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Motivation

Moore's law Moore's law
Diminishing returns
Wire scaling
Dennard scaling
Power wall
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Not enough parallelism
Utilisation wall
Amdahl's law

HEE
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. . . Design & validation

- Programmability
Fault tolerance

Moore's law
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Introduction

* Today's processors have rigid boundaries

* We explore a different approach by exposing:
* placement of data
* placement of computation
* communication

* Virtual architectures make a 500-core

embedded processor feasible - .
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Execution patterns

« Similar to FPGA overlays >
v v v v
* Software specialisation I\ N NS
* Increase performance or reduce
energy (or both!) >
* Efficient communication is important | |~
* A wide variety of available patterns -
is helpful "/
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Loki tile

* Network communication is key

* Sub-networks optimised for
different use cases

* Even L1 cache access is over
the network

 Channel-based communication

* Cache is configurable

7=z UNIVERSITY OF

8 X L1 cache bank

4

Router

8 x

core

A




Code example

setchmapi 1, rlb

[...]
fetch
uint32 t updateCRC32 (uint8 t ch, XOTr

uint32 t crc) 111

{ lui

~

return table[ (crc ~ ch) & Oxff] andi
(crc >> 8); slli

} addu
ldw

srli

XOr .eop
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rl0

rll, rl4d, rl3
rl2, %$lo(table)
rl2, %hi(table)
rll, r1ll, 255
rll, rll, 2
rll, rl12, rll
0(rll) ->1
rl2, rl4d, 8
rll, r2, «rl2




Loki pipeline

Instruction
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IPK
cache
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Single core behaviour

* Core area: 125x360um )
* Energyl/instruction: 10-20pJ Decoder__|__PK cache
Register file

* Compared to ARM1176 (same process):

Network buffers

ALU

* 1.4-2.2x instruction count 360 pm

Multiplier

* 1.0-1.8x execution time

Scratchpad

* 7-15% energy/instruction Pipeline _| Channel map table

registers

Miscellaneous
20% extra

—l -
- o

125 pm
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Data-level parallelism

* All cores execute the same code, but produce different parts of the
output

* Improve performance by executing independent iterations
simultaneously

* GPUs do this, and many modern processors have SIMD extensions

* DOALL vs. DOACROSS

* Linear speed-up, no energy $ $ $ $
v

NN NTL N
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Data-level parallelism: modifications

Scalarisation
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Task-level pipelines

* Each core processes the data before sending it on to the next core
* Primary aim: improve cache behaviour

* Potential to unlock more parallelism

* stringsearch: 6 cores, 4x speed-up, same energy

* adpcm: 2 cores, 2.5x speed-up, 1/3 energy
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Dataflow

The limit of task-level pipelining

Aim to get each core down to a single instruction

Clock gate large amounts of the pipeline

Optimise:

* Instruction set v
é 4

* Network L :

+ Pipeline NV AN

4.5pd per instruction (>50% reduction)
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Summary

* Loki: 10pdJ per instruction, 8 cores per mm?

* Execution patterns can reduce energy and improve performance by
eliminating unnecessary work

* Exposing the network to software is key

* Cores could be even simpler
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Conclusion

* Step-change required
* Tightly-coupled cores allow many parallel execution patterns

* Execution patterns help to make use of resources and achieve
efficiency

ing Design and Parallelism is
o pOffs validation costs hard
* Other group members: compilation,

memory system, accelerators Poor wire

scaling Amdahl's law

* Future work: configurable network,
OS support, fabrication! Jeneity B cault tolerance | Dark silicon

Dennard Cons

Power wall scaling failure dem
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