
Reinforcement learning fundamentals
Petar Veličković

Computer Laboratory, University of Cambridge, UK
Nokia Bell Labs, Cambridge, UK

Nokia Tech Talk Series 11 October 2016

About me

I Research Assistant in Computational Biology/PhD student in
the Artificial Intelligence Group of the University of Cambridge’s
Computer Laboratory;

I Industrial/research experience with Microsoft, Jane Street and
Nokia Bell Labs.

I Interested in integrating machine learning techniques with
complex networks, particularly in low-data environments—one
of which is (early-stage) reinforcement learning.

Introduction

I Contrary to my previous talks on the topic, this talk will
introduce reinforcement learning from essential first concepts.

I Assuming one is familiar with reinforcement learning and deep
neural networks, simply plugging in a neural network at the
correct moment in the pipeline. . .

I . . . and deriving a “proper” supervision signal for it. . .

I . . . is sufficient for making the leap to deep RL!

The three “flavours” of machine learning

I Unsupervised learning

I Supervised learning

I Reinforcement learning

Unsupervised learning

I The environment gives you unlabelled data—and asks you to
assign useful features/structure to it.

Agent Environment
~x1, ~x2, . . . , ~xnfeatures

I Example: study data from patients suffering from a disease, in
order to discover different (previously unknown) types of it.

Supervised learning

I The environment gives you labelled data (∼ known input/output
pairs)—and asks you to learn the underlying function.

Agent Environment
(~x1, y1), . . . , (~xn, yn)

~x ′

y’

I Example: determining whether a person will be likely to return
their loan, given their credit history (and a set of previous data
on issued loans to other customers).

Reinforcement learning

I This time, you are allowed to perform actions within the
environment, triggering a state change and a reward
signal—your objective is to maximise future rewards.

Agent Environment
ai

si+1, ri

s0

I Example: playing a video game—states correspond to
RAM/framebuffer contents, actions are available key presses
(including NOP), rewards are changes in score.

Markov Decision Processes (MDPs)

Problem

I States, s ∈ S, and actions, a ∈ A(s).
I Transition model, T (s,a, s′) ∼ P(s′|s,a).
I Reward model, R(s)/R(s,a)/R(s,a, s′) ∈ R −→ equivalent.

Solution

I Policy, π(s) = a ∈ A(s), learnt from observed (s,a, s′, r) tuples.

Properties of MDPs

+ Markov property (can encode all past states within members of
S, if necessary to make this work)

+ Stationary (model does not change with time)

− Delayed rewards (lack of immediate feedback)

− Minor parameter changes may have a significant influence on
the optimal policies!

? Temporal credit assignment problem: determining which
actions in a sequence were most responsible for the observed
reward sequence.

Assumptions

I Infinite horizon (∼ can live forever).
I for finite horizons, the policy function also takes into account the

remaining time, i.e. π(s, t).
I Sequence utilities:

V(s0, s1, . . . , sn, . . .) > V(s0, s′1, . . . , s
′
n, . . .)

=⇒ V(s1, s2, . . . , sn, . . .) > V(s′1, s′2, . . . , s′n, . . .)

I Defining utilities in the naı̈ve way

V(s0, . . . sn, . . .) =
+∞∑
t=0

R(st)

does not work for infinite horizons! (why?)

Discounted cumulative reward

I To remedy the issue, we introduce a discount factor, γ ∈ [0,1),
which scales all future rewards:

V(s0, . . . sn, . . .) =
+∞∑
t=0

γtR(st)

giving rise to the discounted cumulative reward, which is the
typical metric to optimise in an RL setting.

I Assuming rewards are bounded by Rmax, we can easily show
that this metric fixes the previous issue:

+∞∑
t=0

γtR(st) ≤
+∞∑
t=0

γtRmax =
Rmax

1− γ

Optimal policy

I Our agent seeks to learn an optimal policy:

π∗ = argmax
π

E

(
+∞∑
t=0

γtR(st)

∣∣∣∣∣π
)

I Define the value of a given state s under a policy π as:

Vπ(s) = E

(
+∞∑
t=0

γtR(st)

∣∣∣∣∣π, s0 = s

)
I This allows us to re-express the optimal policy as:

π∗(s) = argmax
a

∑
s′
T (s,a, s′)Vπ∗(s′)

Bellman equation

I Setting V(s) ≡ Vπ∗(s), we arrive at:

V(s) = R(s) + γmax
a

∑
s′
T (s,a, s′)V(s′)

an identity also known as the Bellman equation.

I Determining V(s) is sufficient for learning the optimal policy!
However, the max operator makes the formula nonlinear, and
therefore hard to directly solve.

Value iteration

I Starting with random initial values V0(s), and updating until
convergence as follows:

Vt+1(s) = R(s) + γmax
a

∑
s′
T (s,a, s′)Vt(s′)

we arrive at the value iteration algorithm.

Aside: Policy iteration

I While not the preferred approach by deep RL, we may also
consider policy iteration, where we optimise the policy directly:

1. Start with a random-guess policy, π0.
2. Evaluate by computing Vt = Vπt .
3. Improve by computing πt+1(s) = argmaxa

∑
s′ T (s,a, s′)Vt(s′).

4. If not converged, return to step 2.

I Note that the computation rule for Vt is fully linear now:

Vt(s) = R(s) + γ
∑
s′
T (s, πt(s), s′)Vt(s′)

Hang on. . .

I I haven’t been completely honest with you!

I In fact, recalling the obtained expression for π∗

π∗(s) = argmax
a

∑
s′
T (s,a, s′)V(s′)

we find that learning V(s) is not sufficient for deriving π∗—we
need knowledge of the underlying transition model (T) as well!

I Generally speaking, the agent has no access to T !

I Did I say “Bellman equation”?

I meant equations!

Using R(s,a) for the reward model from now on:
I First Bellman Equation (“value”):

V(s) = max
a

{
R(s,a) + γ

∑
s′
T (s,a, s′)V(s′)

}
I Second Bellman Equation (“quality”):

Q(s,a) = R(s,a) + γ
∑
s′
T (s,a, s′)max

a′

{
Q(s′,a′)

}
I Third Bellman Equation (“continuation”):

C(s,a) = γ
∑
s′
T (s,a, s′)max

a′

{
R(s′,a′) + C(s′,a′)

}

Significance?

I All three equations are semantically equivalent!

I V(s) rule very useful when we have (direct or inferred)
knowledge of the T /R functions.

I Q(s,a) rule does not require knowing the underlying model
once the values are learned: the optimal policy is simply

π∗(s) = argmax
a

Q(s,a)

This procedure is often referred to as the Q-learning algorithm.

I C(s,a) has the same property, but delays reward evaluation by
one step—useful when reward signals are difficult to compute.

The three “flavours” of reinforcement learning

Three ways of learning from sequences
(

s0
a0−→
r0

s1
a1−→
r1

s2
a2−→
r2

. . .

)
:

I Model-based

(s,a, r)∗ → Learner ↔ T /R → Solver → Q→ argmax → π

I Model-free

(s,a, r)∗ → Value update ↔ Q→ argmax → π

I Policy search

(s,a, r)∗ → Policy update ↔ π

Temporal difference

I We still need to derive an update rule, as the Bellman equation
for Q(s,a) still requires knowledge of T .

I A very popular approach is TD(λ) (temporal difference)
learning; I will focus on the special case of TD(0), which is
usually a good choice for real-time control—for more info, ref.
Sutton, 1988.

TD(0) update rule

I Key idea: after observing a transition s a−→
r

s′, based on our
current beliefs of the Q function, this transition has a value of
r + γmaxa′ Q(s′,a′).

I Therefore we can update our belief of Q(s,a) based on this
value, according to a learning rate αt ∈ (0,1], as follows:

Qt+1(s,a) = Qt(s,a) + αt

(
r + γmax

a′
Qt(s′,a′)−Qt(s,a)

)

I N.B. we have now eliminated the requirement of knowing T /R
and are learning only from observed transitions in training.

Aside: learning rate and convergence properties

I To guarantee convergence of the TD(0) algorithm, the following
three properties have to hold (regardless of initialisation):

1.
∑+∞

t=0 αt = +∞
2.
∑+∞

t=0 α
2
t < +∞

3. Each state/action pair must be visited infinitely often.

I The parameter αt ’s purpose is taking account of stochasticity
of the model—therefore avoiding full overwriting of the old
values. It is commonly set to αt =

1
tp for 1

2 < p ≤ 1.

I However, if the environment is deterministic (next state is
always the same for a given (s,a) pair)—it is optimal to set
αt = 1 and fully overwrite. We will assume this hereinafter.

(Deterministic) Q-learning

We have arrived at the familiar verison of the Q-learning algorithm!

Initialise the Q′ table with random values.
1. Choose an action a to perform in the current state, s.
2. Perform a and receive reward R (s,a).
3. Observe the new state, S (s,a).
4. Update:

Q′ (s,a)← R (s,a) + γmax
α

{
Q′ (S(s,a), α)

}
5. If the next state is not terminal, go back to step 1.

Exploration vs. exploitation

I How to choose an action to perform?
I Ideally, would like to start off with a period of exploring the

environment’s characteristics, converging towards the policy
that fully exploits the learnt Q values (greedy policy).

I A very active topic of research. Two common approaches:
I Softmax (τ → 0):

P(a|s) = exp(Q(s,a)/τ)∑
α exp(Q(s, α)/τ)

I ε-greedy (1→ ε→ 0):

P(a|s) = ε · 1
|A|

+ (1− ε) · I(a = argmax
α

Q(s, α))

Issues with Q-learning

I Major issue: we often cannot store the entire Q table in
memory! (e.g. for video game-playing, consider the set of all
possible input framebuffers ∼ matrices of pixels)

I It needs to be approximated somehow. . .

I By using a deep neural network as the approximator, and the
most-recent belief of the Q value as its supervision signal, we
arrive at the familiar DQN architecture.

Deep Q-learning

Initialise an empty replay memory.
Initialise two DQNs, Q′ and Q′′, with random (small) weights.

1. Choose an action a to perform in the current state, s,
using an ε-greedy strategy (with ε annealed from 1.0 to 0.1).

2. Perform a and receive reward R (s,a).
3. Observe the new state, S (s,a).
4. Add (s,a,R(s,a),S(s,a)) to the replay memory.

Deep Q-learning, cont’d

5. Sample a minibatch of tuples (si ,ai , ri , si+1) from the replay
memory, and perform stochastic gradient descent on the DQN
Q′, minimising the loss function(

Q′(si ,a)−
(

ri + γmax
α
{Q′′(si+1, α)}

))2

where Q′(s, ·) and Q′′(s, ·) are computed by feeding s into each
of the respective DQNs.

6. If the next state is not terminal, go back to step 1.
7. Occasionally set Q′′ = Q′.

Concluding remarks

I It should be clear that, given that our supervision signal likely
does not represent ground truth, this procedure does not
preserve mathematical guarantees of the original Q-learning
algorithm.

I In fact, there are absolutely no convergence guarantees to this
approach (or any of the improved approaches such as DDQN
and Dueling DQN)!

I However, it still works quite well in practice (as you have
doubtlessly already seen). :)

Thank you!

Questions?
petar.velickovic@cl.cam.ac.uk

	Introduction
	Reinforcement Learning
	Deep Reinforcement Learning

