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M Motivation

Sound Localization: microphone array

* Conventional approaches fail with two microphones due to ambiguity
* Any locations on the hyperbola have the same TDoA.
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M Motivation

Application scenarios of binaural localization

* Localization with two microphones

Humanoid robots Hearing aids

How to locate sound sources with only two microphones?




M Motivation

Human can naturally locate multiple sounds simultaneously.

* With only two ears, why?
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Signal Scattering

Human beings have ears and brain!

*Yang, Z., & Choudhury, R. R. (2021, August). Personalizing head related transfer functions for earables. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference (pp. 137-150).



WP DeepEar: a bionic design

Human Auditory System

e Ears: bring unique reflection to sounds from different directions

* Cochlea: transform sounds into frequency domain
* Brainstem Nuclei: compress and encoder signals
* Cortex: interpret nerve signals to direction
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WP Signal Collection

Binaural Microphones

» Ears cause unigue sound spatial patterns (frequency response).

* This pattern is direction-dependent.

 Human beings learn this pattern to perform localization.
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Fig. 2. Frequency response with and w/o ears.
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Fig. 4. Frequency response in the front/back.



WP Signal Processing

Gammatone Filterbank

* Cochlea transforms sounds into electrical signals.
* Along with this spiral shape, its different parts vibrate in response to different frequencies.
 Gammatone Filterbank is used to approximate human hearing.

Level (dB)

0 5 10 15 20 25 30
Frequency (kHz)

Outer Ear Middle Ear Inner Ear

ilik, Bedirhan. MEMS thin film piezoelectric acoustic transducer for cochlear implant applications. MS thesis. Middle East Technical University, 2018.



WP Feature Extraction

GRU-based Variational Autoencoder (VAE)

* Brainstem nuclei will compress and encode the signal to prevent

the overload of information in a short time.

e Gammatone Coefficients is a 2D matrix with the time information. :

 We use a GRU-based VAE to map the data into a multivariate

normal feature vector.
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Wl Deep Model

Multilabel Multitask Learning Framework

* Conventional single-label classification: how many output nodes? multiple sources?

e QOur solution: sector-based multi-label classification: partition the 2D space into
several subsectors.

 We can increase the number of subsectors to adjust the spatial resolution.

* Multitask learning: sound detection, direction prediction, and distance estimation.

Traditional DeepEar
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Wl DeepEar Structure

n

* Introduce xCorr to obtain time difference between ears. {""""T-jIIZRIIIIIIIIIIIIIIIIIIIInnnIGT
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W Evaluation

e Dataset: TU Berlin spatial sounds

 Maximum number of co-emitting sound sources: 3

* Sound sources are sampled uniformly in arbitrary locations.

* Training: 80% anechoic data

* Test: remaining anechoic data, meeting room data, lecture room data
e Baseline: WavLoc*, an end-to-end raw waveform based CNN approach

Anechoic Chamber Meeting Room: Spirit Lecture Room: Auditorium3

# Vecchiotti, P., Ma, N., Squartini, S., & Brown, G. J. (2019, May). End-to-end binaural sound localisation from the raw waveform. In ICASSP 2019-2019 IEEE 11
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 451-455). IEEE.



Sound detection Acc (%)

WP Evaluation

Anechoic environment

Detection Accuracy: 93.3%

Detection Hamming Score: 83.5% (Accuracy but focusing more on the positive cases.)
AoA Estimation Error: 7.4 degrees

Distance Accuracy: 82.9%
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(a) Sound detection. (b) Hamming Score. (c) AoA. (d) Distance.



W Evaluation

Reverberant environment: meeting room
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Fig. 12. Performance comparison in Spirit meeting room. The darker bars refer to Accuracy before transfer learning or MAE after transfer learning.
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* Transfer learning: fine-tune subnets with
new data and keep previous layers frozen.
* Transfer global model to new environments
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WP Evaluation

Reverberant environment: lecture room
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Fig. 13. Performance comparison in Auditorium lecture room. The darker bars refer to Accuracy before transfer learning or MAE after transfer learning.
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WP Evaluation

Transfer learning Performance

Train a global model with massive anechoic data
Transfer global model to new environment with a small number of data
2% of new data (180 seconds) can essentially boost the DeepEar performance.
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Fig. 14. The transfer learning performance of DeepEar with different sizes
of new training data. Two subfigures share the same legend.
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WP Evaluation

Real-word Study

* Aloudspeaker is placed at different locations around a binaural microphone.

 58% (without ears) = 92% (with ears)

* Ambiguity is remarkably reduced after mounting human-shaped ears.
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Ears play a significant role in sound localization and disambiguation. 16



WP Conclusion

* We propose DeepkEar, the first sound localization system for binaural
microphones without a priori knowledge of the number of sources.

* DeepEar is a bionic machine hearing framework inspired by the human
auditory system.

* DeepEar can quickly adapt to new environments with a small number of
extra training data with the transfer learning strategy in real scenarios.
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