
Algorithms

Example Sheet 1

Petar Veličković

Lent Term 2017

Warm-up

1. Assuming that the swap(x, y) function is implemented as {tmp = x; x

= y; y = tmp;}, propose an improvement to insertion sort as presented in
the course notes. What is the time complexity of the improved algorithm?

2. Prove that bubble sort will never need to perform more than n passes of
its outer loop.

3. Discuss the benefits to choosing a pivot for quicksort at random, and any
potential practical limitations to achieving them.

4. Demonstrate, in a step-by-step fashion, and sketches where appropriate,
how heapsort sorts the array {7, 4, 3, 2, 8, 1, 6, 5}.

Exercises

1. You have implemented an algorithm that, after paying a constant cost of c
time steps, can be recursively applied to an input of size

√
N to process an

input of size N . That is, the recurrence relation for the time complexity
T (N) of this algorithm is T (N) = T (

√
N) + c. Derive a non-recurrent

expression for T (N) and express it using big-O notation.

2. Propose an algorithm to locate the largest k elements of an array of size
n (in any order), and analyse its time complexity.

3. Consider k-ary heaps (heaps where each internal node has k children—
for binary heaps, k = 2). Provide a modified heapify procedure that will
convert an array of size n such that it represents a k-ary heap, and analyse
its time complexity.
Hint: You may find the following result useful: for |x| < 1,

+∞∑
m=1

mxm =
x

(1− x)2

1

4. Considering the merge sort algorithm:

(a) Explain how it is possible to merge two sorted linked lists in linear
time and constant auxiliary space.

(b) Encouraged by the above, your colleague proposes merge sorting an
array by first converting it into a linked list. Comment on this ap-
proach.

5. Describe an algorithm that will determine whether there exist two distinct
elements of an array of n positive integers that have the sum s. Analyse
its time complexity.

6. Considering the radix sort algorithm:

(a) Explain the tradeoffs involved with running the algorithm from most
to least significant digit, as opposed to the reverse order (as presented
in the notes).

(b) Provide a proof by induction of the algorithm’s correctness.

Implementation

Hopefully, the examples covered have demonstrated to you that sometimes,
choosing the proper (comparison) sorting algorithm to use can be rather difficult.
Therefore, the algorithms that actually make it to standard libraries are quite
often hybrid approaches. For this exercise, I would like you to implement the
introsort1 algorithm in a language of your choice. This algorithm attempts
to combine the excellent average-case performance of quicksort with the safe
worst-case performance of heapsort—start with the former, and fall back to the
latter if the recursion gets too deep (typically, deeper than 2blog(n)c).
The pseudocode of one recursive call is as follows:

Intro-Sort(A, d) // Introsort array A with max-depth d of quicksort

1 n← |A|
2 if n ≤ 1
3 return
4 elseif d = 0
5 Heap-Sort(A)
6 else
7 p← Partition(A) // Partitions A and returns pivot position
8 Intro-Sort(A0:p, d− 1)
9 Intro-Sort(Ap+1:n, d− 1)

Demonstrate the result of running your algorithm on several randomly generated
arrays, as well as arrays that would normally cause “pure” quicksort to exhibit
its worst-case (O(n2)) performance.

1https://en.wikipedia.org/wiki/Introsort

Also, the algorithm used by C++’s std::sort.

2

Job interviews

1. Assume that you have to sort an array of n integers, but you may only
fit k integers into working memory at any one time (k < n). Describe a
strategy for performing this procedure (also known as external sorting).

2. Describe an algorithm that will determine whether there exist k distinct
elements2 of an array of n positive integers, A1, A2, . . . , Ak, such that
A1 + · · ·+ Ak = s for a given integer s.

3. You are given a function fair coin() that will return "heads" with prob-
ability 1

2 , and "tails" with probability 1
2 . Using this function, write a

function biased coin(p), that will return "heads" with probability p,
and "tails" with probability 1 − p. How many times, on average, will
your function call fair coin()? Assume that p can have up to n signifi-
cant digits.

4. Solve Exercise 3 from the pre-sheet.

2N.B. this is a generalisation of Exercise 5 from this sheet.

3

