java_expression
pre = appropriate precondition for sub_expression
postconditions[expression] = REASON(pre , expression)

}
calculate final_postconditions from postconditions[]
return final_postconditions , eval(java_expression)

}
}

For convenience, it also returns the result of eval
���

on the Java expression; eval
���

evaluates in the context of a rule, so would not be easily implemented in a flat proce-
dure taking an expression.

3.2 Compiler integration
With the theory in place, and an algorithm to make it usable, the next step was
to apply it to adding the behavioural types of function and mutator to the Java
compiler7

3.2.1 Bridging between Javac and the typechecker
As mentioned in Section 2.3.2, the implementation was planned to have distinct sep-
arate code modules that just hooked into javac at clearly defined points, remaining
separate to avoid the difficulty of comprehending it in its entirety. The issue at the

7The source code to Sun’s Java 1.4 compiler(javac) was obtained for this purpose, and modified in
the implementation of this behavioural typechecker

27

3.2. COMPILER INTEGRATION CHAPTER 3. IMPLEMENTATION

first stage of implementation was to find the appropriate locations in javac for these
hooks. In placing these hooks, the following requirements were relevant:� The checker/prover needs to be able to get hold of an entire method implemen-

tation for all methods declared as function or mutator� The programmer needs keywords to declare methods to have these special be-
havioural types� The type of the methods needs to persist into the bytecode so that functions and
mutators not in the current compilation run (i.e. with source code available to
the compiler) can still be invoked usefully� The rules regarding overriding(Section 3.1.6) of functions and mutators need
to be enforced� Failure to prove that a method is a function or mutator, depending on what
the programmer asserted, should bring up an error message in the same format
as usual javac error messages, explaining the failure with as much detail as is
needed for the programmer to correct it

Passing methods to the prover

The prover requires some handle to the method that gives the behavioural type of
it, as well as all the code, based on the requirements of the proof algorithm(Section
3.1.7). The entire syntax tree of a method, as constructed by the parser was found
to be entirely suited to that. Just passing that to the proof method was sufficient; it
carries data about the behavioural type of the method(see the next two paragraphs
for more details), as well as all the source code in a tree-like structure that is ideally
suited to the algorithm. As implemented for this project, the algorithm resembles a
tree traversal algorithm.

The appropriate hook which calls the checker with the method should obviously
be after the syntax tree has been constructed, and ideally after as error checking as
possible has been done upon it; the proving algorithm assumes that the Java it works
upon is actually correct and legal.

Keywords

The tokenizer was the first point of attack here. Adding the tokens “function” and
“mutator” was simply a matter of seeing how the other tokens were defined in the
source code, and mimicking that style(see Figure 3.8 for an abstract view of this).
The parser was also modified to convert the “function” and “mutator” tokens into
the appropriate method flags when creating the root node for a method in the parse
tree (it creates a parse tree for each class, with methods as children, each of which
encapsulate all data about that method including attributes). See the next paragraph
for more information about attributes.

28

CHAPTER 3. IMPLEMENTATION 3.2. COMPILER INTEGRATION

The grammar rules for a Java method are illustrated here:
method G attributes type identifier (arguments)

�
body

�
attributes G attribute attributes»

attribute

attribute G public»
private»
protected»
abstract»
static»
native

type G Details not necessary here

identifier G Details not necessary here

arguments G Details not necessary here

body G Details not necessary here

For adding the required keywords to the language, no fundamental grammar changes
were required. Only the list of tokens under attribute needed modifying:
attribute G function»

mutator»
public»
private»
protected»
abstract»
static»
native

Figure 3.8: Adding the keyword to the Java method grammar

29

3.2. COMPILER INTEGRATION CHAPTER 3. IMPLEMENTATION

In the surrounding context of the public interface Flags, each attribute num-
ber should be ¼ = for bit ¼ . The extra attributes shown here took bits 13 and 14 respec-
tively in the attributes bitfield.

//RT
//The method flags for side-effect free functions (functions)
//and modifying only this methods (mutator)
int SEFF=8192;
int MOT=16384;

Figure 3.9: Adding to the table of recognised method flags

Persistence into bytecode

For each method in a classfile, there is a bitfield of flags, that are set to 1 or 0 for each
attribute that the method could have. These are used for such things as public,
synchronized, and final. It was decided to treat function and mutator as yet
more method attributes, and added them to the table as shown in Figure 3.9.

This took advantage of the fact that javac already handles loading and saving all
of these flags from classfiles.

Overriding rules

For the rules to hold, overriding a method in a subclass has to be constrained, as
explained in the proof rules:� A mutator or normal method may not override a function� A normal method may not override a mutator

This was a matter of adding a facility in javac that already enforced similar con-
straints. Specifically, a stage in the compiler ensures that access controls (regarding�
public,private,protected

�
) do not become more restricted in overriding meth-

ods. The mutator and function attributes of a method are just extra attributes
in the same bitfield as the access modifiers, and hence all that was required was for
existing code to be copied and modified to respect these.

Error messages

Like much other functionality that was added to javac, error messages were added
by taking advantage of the existing system for reporting error messages. This had a
twofold advantage, in that it was quicker and easier to program, and also the error
messages were guaranteed to be in a standard form that Java developers were already
familiar with from using javac.

30

CHAPTER 3. IMPLEMENTATION 3.2. COMPILER INTEGRATION

3.2.2 The checker
The typechecker (or prover) resembled the proof algorithm(Section 3.1.7) as closely as
possible. Additionally, the object orientation used matched the notation in the proof
rules fairly closely; State and Local have corresponding classes, whose instances
are composed to form Condition classes for the precondition and postconditions.
The reasons for the implementation/theory are sketched out in Section 2.3.2. As well
as holding the actual values in their instances, they also have methods defined on
them for logical operations, such as state tainting, disjunctions and adding elements
to the sets.

The following were specified in detail based on the logic/notation, before any code
was written for the checker.

GlobalState

This is analogous to logical statements asserting the value of State. It contains a set
of StateChunks which are subsets of State union-ed together. A small difference is
in how the rules taint subsets of State. Where some of them transform State

!-H¡��V
into State I H

for example, the GlobalState object fills in the “gap” with an extra
subset of State that is not necessarily equal to

V
but with the same domain, a tainted

version of
V
,
V½�

for example.
class GlobalState

GlobalState() This constructor creates an empty Global-
State, meaning State

!$�
get(StateChunk what) Returns the GlobalValue of a subset of this

GlobalState which has the domain given by
the StateChunk

taint(StateChunk what,Tree where) Returns a new GlobalState identical to this
one, except the subset given by the given
StateChunk is tainted

taintAll(Tree where) Like taint(. . .) but taints all StateChunks
disjunct(GlobalState with,Tree where) Returns a new GlobalState that is the dis-

junction between this and with, that is, the
assertion State

!
this

x
State

!
with

add() Returns a new GlobalState which has an
extra StateChunk added to it. When called
upon the GlobalState for State

!¾H
, returns

the GlobalState for State
!-H<��V

latest() Returns the StateChunk that was last added
to this one

toString() Returns a string representation of what this
object says about the value of State

Some of the methods specified here also contain parameters of type Tree. This is

31

3.2. COMPILER INTEGRATION CHAPTER 3. IMPLEMENTATION

a node of a syntax tree within javac, and is passed as a parameter to say which bit
of the code was being reasoned about when a new GlobalState was created. Inspec-
tion of this value allows the checker to determine which part of the method caused
function or mutator constraints to be violated by way of State/GlobalState
tainting.

StateChunk

This is a part of the domain of State as asserted in a GlobalState.
class StateChunk

StateChunk() This constructor creates a new StateChunk
toString() Returns the unique name of this StateChunk

GlobalValue

This represents the range of a StateChunk in a GlobalState, in only as much detail
as tainting. That is, a tainted version of this is not necessarily equal in value to the
original.

class GlobalValue

GlobalValue() This creates a GlobalValue, not necessarily
equal to any other

taint(Tree where) This returns a tainted version of this
GlobalValue

taint val This integer records how much this
GlobalValue has been tainted, 0 indicating
that it is the original value

tainted where This value is of type Tree and records which
bit of code was being reasoned about when
this was last tainted

LocalState

This is the local variables equivalent of GlobalState, representing an assertion
about the value of Local.

32

CHAPTER 3. IMPLEMENTATION 3.2. COMPILER INTEGRATION

class LocalState

LocalState() Constructor creating an empty
LocalState, which asserts an
empty Local set

disjunct(LocalState with) The LocalState equivalent of
GlobalState.disjunct(...)

assertValue(String variable,LocalValue val) Returns a new LocalState identi-
cal to this except that the value of
the named local variable is set as
given

assertValue(String variable,Set vals) Like the above assertValue(...),
except it asserts that the variable
may be one of several values, as
a disjunction; Local

�
variable

� !
vals

�À¿ � x Local � variables
� !

vals
�«' � xj*jlj

.
getValue(String variable) Returns a set of possible values this

assertion claims for the given local
variable

toString() Returns a string representation of
what this object claims about the
value of Local

LocalValue

This class represents values that local variables can take, as in Figure 3.4.
class LocalValue

LocalValue(StateChunk ref) Creates a reference to ref, referring to the
domain of State referred to by ref

getRef() Gets the StateChunk that this refers to, if it
is a reference to

toString() Returns a string describing what this value is
UNKNOWN This static member constant represents

Unknown
UNDEF NULL This static member constant represents

undefined/NULL

3.2.3 Non-invasive API tagging
Due to a small amount of slack time after implementing the core of this project, a
useful extension was added. So far, use of the entire Java API has had to be ignored
when one implements a function, as none of the API calls are themselves functions;

33

3.2. COMPILER INTEGRATION CHAPTER 3. IMPLEMENTATION

we have seen before that a function cannot itself be allowed to invoke a normal
method.

Within the system so far, any functions compiled to a classfile would be labelled
as such in the classfile, and treated as such when linked to in future compiles. It
follows that as the Java API is itself a collection of classfiles, these could be modified to
assert that certain API methods are functions or mutators. The potential existed to
write a classfile processor which took in the API classes and outputted them modified,
with the appropriate methods tagged as having such special behaviour. This method
of tagging the API was dismissed for two reasons; it would require far more time
than was remaining, learning how to manipulate classfiles, and also would require
tainting an entire Java installation which is not ideal when there is a much less
invasive alternative.

The solution that was actually implemented was rather simple. A small configu-
ration file contained a table identifying which API methods behaved as if they were
functions or mutators. The modified compiler reads this as necessary, and a modifi-
cation to javacs classloader ensures that a loaded method appears to be a function
or mutator to the rest of the compiler.

The file format for this configuration file (known as “annotation-table”) is human
readable and can contain comments that are ignored by preceding a line with a #
symbol. A sample annotation-table file follows:

#We want to use System.out.println for debugging messages!
java.io.PrintStream println(java.lang.String) function

#We want to throw exceptions; allow us to construct them
java.lang.IllegalArgumentException <init>(java.lang.String) mutator

With this file in place, functions can throw IllegalArgumentExceptions with-
out failing due to the compiler believing that the exception constructor taints state (if
it were a normal method). The commonly used “System.out.println(. . .)” can also be
used for debugging messages.

There is perhaps a problem of soundness in this scheme, in that the developer who
is adding to the annotation table for their own convenience is taken on trust. If they
have added to the table claiming that a given method is a function but it doesn’t
actually behave as one, then a function will be allowed to invoke it and then not
necessarily behave as a function. This was considered to be a worthwhile risk when
set against the convenience of the annotation-table, that is, it would be fairly difficult
to write real usable functions if the API couldn’t be used.

3.2.4 Debug mode
This is not relevant to the “finished product” as such, but was useful for the incremen-
tal testing and evaluation. While usually the compiler should keep silent about its
internal details when it accepts a function or mutator with errors, and only give

34

CHAPTER 3. IMPLEMENTATION 3.3. USE OF THE SYSTEM

a short helpful error message, enabling debug mode prints out the pre and postcon-
ditions of any method passing through the prover. An example of a simple function
“myfunction” that creates an object and modifies one of its fields, then returns a value
is shown below:

Now reasoning about myfunction...
Precondition:
State = c U d
Local(this) = ref(d) Local(arg2) = Unknown Local(arg1) = Unknown

Postconditions:
false
EX: State = c U e U d
Local(this) = ref(d) Local(arg2) = Unknown Local(arg1) = Unknown
BRK: false
CONT: false
RET: State = c U e‘ U d
Local(this) = ref(d) Local(arg2) = Unknown Local(arg1) = Unknown
eval: [Unknown]

3.3 Use of the system
This section is a brief guide to using functions and mutators within side-effect free
Java, from the perspective of a programmer.

3.3.1 Creating functions and mutators
Any method you wish to have the behavioural type function must have the keyword
“function” in its declaration, before the name and the return type, in the same place as
method attributes like “public” and “abstract”. The program will only compile if such
methods do not modify any fields in objects and classes existing at method invocation
time. If it compiles, then “function” can be taken as a guarantee of such behaviour
wherever it is invoked from.

With a mutator type method, the usage is very much the same, with the keyword
“mutator”, except that the programmer is also allowed to modify fields of the object
being invoked upon.

3.3.2 Error messages
The modified compiler has three new error messages to inform the programmer of
why a compile failed due to misuse of the language extension.� “Overriding method has incompatible behavioural type” - the programmer sees

this if a function or mutator is overridden in a subclass, in a way violating
the rules in Section 3.2.1

35

3.3. USE OF THE SYSTEM CHAPTER 3. IMPLEMENTATION

� “Could not prove that . . . was a function: program state tainted” - if the checker
cannot prove that the given method is a function, this message is associated
with the first line number that causes a violation of the behaviour specified for
a function; e.g. an assignment to a field in an existing object� “Could not prove that . . . was a mutator: program state tainted” - the same as
above, but for mutator methods

36

Chapter 4

Evaluation

Evidence that the project works correctly is exhibited here. Some tests here were
planned in advance, in the plan of testing(Section 2.3.3), and others were devised as
a result of decisions made at implementation time.

4.1 Behaviour of the compiler on standard Java code

The original plan of testing demanded that any modifications made to javac do not
modify its operation upon Java which does not utilise the behavioural typing exten-
sion. The modified compiler was used to compile:

� Large parts of the unmodified javac source: this virgin code compiled without
errors or warnings just as it did when compiled with the normal javac installed
on my system, and could still compile Java

� One of my Java ticks from the 1A Computer Science course: Tick 5, the poly-
nomial arithmetic program was chosen because it was moderately complex and
had a demo method built into it which would output verifiably correct arithmetic
if compiled correctly, which it was

� A “Hello World” program: this compiled and did indeed print out “Hello World”
to console

The modified javac passed this test with no issues whatsoever in evidence.

4.2 Testing for intended use

As planned, the modified javacwas tested in realistic usage; that is, on non-contrived
code that had function and mutator methods used correctly and to good effect.

37

4.2. TESTING FOR INTENDED USE CHAPTER 4. EVALUATION

4.2.1 ML style lists

Considering that this project was inspired by pure functional programming, it seems
appropriate to test its suitability against the implementation of such a data structure.
An “ML style list” is just a collection of singly-linked nodes, each of which contains
the data for that node and a reference to the next node, or some variety of null pointer
for the node at the end of the list. All operations are functional, not modifying the list
being invoked upon, but instead returning modified copies. Such a list was imple-
mented in Java with the behavioural types for the purposes of this test, and can be
found in Appendix C.

“MLList.java” compiled with no errors, about the behavioural typing or otherwise.
It also behaved functionally, as expected:

MLList l=new MLList("One",null);
l=l.addToHead("Two").addToHead("Three").addToHead("Four").
addToHead("Five");
MLList m=l;
System.out.println("l = "+l);
System.out.println("m = "+m);
l=l.addToHead("Six");
System.out.println("Added \"Six\" to l");
System.out.println("l = "+l);
System.out.println("m = "+m);
System.out.println("Calling l.length() = "+l.length());
System.out.println("l = "+l);
System.out.println("m = "+m);

The above was a test suite used upon MLList, which produced the following output:

l = Five::[Four::[Three::[Two::[One::[null]]]]]
m = Five::[Four::[Three::[Two::[One::[null]]]]]
Added "Six" to l
l = Six::[Five::[Four::[Three::[Two::[One::[null]]]]]]
m = Five::[Four::[Three::[Two::[One::[null]]]]]
Calling l.length() = 6
l = Six::[Five::[Four::[Three::[Two::[One::[null]]]]]]
m = Five::[Four::[Three::[Two::[One::[null]]]]]

So, the addToHead(...) method was indeed behaving as a function, leaving m in-
variant in its operation on l which was aliased to m. length() also displayed this
property.

The compiler is here demonstrated to be working correctly; a method being ac-
cepted as a function implies that that method behaves like a function. This is the
desired soundness property of the type system.

38

CHAPTER 4. EVALUATION 4.2. TESTING FOR INTENDED USE

4.2.2 A modification to ML style lists

A small modification was made to the above list implementation to improve efficiency
by a small amount. It was observed that the length method would run in

ªÁ� 1 �
for

length of list
1
, and this situation could be improved by having this method cache its

return value; recall that with functional lists, the length of a particular list will never
actually change.

The solution was to override MLList, and the code is shown here:

/**
* This is an optimised version of MLList, specifically with a
* cached length result to speed up calls to length.
*/

public class MLListOpt extends MLList
{

public mutator MLListOpt(Object head,MLList tail)
{

super(head,tail);
}

public function int length()
{

if(cachedLength==-1)
{

cachedLength=super.length();
}
return cachedLength;

}
private int cachedLength=-1;

}

This method would obviously work, however it does not compile:

MLListOpt.java:16: Could not prove that length() was a function:
Program state tainted

cachedLength=super.length();
ˆ

1 error

Again, as in the testing upon the Polynomial program, this is an issue where the
compiler is being too harsh. While state is indeed tainted and length() fails as a
function, it is fairly apparent that this modification is effectively invisible to the
outside world. Its behaviour is indistinguishable from the length() method being
overridden, so arguably the method should in fact be a function.

39

4.3. RULE ORIENTED TESTING CHAPTER 4. EVALUATION

4.2.3 Polynomial arithmetic

For this purpose Java Tick 5 from 1A, the polynomial arithmetic program, was ap-
propriately modified to have its various methods claim a behavioural type. The full
modified source is shown in Appendix C. In this case, the compilation failed:

Poly.java:38: Could not prove that multInt(long) was a mutator:
Program state tainted
cof[i]*=a;

ˆ
Poly.java:193: Could not prove that cancelDown() was a mutator:
Program state tainted
cof[i]/=cgcd;

ˆ
2 errors

Here, the compiler is pedantically correct; the object pointed to by the member field
cof, that is, an array, is being modified, and although cof is part of the object and
would be allowed to be modified to point to something else, the array being pointed to
is not considered part of the object. However, the array pointed to is private within
the object, and is never shared with any other; it is effectively part of the object. The
spirit of the mutator rules is being obeyed here, just not the formalities of it.

On the other hand, the checker passed the remainder of the functions and
mutators in Poly.java. These methods were confirmed to indeed behave as they
were declared to, by inspection, hence this test was a partial success.

4.3 Rule oriented testing

This kind of testing was not planned, because it arose as a result of implementation
decisions. That is, the use of individual, independent rules. While testing cannot
hope to cover every realistic programming example utilising functions to verify cor-
rectness, the implementation of the individual rules can be verified for correctness.
If one is to assume that the use of rules jointly within the checker is correct, then
verifying that the rules have been implemented correctly effectively verifies that the
entire checker is correct.

For this purpose, debugging mode was enabled in the modified javac, and small
snippets of code chosen to typify the use of each rule were fed through the compiler.
The debugging output enables one to verify that the rule has been implemented cor-
rectly, as the outputted pre and postconditions should match the rule. Many of these
kinds of tests were made, both during and after implementation, and none were dis-
covered to be incorrect. A reasonable subset of these tests are displayed in Appendix
C.

40

CHAPTER 4. EVALUATION 4.4. SUMMARY

4.4 Summary
To summarise this evaluation, the system worked without noticeable error, for a rigid
interpretation of the behavioural type definitions. The type system as implemented
was sound, in that all methods judged to be mutators or functions did in fact be-
have as such according to the definitions. When one takes a non-strict interpretation
of the definitions, the system is far from perfect. Taking the failure to compile of the
modified polynomial arithmetic program, it is apparent that the failed methods do
effectively behave as mutators, while the compiler does not acknowledge this. Sim-
ilarly with the optimised ML style list, the compiler is being too harsh on a method
which is totally indistinguishable from an actual function which has the same in-
put/output behaviour.

41

Chapter 5

Conclusion

This project has succeeded, in that it allows a programmer to denote a method as
having a particular behavioural type, and the modified compiler will accept this if
the method does behave as specified in most cases (and in all cases, only if the
method behaves as specified). As discussed in the introduction, the sort of guarantee
a function provides can be immensely useful for certain kinds of project, and this
system provides that sort of guarantee with little room for doubt; it has been shown
to be sound to a reasonable degree of confidence.

The issues highlighted in the evaluation do not necessarily illustrate a mistake in
the rules or in their implementation, but in the definition. While the failed function
in the optimised ML style list behaves identically to a function, it is still not accepted,
because at the core of it the definition of a function as used here is based upon data
as opposed to actual behaviour. The same criticism can also be made with regard
to the failed mutator methods in the polynomial arithmetic code; the behaviour is
effectively that of a mutator.

With the benefit of hindsight with respect to these issues, I would have chosen
different definitions for the behavioural types that were genuinely based upon be-
haviour and not just data. Were I to undertake future work aimed at improving the
project in this way, I/O behaviour of methods could have been reasoned about, and
a function could have denoted a method with invariant I/O behaviour. One could
reason about method return values as a function of program state, and devise or use
a different variety of theorem prover that showed the return value as being invariant
where argument values were fixed.

The issue raised by the polynomial arithmetic program was slightly more complex;
to be judged as a mutator, an improved checker would have to be convinced that
the array being modified was effectively part of the object. Informally, this would be
having no other object having a direct reference to this array; there is already ongoing
research into the concept of data “sharing” and what is considered to be “ownership”,
so this is no trivial extension.

In summary, this project has been a success, but there is definitely room for im-
provement if we wish programmers to be as unconstrained as possible while still
working within the bounds of the behavioural type being used.

42

Bibliography

[1] Alan Lawrence. Addition of Generics to Java

[2] David Flanagan. Java in a Nutshell, 3rd Edition

[3] Mike Gordon, Specification and Verification I course notes, 2002-2003

[4] Al Stevens and Clayton Walnum. Standard C++ Bible, 2000

[5] Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specification,
Second Edition

[6] Dr Alan Mycroft. Course Notes for Optimising Compilers course, 2003

[7] Bertrand Meyer/ISE. An Invitation to Eiffel, 1985-1996.

[8] Michael Norrish. C formalised in HOL, December 1998

43

Appendix A

More proof rules

A.1 A Block

������
C��������pq����v:AÂ;!

dom
�
Local

� �� �
C

����5�
Local

���
Local � : Local U Local

� »
dom

�
Local

� !$Â�����pÃ�
Local

�§�
Local � :

Local U Local
� »
dom

�
Local

� !£Â��
This rule enforces the nicety of local variable scope. When any statement is enclosed
within a scoping block, its pre and postconditions still hold except that the domain of
Local in any postcondition (and exception condition) statement is clipped to remove
any local variables declared inside the block from Local.

A.2 New array

������
C��������pq�������

new egf�h�iAi �C ����Á�
State

�§�
State � : State !

State
����1�����pq�

The index C is first evaluated, followed by modifying State, reflecting the creation of
the array. Creating a new array adds to State. Specifically,

1
is the extra component

of State created, and hence a reference to this is the result of evaluation. Content of1
is left as unknown but unique in State.

44

APPENDIX A. MORE PROOF RULES A.3. RETURN

A.3 Return
������
C�������

RETURN:
p��\:Ap��������

return C�
f
���
RETURN:

p���xz��:Apq�
The reasoning behind this is identical to that behind the Throw rule(3.1.6), with
return and RETURN: in place of throw and EX:.

A.4 Break
������
break�
f
���
BREAK:

���
As break evaluates nothing, just alters control flow, any precondition will simply
provide the condition that control flow leaves this statement with.

A.5 Continue
������
continue�
f
���
CONT:

���
Similar to break (A.4).

A.6 Switch/Case
���Äxz?8°²±³7A��
Cn��?8°����

BREAK:
º °�:Apv°�� : ���Åx�?�7A��

C2��?8=l���
BREAK:

º =l:9pt=l� : ������
C1��?�7A���

BREAK:
º 7�:Ap|7A�:������

A��������pq�������
switch

�
A
� �

case
'
: C1

jlj*j
case

1
: Cn

���?t°tx º 7¡x jlj*j x º °�����p2xzp|7¡x jljlj x�p}°��
45

A.7. CONDITIONAL APPENDIX A. MORE PROOF RULES

Like sequencing, a switch statement could have the exception conditions of any of its
component statements/expressions when control flow leaves exceptionally(except for
break which is handled within for the cases statements), hence the disjunction in
the exception condition. When control flow leaves normally, the condition is as it is
because control flow could leave by any one of the case statements invoking break,
hence the disjunction of all their BREAK:s. Control flow could also exit by the final
case statement falling through without a break , so the postcondition for that state-
ment is added to the disjunction. Moving on to the conditions demanded of the case
statements; the conditions are such that A can sequence with any of the case state-
ments after it (

�
implies all their pre-conditions), as control flow can move to any of

them after evaluation of the switch expression. Also, each statement must be able to
sequence with its immediate successor, and the conditions have been setup to allow
this.

A.7 Conditional

������
C��?@����p}w9� : ������

B� o ����p}s�� : ������
A��������ptÆÇ�������

A ? B : C��?Èx o ����ptÆ�x�pts�xzp�ÉÇ�
Normal control flow can be sequenced, AB or AC, depending on the evaluation of A.
The conditions demanded allow this, and the split nature of possible control flows give
the disjuncted postcondition. Any exceptional control flow generated out of A,B or C
will pass straight out of this expression without being affected, giving the exception
condition you see above.

A.8 If-Then-Else

������
C��?@����p}w9� : ������

B� o ����p}s�� : ������
A��������ptÆÇ�������

if(A)then B else C��?Èx o ����ptÆ�x�pts�xzp�ÉÇ�
See the Conditional rule(A.7), to which this is equivalent.

46

APPENDIX A. MORE PROOF RULES A.9. WHILE

A.9 While

� � x � �\��
A� � ����p��	�Ê�� o ��

B� � ����y¥�\:
CONT: � �\:

BREAK: � �Ê���?Èx � ��
A� o ����p��\�������

B��?@����y}:
CONT: � :

BREAK: � �������
A��������pq�������

while
�
A
�
B���Äx o x � x � x � �Ê����pÄx�p���xzp�����x�yÄx�y��Ê�

This is equivalent to the sequencing ABABA, which does reflect the behaviour of a
while

�
) loop. Normal exit can occur after any A (condition evaluating to false), or

from a break inside the body, B. continue in the body moves control flow to the
next evaluation of the condition.

This only considers two whole iterations at most because no more information
regarding State and Local can be gained by unrolling the loop further with the
limited ruleset used here.

47

A.10. DO-WHILE APPENDIX A. MORE PROOF RULES

A.10 Do-While
� o x � �Ê��
B� � ����p��\���?@��

A� o ����y��\:
CONT: � �\:

BREAK: � �Ê����Äx � ��
B��?@����pq�������

A��������yv:
CONT: � :

BREAK: � �������
do A while(B)��?Ëx � x � x � �Ê����p2xzp���x�yÅxzy��Ê�

Similar to while() (A.9), the conditions here are chosen to allow circular sequencing
of AB as ABAB, but in this case terminating on B(when it evaluates as false).

A.11 For
Rewrite

for(A;B;C) D

as �
A
(
while

�
B
� �
D
(
C
���

and reason about it, as the two are entirely equivalent.

A.12 Global assignment
������
D��?@����y�� : ������

C��������pq�������
C
�)Ì�Í · f�Î !

D��?��
State

�§�
State � : State !

State
�b�Ï1��§�

!
�
eval

�
C
�n� � »dom � 1®� � ! dom

�
!
�
eval

�
C
���n� ����p2xzy��

This is, as usual, derived from evaluating C followed by evaluation of D and sequenc-
ing these. Also, after the assignment, the object being assigned to is totally “tainted”
there is no need to be more specific for the uses of this system, and the whole object
is just replaced with

1��
, an anonymous variable with nothing said about its values.

48

APPENDIX A. MORE PROOF RULES A.13. TRY-CATCH-FINALLY

A.13 Try-Catch-Finally

��p2x�p���xz?Ëx�yÄx�����
C� o ��� � ���pÁ�

Local
���
Local � �State �§� State � :

Local
!
Local

�Ð� �\Ñ :
reference to

1 � :
State

!
State

�Ð��13��
B��?@����y�� ������

A�������
EX:

p5:Ap��\�������
try A catch

�ÓÒ�Ô.Õ ·Ö¶Ø× ÍbÙ�Ú ´�µ¢¶³· ÑÇ�
B finally C� o ��� � x o �

This rule does not go into the detail of matching up the type of the thrown exception
with the catch clause, instead allowing that it is possible that a thrown exception in
the body code is caught. Again, this is all just a matter of sequencing; the catch block
code B can only enter from an exception out of A, hence that is how it is sequenced
(using

p
), except that a local variable

Ñ
is added, being the handle to the thrown

exception (which is an addition to State).
The whole Try-Catch-Finally block, when exiting normally, will always exit out

of the finally block, hence the postcondition is the postcondition of the finally
block, o . The finally block can enter from one of A exiting normally, A exiting with
an exception or other exceptional control flow, from any exceptional control flow out
of the catchblock, from normal termination of the catchblock, hence the massive
disjunction of conditions in the precondition (

p2x�p��Ðx�?Ëx�yÅx��
).

Control flow can leave the entire block exceptionally by either an exception being
thrown out of the finally block (condition �), or the finally block terminating
normally o and throwing the exception/break/etc. it has “hung onto”

A.14 Evaluation of local variables

¸ d dom
�
Local

������� ¸ �������
f
�

49

A.15. EVALUATION OF OBJECT FIELDS APPENDIX A. MORE PROOF RULES

A.15 Evaluation of object fields

������
C��������pq�������
C
�)Ì�Í · f�Î��������pq�

The evaluation will always be Unknown, as there is little point in anything else with
a prover of such limited goals.

A.16 Evaluation of static fields

������ egf�h�iAi ��Ì�Í · f�Î�������
f
�

A.17 Evaluation of literals

������
“String”/Number�������

f
�

A.18 Evaluation of unary operators

(excepting prefix/postfix incrementers which have side effects) Treat incrementers as
the equivalent assignment operations.

������
C��������pq�������
Op C��������pq�
50

APPENDIX A. MORE PROOF RULES A.19. BINARY OPERATORS

A.19 Binary operators
(excepting those with conditional rhs evaluation)������

D��?@����y�� : ������
C��������pq�������

C Op D��?@����p2xzy��
This is sequencing C and D as Java will evaluate them in left to right order.

A.20 Bracketed expressions

������
C��������pq������� �
C
���������pq�

A.21 Logical operators

������
B��?@����y�� : ������

A��������pq�������
A

»§»
B���Åx�?@����p2xzy��

������
B��?@����y�� : ������

A��������pq�������
A Û¥Û B���Åx�?@����p2xzy��

51

Appendix B

Sample code

This appendix exhibits a few representative samples of code that was written in the
implementation of this project.

LocalValue.java

package sefprover;

/**
* A value that a local variable in a Local can take.
*/

class LocalValueÜ
/**
* Creates a Value that represents a reference to a subset of State (a Java object).
*/ 10

public LocalValue(StateChunk ref) LocalValueÜ
this.ref=ref;Ý

/**
* Get the subset of State that this value is referring to, if it is a
* reference.
*/

public StateChunk getRef() 20 getRefÜ
if(ref!=null)Ü

return ref;Ý
elseÜ

throw new IllegalStateException
("Attempted to call getRef() on a Value that isn’t a reference");Ý

30Ý
/**

52

APPENDIX B. SAMPLE CODE

* Returns a human readable description of this LocalValue.
*/

public String toString() toStringÜ
if(this==UNKNOWN)Ü

return "Unknown"; 40Ý
else if(this==UNDEF NULL)Ü

return "UNDEF/NULL";Ý
elseÜ

return "ref("+ref+")";ÝÝ
50

/**
* A LocalValue that is unknown by the prover.
*/

public static final LocalValue UNKNOWN=new LocalValue();

/**
* A LocalValue that is know to be null or undefined by the prover.
*/

public static final LocalValue UNDEF NULL=new LocalValue(); 60

/**
* Honour the equality relation, for using this in Sets.
*/

public boolean equals(Object other) equalsÜ
if(other instanceof LocalValue)Ü

LocalValue other l=(LocalValue)other;
if(this==other l) 70Ü

return true;Ý
else if(this.ref==other l.ref && this.ref!=null)Ü

return true;Ý
elseÜ

return false; 80ÝÝ
elseÜ

return false;Ý
53

APPENDIX B. SAMPLE CODE

Ý
/**
* For use in HashSets. 90
*/

public int hashCode() hashCodeÜ
if(ref!=null)Ü

return ref.hashCode();Ý
elseÜ

return super.hashCode(); 100ÝÝ
/**
* Purely for internal use, in creating the ’enums’ of UNKNOWN and
* UNDEF NULL.
*/

private LocalValue() LocalValueÜÝ
110

/**
* The StateChunk this Value refers to (if it is a reference)
*/

private StateChunk ref;Ý
Condition.java

package sefprover;

import com.sun.tools.javac.v8.tree.Tree;

/**
* This is an assertion about program state, specifically about the values in
* State and Local.
*/

class ConditionÜ
10

/**
* Creates a Condition with values of State and Local asserted.
*/

public Condition(GlobalState state,LocalState local) ConditionÜ
this.state=state;
this.local=local;Ý

/** 20

54

APPENDIX B. SAMPLE CODE

* Creates a new Condition that’s an ORing of ’this’ and ’with’. Must be
* given the code causing the disjunction.
*/

public Condition disjunct(Condition with,Tree where) disjunctÜ
if(this==Condition.FALSE)Ü

return with;Ý
else if(with==Condition.FALSE) 30Ü

return this;Ý
elseÜ

return new Condition(this.state.disjunct(with.state,where),this.local.disjunct(with.local));ÝÝ
/** 40
* Returns a readable representation of this assertion about state.
*/

public String toString() toStringÜ
if(this==Condition.FALSE)Ü

return "false";Ý
elseÜ

50
return state.toString()+’\n’+local.toString();ÝÝ

/**
* The possible values of program state asserted by this condition
*/

public final GlobalState state;

/** 60
* The state of the local variables, as associated by this condition
*/

public final LocalState local;

/**
* A condition logically equivalent to ’false’ as opposed to an assertion
* about values of global and local state.
*/

public static final Condition FALSE=new Condition();
70

/**
* Constructor to support singleton state of FALSE.
*/

55

APPENDIX B. SAMPLE CODE

private Condition() ConditionÜ
state=null;
local=null;ÝÝ

56

Appendix C

Testing

C.1 Modified Poly.java

class Poly //Class representing an arbitrary sized polynomialÜ
//Name of the variable, traditionally ’x’
private String name;
//Co-efficients for each polynomial, the degree represented by the array index
private long[] cof;
//Denominator of the entire polynomial; allows fractions
private long den;
//Debug printing mode?
private boolean debug; 10

//Constructs a new polynomial with the given data
public mutator Poly(String name,long[] cof,long den,boolean debug) PolyÜ

subPoly(name,cof,den,debug);Ý
//Alternative for lazy people who don’t want fractions or debugging
public mutator Poly(String name,long[] cof) PolyÜ

20
subPoly(name,cof,1,false);Ý

public mutator void subPoly(String name,long[] cof,long den,boolean debug) subPolyÜ
this.name=name;
this.cof=cof;
this.den=den;
this.debug=debug;
cancelDown(); 30Ý

//Multiplies the entire polynomial by an integer
public mutator void multInt(long a) multInt

57

C.1. MODIFIED POLY.JAVA APPENDIX C. TESTING

Ü
for(int i=0; i Þ cof.length; i++)Ü

cof[i]*=a;Ý
cancelDown(); 40Ý

//Divides the entire polynomial by an integer
public mutator void divInt(long a) divIntÜ

den*=a;
cancelDown();Ý

//Multiplies the entire polynomial by the variable involved 50
public mutator void multVar() multVarÜ

long[] cof2=new long[cof.length+1];
cof2[0]=0;
for(int i=0; i Þ cof.length; i++)Ü

cof2[i+1]=cof[i];Ý
cof=cof2;Ý

60

//Set the debug printing mode
public void setDebug(boolean debug) setDebugÜ

this.debug=debug;
cancelDown();Ý

//Add two polynomials
public static function Poly addPolys(Poly p1,Poly p2) 70 addPolysÜ

return addsubPolys(p1,p2,false);Ý
//Subtract two polynomials
public static function Poly subPolys(Poly p1,Poly p2) subPolysÜ

return addsubPolys(p1,p2,true);Ý
80

//Add/subtract two polynomials
private static function Poly addsubPolys(Poly p1,Poly p2,boolean sub) addsubPolysÜ

long[] rcof; //Co-efficients of result
long rden; //Denominator of result

if(p1.cof.length ß p2.cof.length)

58

APPENDIX C. TESTING C.1. MODIFIED POLY.JAVA

Ü
rcof=new long[p1.cof.length];Ý

90
elseÜ

rcof=new long[p2.cof.length];Ý
rden=p1.den*p2.den;
for(int i=0; i Þ rcof.length; i++)Ü

if(i Þ p1.cof.length)Ü
rcof[i]+=p1.cof[i]*p2.den; 100Ý

if(i Þ p2.cof.length)Ü
if(sub)Ü

rcof[i] à =p2.cof[i]*p1.den;Ý
elseÜ

rcof[i]+=p2.cof[i]*p1.den; 110ÝÝÝ
return (new Poly(p1.name,rcof,rden,false));Ý

//Multiplies together p1 and p2, returning the result
public static function Poly multPolys(Poly p1,Poly p2) multPolysÜ

long[] rcof; //Co-efficients of result 120
long rden; //Denominator of result

rcof=new long[p1.cof.length+p2.cof.length];
rden=p1.den*p2.den;
for(int i=0; i Þ p1.cof.length; i++)Ü

for(int j=0; j Þ p2.cof.length; j++)Ü
rcof[i+j]+=p1.cof[i]*p2.cof[j];Ý

130Ý
return (new Poly(p1.name,rcof,rden,false));Ý

//Differentiates the polynomial
public mutator void diffPoly() diffPolyÜ

long[] rcof=new long[cof.length à 1]; //Co-efficients of result

for(int i=1; i Þ cof.length; i++) 140

59

C.1. MODIFIED POLY.JAVA APPENDIX C. TESTING

Ü
rcof[i à 1]=i*cof[i];Ý

cof=rcof;Ý
//Simplifies the fraction as much as possible
public mutator void cancelDown() cancelDownÜ

150
long divs[]=new long[cof.length+1]; //Things to try dividing through
divs[0]=den;
long cgcd=divs[0]; //Current gcd
long r; //Remainder

if(debug á den==0)Ü
return;Ý

for(int i=0; i Þ cof.length; i++) 160Ü
if(cof[i]!=0)Ü

divs[i+1]=cof[i];Ý
elseÜ

divs[i+1]=divs[i];ÝÝ
170

for(int i=1; i Þ divs.length; i++)Ü
long a=cgcd;
long b=divs[i];
doÜ

r=a%b;
if(r!=0)Ü

a=b; 180
b=r;ÝÝ

while(r!=0);
cgcd=b;Ý

if(cgcd Þ 0) //Having a negative denominator is bad form; this sorts it.Ü
cgcd*= à 1;Ý

den/=cgcd; 190
for(int i=0; i Þ cof.length; i++)Ü

cof[i]/=cgcd;

60

APPENDIX C. TESTING C.1. MODIFIED POLY.JAVA

ÝÝ
//Prints out the polynomial
public String toString() toStringÜ

boolean done=false; //Done one already? (used for the purposes of putting in a ’plus’) 200
String ret=""; //String to be constructed and returned
String cofs; //Just a scratchpad

cancelDown();
for(int i=0; i Þ cof.length; i++)Ü

if(cof[i]!=0 && !debug)Ü
if(done)Ü

210
if(cof[i] ß 1)Ü

ret=ret+" + ";Ý
elseÜ

ret=ret+" - ";ÝÝ
if(cof[i]==1) 220Ü

cofs="";Ý
elseÜ

cofs=Math.abs(cof[i])+"*";Ý
if(i ß 1)Ü

ret=ret+cofs+name+"ˆ"+i; 230Ý
if(i==1)Ü

ret=ret+cofs+name;Ý
if(i==0)Ü

ret=ret+cof[i];Ý
done=true; 240Ý

if(debug)Ü
ret=ret+cof[i]+"*"+name+"ˆ"+i+" ";
done=true;Ý

61

C.2. MLLIST.JAVA APPENDIX C. TESTING

Ý
if(!(den==1 && !debug))Ü

ret="("+ret+")/"+den; 250Ý
return ret;ÝÝ

C.2 MLList.java

/**
* This implements an ML style list, utilising the language extensions of
* Side-effect free Java
*/

public class MLListÜ
/**
* Creates a list from an item to go on the head, and a list to go on the
* tail.
*/ 10

public mutator MLList(Object head,MLList tail) MLListÜ
System.out.println("Debug: created MLList");
if(head==null && tail!=null)Ü

throw new IllegalArgumentException("Trying to create empty MLList with a tail");Ý
if(head!=null && tail==null)Ü

throw new IllegalArgumentException("Trying to create an MLList with a null tail"); 20Ý
listHead=head;
listTail=tail;Ý

/**
* Returns whether or not this list is empty.
*/

public function boolean isEmpty() isEmptyÜ
30

if(listHead==null)Ü
return true;Ý

elseÜ
return false;ÝÝ

62

APPENDIX C. TESTING C.2. MLLIST.JAVA

40
/**
* Returns the length of this list
*/

public function int length() lengthÜ
if(this.isEmpty())Ü

return 0;Ý
else 50Ü

return 1+listTail.length();ÝÝ
/**
* Converts this list to an array.
*/

public function Object[] toArray() toArrayÜ
60

Object[] out=new Object[this.length()];
MLList l=this;
for(int i=0;i Þ out.length;i++)Ü

out[i]=l.listHead;
l=l.listTail;Ý

return out;Ý
70

/**
* Returns a list generated from the given array.
*/

public static function MLList fromArray(Object[] from) fromArrayÜ
return fromArray(from,0);Ý

private static function MLList fromArray(Object[] from,int startPos) 80 fromArrayÜ
if(startPos==from.length)Ü

return new MLList(null,null);Ý
elseÜ

return new MLList(from[startPos],fromArray(from,startPos+1));ÝÝ
90

public String toString() toString

63

C.3. TESTING LOCAL VARIABLE RULES APPENDIX C. TESTING

Ü
return listHead+"::["+listTail+"]";Ý

/**
* The head of the list. Null if this is an empty list.
*/

public final Object listHead; 100

/**
* The tail of the list
*/

public final MLList listTail;Ý

C.3 Testing local variable rules
function public void testfunction(int x)
{

int a=x;
}

Compiled succesfully with debugging output:

Now reasoning about testfunction...
Precondition:
State = a U b
Local(this) = ref(b) Local(x) = Unknown

Postconditions:
State = a U b
Local(this) = ref(b) Local(x) = Unknown Local(a) = Unknown
EX: false
BRK: false
CONT: false
RET: false
eval: [Unknown]

Behaved as expected, tainting no State and adding an entry to Local.

64

APPENDIX C. TESTING C.4. BREACHING FUNCTION CONSTRAINTS

C.4 Breaching function constraints
public class AClass
{

public function void violator(double x)
{

field=(int)x;
field=field*2;
field=field+2;

}

private int field=0;
}

Fails to compile with debugging output:

Now reasoning about violator...
Precondition:
State = a U b
Local(this) = ref(b) Local(x) = Unknown

Postconditions:
State = a U b‘‘‘
Local(this) = ref(b) Local(x) = Unknown
EX: false
BRK: false
CONT: false
RET: false
eval: [Unknown]

And compiler output:

AClass.java:5: Could not prove that violator(double) was a
function: Program state tainted
field=(int)x;
ˆ
1 error

This behaviour is correct; setting a field within an object should indeed taint the
subset of State point to by this. As the function constraints don’t allow that part
of State to be tainted, it fails correctly, pointing out the exact line where the tainting
occurred for the first time.

65

C.5. CHOICES WITH IF()THEN ELSE APPENDIX C. TESTING

C.5 Choices with if()then else

function public void testfunction(int x)
{

Object a;
if(x>0)
{

a=null;
}
else
{

a=this;
}

}

Compiled succesfully with debugging output:

Now reasoning about testfunction...
Precondition:
State = a U b
Local(this) = ref(b) Local(x) = Unknown

Postconditions:
State = a U b
Local(this) = ref(b) Local(x) = Unknown
Local(a) = ref(b) \/ UNDEF/NULL
EX: false
BRK: false
CONT: false
RET: false
eval: [Unknown]

As specified, an if structure delivers an OR-ing of its two branches; either a set to
null or set to point to this.

66

APPENDIX C. TESTING C.6. PASSING MUTATORS

C.6 Passing mutators
public class Incrementor
{

mutator public void plusMe()
{

this.val++;
}

private int val;
}

Compiled succesfully with debugging output:

Now reasoning about plusMe...
Precondition:
State = a U b
Local(this) = ref(b)

Postconditions:
State = a U b‘
Local(this) = ref(b)
EX: false
BRK: false
CONT: false
RET: false
eval: [Unknown]

This output shows that this is modified as one would expect, and the compiler ac-
cepting it as a mutator is correct; tainting of this is acceptable in that case.

67

C.7. TRICKS OF CONTROL FLOW APPENDIX C. TESTING

C.7 Tricks of control flow
public class Incrementor
{

mutator public Incrementor()
{

val=0;
}

function public Incrementor plusOne(int x)
{

Incrementor target=this;
Incrementor brandNew=new Incrementor();
while(x>0)
{

if(x>10)
break;

target=brandNew;
}
target.val++;
return target;

}

public int val;
}

Fails to compile with debugging output:

Now reasoning about plusOne...
Precondition:
State = c U d
Local(this) = ref(d) Local(x) = Unknown

Postconditions:
false
EX: State = c U d U e‘
Local(this) = ref(d) Local(x) = Unknown
Local(target) = ref(d)
BRK: false
CONT: false
RET: State = c U d‘ U e‘‘
Local(this) = ref(d) Local(brandNew) = ref(e)
Local(x) = Unknown Local(target) = ref(d) \/ ref(e)
eval: [Unknown]

And compiler output:

68

APPENDIX C. TESTING C.8. OVERRIDING FUNCTIONS

Incrementor.java:19: Could not prove that plusOne(int) was a
function: Program
state tainted
target.val++;

ˆ
1 error

The interaction of break and while
�½jljljâ�

is working correctly; as the RETURN: condi-
tion hints at, due to that loop, target could either be this, which a function should
not be allowed to modify, or the newly instantiated Incrementor which may be mod-
ified. The compiler is correct in disqualifying plusOne as a function as the pos-
sibility exists that this could be tainted at the line indicated due to the duality of
target.

C.8 Overriding functions
public class AClass
{

public function void myMethod()
{
}

}

class BClass extends AClass
{

public mutator void myMethod()
{
}

}

Fails to compile with error output:

AClass.java:10: myMethod() in BClass cannot override myMethod()
in AClass; overriding method has incompatible behavioural type

public mutator void myMethod()
ˆ

1 error

This is entirely correct. A mutator may not override a function, as specified in the
proof rules(Section 3.1.6).

69

70

Project Proposal

Richard Thrippleton
ret28

Churchill College

Part II Computer Science Tripos Project Proposal
Functional Java

23/10/2002

Project Originator: Richard Thrippleton
Special Resources: None
Project Supervisor: Tim Harris ã Tim.Harris@cl.cam.ac.uk ä
Director of Studies: Christine Northeast ã Christine.Northeast@cl.cam.ac.uk ä

i

Introduction
In short, this project aims to extend the Java language to allow methods to be marked
as side-effect free, in the style of a functional programming language such as ML. The
programmer will be given a keyword to mark such methods, and the compiler will
prove the claims or throw a compile error trying.

Detail
This is an example of programming by contract, specifically aimed at putting the
functional contract into the Java language. Programming by contract refers to pro-
cedures/functions being annotated with formal pre and post-conditions of invocation,
which the implementer must stick to. In most languages, this is enforced informally,
with the conditions being documented in plain-text and the onus being on the develop-
ers to make their code stick to this. Some languages enforce this more formally, such
as Eiffel which can enforce certain kinds of contract with language integrated asser-
tions that are tested before and after invocation of a method at runtime. However,
this scheme isn’t powerful enough for feasibly implementing the functional contract.

The functional contract specifies that the entire program state does not change
between immediately pre-invocation and immediately post-invocation of a method. A
functionally contracted method does this and only this; it takes arguments and re-
turns a new value/object that may or may not be based on these arguments. Changes
to local state within the method does not count as a change to program state, as that
state will no longer exist after return. The functional contract can make use of the
method by a fellow developer a considerably easier task; he/she does not have to walk
through the implementation code to know for certain that calling it has NO hidden
surprises. The definition of state change will certainly not include allocation of new
objects on the heap/stack, for the sake of practicality in functional programming.

Implementing this within Java entails that a method signature modifier (called
’function’) be added to the language, as well as implementing a contract prover within
the compiler. Any method tagged with this will come under the scrutiny of the
modified compiler, at a late stage of compilation, which will attempt to prove that
the method does indeed conform to the functional contract as the programmer has
claimed. In answering the question “Is this side-effect free?” the prover will not be
able to answer “Yes” or “No” but rather “Yes” or “Don’t know” The former is an im-
possible problem, for example considering all the obfuscation that can be done along
the lines of changing a program’s state within a method but changing it back before
returning. Should the contract prover answer “Don’t know” on a ’function’ method,
the compilation will fail in the style of a conventional compile time error.

Plan of work
Using arbitrary units of 10 work packages lasting roughly a fortnight each, on top of
the date constraints.

ii

Package 1
28/10/2002 - 10/11/2002
Theoretical foundation: devising a formal scheme for proving that a particular

method is functional; the functional prover. The prover will not be tremendously
complex, and will definitely fail to pass a significant number of functions that are ac-
tually side effect free. Previous work in the area of effects will be researched, certainly
including relevant sections of the Optimising Compilers course.

I will complete this stage with a working, proven scheme, suitable for implemen-
tation in the first implementation stage.

Package 2
11/11/2002 - 24/11/2002
Existing code-base research: I will obtain and examine the source code to the Sun

Java Compiler, with a view to modifying it to implement the functional prover. The
same also for the Byte Code Engineering Library, which I believe to be necessary to
make the task feasible.

I will have obtained all necessary libraries and third party code, understanding
them in sufficient detail to use them in the next stage

Packages 3,4
25/11/2002 - 20/12/2002
Implementation: programming the functional prover and integrating it into the

compiler.
First package; coding. Second package, debug/fix cycle.
The deliverable is the working realisation of my initial theoretical scheme, inte-

grated into Sun’s javac.

Package 5 13/01/2003 - 31/01/2003
Assessment for extension: I will assess my theoretical work with a view to finding

extensions to it that decrease the number of genuinely side effect free functions that
aren’t passed by the compiler as being so. At the end of this, I will have the knowledge
required to implement said extensions into the already modified compiler. These will
go into the progress report that will be complete at the end of this stage.

Packages 6,7 03/02/2003 - 02/03/2003
Extensions: The above extensions to the functional prover will be implemented in

the modified compiler.
Subdividing this further is near impossible, as I do not yet know what extensions

or how many I will create.

Packages 8,9,10
03/03/2003 - 25/04/2003
Dissertation write-up. By the end of this period, it will be in a suitable state for

submission.
Any time after this up until the stricter deadline of 16/5/2003 will be overflow time,

to allow for any of the above stages to overrun.

iii

