
CST Part IB Supervisions
Example Sheet 2

Petar Veličković

Lent Term 2016

Compiler Construction

The course kicks off with a revision of automata theory and its application to lexing and
parsing. One significant difference from previous years is that nontrivial parsing methods
are done immediately at the start rather than the end of the course. For now, I will focus
on lexing and basic CFG theory, leaving parsing for next week.

1. Why is it appropriate to define lexical tokens with regular expressions?

2. Provide a deterministic finite automaton that recognises these lexical tokens, given
in priority order:

[:=, :, <numb>, <id>]

where <numb> is an integer, and <id> is a string.

3. Present a formal definition of a grammar. Define what it means for a grammar
to be context-free. Prove that there exist context-free grammars which cannot be
recognised by regular expressions∗.

4. What does it mean for a grammar to be ambiguous? Demonstrate ambiguity in the
following grammars:

a) E −→ 1 | E − E

b)
S −→ A B
A −→ a | a c
B −→ b | c b

c)
S −→ a T b | T T
T −→ a b | b a

d) C −→ if E then C else C | if E then C

∗Interesting read after solving this exercise: https://pbs.twimg.com/media/CAja2roUYAAsBXP.png

https://pbs.twimg.com/media/CAja2roUYAAsBXP.png

5. Present a non-ambiguous context-free grammar for arithmetic expressions involving
integers, addition (+) and multiplication (∗), taking care of correctly encoding
operator precedence.

6. Is HTML a context-free language?

Practical work

We will now delve into constructing a practical compiler for a toy language, one step at
a time.

Our language is a simple imperative language with the following syntax specification:

• x, y ∈ V ar (variable identifiers; alphanumerical strings starting with a letter)

• n ∈ Num (integer constants)

• OPa −→ + | ∗ (arithmetic operators)

• OPb −→ and | or (boolean operators)

• OPr −→ > | < | = (relations)

• Aexp −→ n | x | Aexp OPa Aexp | (Aexp) (arithmetic expressions)

• Bexp −→ true | false | !Bexp | Aexp OPr Aexp | Bexp OPb Bexp | (Bexp)
(boolean expressions)

• S −→ skip | x := Aexp | S;S | if Bexp then S else S | while Bexp do S | {S}
(statements)

The natural first step is writing a lexer.

1. Implement a suitable data type/structure for encoding all of the possible tokens of
the language.

2. Implement a function lex which takes in a path to a file and returns a list of tokens
within the file.

3. Demonstrate that your function works as expected by presenting the result of lexing
the following program:

b := 1;
if (b > 3)
then { a := 0 }
else { a := b + 1 }

