

Exploiting Tightly-Coupled Cores

Daniel Bates, Alex Bradbury, Andreas Koltes and Robert Mullins

SAMOS XIII

Motivation

Introduction

- Today's processors have rigid boundaries
- We explore a different approach by exposing:
 - placement of data
 - placement of computation
 - communication
- Virtual architectures make a 500-core embedded processor feasible

Loki chip

Tiled, homogeneous design

Hierarchical network

Optimised for low latency and low energy communication

 Loki is unique in its flexibility

Execution patterns

- Similar to FPGA overlays
- Software specialisation
- Increase performance or reduce energy (or both!)
- Efficient communication is important
- A wide variety of available patterns is helpful

Loki tile

- Network communication is key
- Sub-networks optimised for different use cases
- Even L1 cache access is over the network
- Channel-based communication
- Cache is configurable

Code example

```
setchmapi 1, r15
[...]
fetch r10
         r11, r14, r13
xor
11i
         r12, %lo(table)
lui
         r12, %hi(table)
andi
         r11, r11, 255
slli
         r11, r11, 2
addu
         r11, r12, r11
ldw
         0 (r11) -> 1
srli
         r12, r14, 8
xor.eop r11, r2, r12
```


Loki pipeline

Single core behaviour

- Core area: 125x360µm
- Energy/instruction: 10-20pJ
- Compared to ARM1176 (same process):
 - 1.4-2.2x instruction count
 - 1.0-1.8x execution time
 - 7-15% energy/instruction

Data-level parallelism

- All cores execute the same code, but produce different parts of the output
- Improve performance by executing independent iterations simultaneously
- GPUs do this, and many modern processors have SIMD extensions
- DOALL vs. DOACROSS
- Linear speed-up, no energy increase

Data-level parallelism: modifications

Task-level pipelines

- Each core processes the data before sending it on to the next core
- Primary aim: improve cache behaviour
- Potential to unlock more parallelism
- stringsearch: 6 cores, 4x speed-up, same energy
- adpcm: 2 cores, 2.5x speed-up, 1/3 energy

Dataflow

- The limit of task-level pipelining
- Aim to get each core down to a single instruction
- Clock gate large amounts of the pipeline
- Optimise:
 - Instruction set
 - Network
 - Pipeline
- 4.5pJ per instruction (>50% reduction)

Summary

- Loki: 10pJ per instruction, 8 cores per mm²
- Execution patterns can reduce energy and improve performance by eliminating unnecessary work
- Exposing the network to software is key

Cores could be even simpler

Conclusion

- Step-change required
- Tightly-coupled cores allow many parallel execution patterns

Execution patterns help to make use of resources and achieve

efficiency

 Other group members: compilation, memory system, accelerators

Future work: configurable network,
 OS support, fabrication!

