

Reinforcement learning fundamentals

Petar Veličković

Computer Laboratory, University of Cambridge, UK Nokia Bell Labs, Cambridge, UK

Nokia Tech Talk Series

11 October 2016

- Research Assistant in Computational Biology/PhD student in the Artificial Intelligence Group of the University of Cambridge's Computer Laboratory;
- Industrial/research experience with *Microsoft*, *Jane Street* and *Nokia Bell Labs*.
- Interested in integrating machine learning techniques with complex networks, particularly in low-data environments—one of which is (early-stage) reinforcement learning.

Introduction

- Contrary to my previous talks on the topic, this talk will introduce reinforcement learning from essential first concepts.
- Assuming one is familiar with reinforcement learning and deep neural networks, simply plugging in a neural network at the correct moment in the pipeline...

- ▶ ... and deriving a "proper" supervision signal for it...
- ... is sufficient for making the leap to deep RL!

The three "flavours" of machine learning

Unsupervised learning

Supervised learning

Reinforcement learning

Unsupervised learning

The environment gives you unlabelled data—and asks you to assign useful features/structure to it.

features Agent
$$\vec{x_1}, \vec{x_2}, \dots, \vec{x_n}$$
 Environment

Example: study data from patients suffering from a disease, in order to discover different (previously unknown) types of it.

Supervised learning

The environment gives you labelled data (~ known input/output pairs)—and asks you to learn the underlying function.

Example: determining whether a person will be likely to return their loan, given their credit history (and a set of previous data on issued loans to other customers).

Reinforcement learning

This time, you are allowed to perform *actions* within the environment, triggering a state change and a reward signal—your objective is to maximise future rewards.

 Example: playing a video game—states correspond to RAM/framebuffer contents, actions are available key presses (including NOP), rewards are changes in score.

Markov Decision Processes (MDPs)

Problem

- States, $s \in S$, and actions, $a \in A(s)$.
- Transition model, $\mathcal{T}(s, a, s') \sim \mathbb{P}(s'|s, a)$.
- ▶ Reward model, $\mathcal{R}(s)/\mathcal{R}(s, a)/\mathcal{R}(s, a, s') \in \mathbb{R} \longrightarrow equivalent.$

Solution

▶ Policy, $\pi(s) = a \in A(s)$, learnt from observed (s, a, s', r) tuples.

Properties of MDPs

- + Markov property (can encode all past states within members of $\overline{\mathcal{S}}$, if necessary to make this work)
- + Stationary (model does not change with time)
- Delayed rewards (lack of *immediate feedback*)
- Minor parameter changes may have a significant influence on the optimal policies!
- ? Temporal credit assignment problem: determining which actions in a sequence were *most responsible* for the observed reward sequence.

Assumptions

▶ Infinite horizon (~ can live forever).

- For *finite horizons*, the policy function also takes into account the remaining time, i.e. π(s, <u>t</u>).
- Sequence utilities:

$$\mathcal{V}(\boldsymbol{s}_0, \boldsymbol{s}_1, \dots, \boldsymbol{s}_n, \dots) > \mathcal{V}(\boldsymbol{s}_0, \boldsymbol{s}_1', \dots, \boldsymbol{s}_n', \dots) \\ \Longrightarrow \mathcal{V}(\boldsymbol{s}_1, \boldsymbol{s}_2, \dots, \boldsymbol{s}_n, \dots) > \mathcal{V}(\boldsymbol{s}_1', \boldsymbol{s}_2', \dots, \boldsymbol{s}_n', \dots)$$

Defining utilities in the naïve way

$$\mathcal{V}(s_0,\ldots s_n,\ldots) = \sum_{t=0}^{+\infty} \mathcal{R}(s_t)$$

does not work for infinite horizons! (why?)

Discounted cumulative reward

► To remedy the issue, we introduce a *discount factor*, *γ* ∈ [0, 1), which scales all future rewards:

$$\mathcal{V}(\boldsymbol{s}_0,\ldots,\boldsymbol{s}_n,\ldots) = \sum_{t=0}^{+\infty} \gamma^t \mathcal{R}(\boldsymbol{s}_t)$$

giving rise to the *discounted cumulative reward*, which is the typical metric to optimise in an RL setting.

► Assuming rewards are bounded by R_{max}, we can easily show that this metric fixes the previous issue:

$$\sum_{t=0}^{+\infty} \gamma^t \mathcal{R}(m{s}_t) \leq \sum_{t=0}^{+\infty} \gamma^t \mathcal{R}_{\mathsf{max}} = rac{\mathcal{R}_{\mathsf{max}}}{1-\gamma}$$

Optimal policy

Our agent seeks to learn an optimal policy:

$$\pi^* = \operatorname*{argmax}_{\pi} \mathbb{E} \left(\sum_{t=0}^{+\infty} \gamma^t \mathcal{R}(\boldsymbol{s}_t) \middle| \pi \right)$$

• Define the *value* of a given state *s* under a policy π as:

$$\mathcal{V}^{\pi}(\boldsymbol{s}) = \mathbb{E}\left(\left. \sum_{t=0}^{+\infty} \gamma^t \mathcal{R}(\boldsymbol{s}_t) \right| \pi, \boldsymbol{s}_0 = \boldsymbol{s}
ight)$$

This allows us to re-express the optimal policy as:

$$\pi^*(s) = rgmax_{s'} \mathcal{T}(s, a, s') \mathcal{V}^{\pi^*}(s')$$

• Setting $\mathcal{V}(s) \equiv \mathcal{V}^{\pi^*}(s)$, we arrive at:

$$\mathcal{V}(s) = \mathcal{R}(s) + \gamma \max_{a} \sum_{s'} \mathcal{T}(s, a, s') \mathcal{V}(s')$$

an identity also known as the Bellman equation.

Determining V(s) is sufficient for learning the optimal policy! However, the max operator makes the formula nonlinear, and therefore hard to *directly* solve.

Starting with random initial values V₀(s), and updating until convergence as follows:

$$\mathcal{V}_{t+1}(s) = \mathcal{R}(s) + \gamma \max_{a} \sum_{s'} \mathcal{T}(s, a, s') \mathcal{V}_{t}(s')$$

we arrive at the value iteration algorithm.

Aside: Policy iteration

- While not the preferred approach by deep RL, we may also consider *policy iteration*, where we optimise the policy directly:
 - 1. <u>Start</u> with a random-guess policy, π_0 .
 - 2. <u>Evaluate</u> by computing $\mathcal{V}_t = \mathcal{V}^{\pi_t}$.
 - 3. Improve by computing $\pi_{t+1}(s) = \operatorname{argmax}_{a} \sum_{s'} \mathcal{T}(s, a, s') \mathcal{V}_{t}(s')$.
 - 4. If not converged, return to step 2.
- Note that the computation rule for V_t is fully linear now:

$$\mathcal{V}_t(\boldsymbol{s}) = \mathcal{R}(\boldsymbol{s}) + \gamma \sum_{\boldsymbol{s}'} \mathcal{T}(\boldsymbol{s}, \pi_t(\boldsymbol{s}), \boldsymbol{s}') \mathcal{V}_t(\boldsymbol{s}')$$

- I haven't been completely honest with you!
- In fact, recalling the obtained expression for π^*

$$\pi^*(s) = \operatorname*{argmax}_{a} \sum_{s'} \mathcal{T}(s, a, s') \mathcal{V}(s')$$

we find that learning $\mathcal{V}(s)$ is *not sufficient* for deriving π^* —we need knowledge of the underlying transition model (\mathcal{T}) as well!

- ► Generally speaking, the agent has no access to T!
- ▶ Did I say "Bellman equation"?

I meant equations!

Using *R*(*s*, *a*) for the reward model from now on:▶ First Bellman Equation ("value"):

$$\mathcal{V}(s) = \max_{a} \left\{ \mathcal{R}(s, a) + \gamma \sum_{s'} \mathcal{T}(s, a, s') \mathcal{V}(s') \right\}$$

Second Bellman Equation ("quality"):

$$\mathcal{Q}(\boldsymbol{s}, \boldsymbol{a}) = \mathcal{R}(\boldsymbol{s}, \boldsymbol{a}) + \gamma \sum_{\boldsymbol{s}'} \mathcal{T}(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{s}') \max_{\boldsymbol{a}'} \left\{ \mathcal{Q}(\boldsymbol{s}', \boldsymbol{a}') \right\}$$

Third Bellman Equation ("continuation"):

$$\mathcal{C}(\boldsymbol{s}, \boldsymbol{a}) = \gamma \sum_{\boldsymbol{s}'} \mathcal{T}(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{s}') \max_{\boldsymbol{a}'} \left\{ \mathcal{R}(\boldsymbol{s}', \boldsymbol{a}') + \mathcal{C}(\boldsymbol{s}', \boldsymbol{a}') \right\}$$

Significance?

- ► All three equations are *semantically equivalent*!

$$\pi^*(s) = \operatorname*{argmax}_{a} \mathcal{Q}(s, a)$$

This procedure is often referred to as the *Q*-learning algorithm.

 C(s, a) has the same property, but delays reward evaluation by one step—useful when reward signals are difficult to compute.

The three "flavours" of reinforcement learning

Three ways of learning from sequences $\left(s_0 \xrightarrow[r_0]{a_0} s_1 \xrightarrow[r_1]{a_1} s_2 \xrightarrow[r_2]{a_2} \dots\right)$:

Model-based

$$(s, a, r)^* \rightarrow \boxed{\textit{Learner}} \leftrightarrow \mathcal{T}/\mathcal{R} \rightarrow \boxed{\textit{Solver}} \rightarrow \mathcal{Q} \rightarrow \boxed{\textit{argmax}} \rightarrow \pi$$

Model-free

$$(s, a, r)^* \rightarrow$$
Value update $\leftrightarrow \mathcal{Q} \rightarrow$ argmax $\rightarrow \pi$

Policy search

$$(s, a, r)^* \rightarrow \boxed{Policy \ update} \leftrightarrow \pi$$

Temporal difference

We still need to derive an update rule, as the Bellman equation for Q(s, a) still requires knowledge of T.

A very popular approach is *TD*(λ) (*temporal difference*) learning; I will focus on the special case of *TD*(0), which is usually a good choice for real-time control—for more info, ref. Sutton, 1988.

TD(0) update rule

- Key idea: after observing a transition s ^a/_r s', based on our current beliefs of the Q function, this transition has a value of r + γ max_{a'} Q(s', a').
- Therefore we can update our belief of Q(s, a) based on this value, according to a learning rate α_t ∈ (0, 1], as follows:

$$\mathcal{Q}_{t+1}(s, a) = \mathcal{Q}_t(s, a) + \alpha_t \left(r + \gamma \max_{a'} \mathcal{Q}_t(s', a') - \mathcal{Q}_t(s, a) \right)$$

► N.B. we have now eliminated the requirement of knowing T/R and are learning only from observed transitions in training.

Aside: learning rate and convergence properties

- ► To guarantee *convergence* of the *TD*(0) algorithm, the following three properties have to hold (regardless of initialisation):
 - 1. $\sum_{t=0}^{+\infty} \alpha_t = +\infty$
 - 2. $\sum_{t=0}^{\infty} \alpha_t^2 < +\infty$
 - 3. Each state/action pair must be visited *infinitely often*.
- The parameter α_t's purpose is taking account of *stochasticity* of the model—therefore avoiding full overwriting of the old values. It is commonly set to α_t = ¹/_{tP} for ¹/₂
- However, if the environment is *deterministic* (next state is always the same for a given (s, a) pair)—it is optimal to set α_t = 1 and fully overwrite. We will assume this hereinafter.

We have arrived at the familiar verison of the Q-learning algorithm!

Initialise the Q' table with random values.

- 1. Choose an action a to perform in the current state, s.
- 2. Perform *a* and receive reward $\mathcal{R}(s, a)$.
- 3. Observe the new state, S(s, a).
- 4. Update:

 $\mathcal{Q}'(\boldsymbol{s}, \boldsymbol{a}) \leftarrow \mathcal{R}(\boldsymbol{s}, \boldsymbol{a}) + \gamma \max_{\alpha} \left\{ \mathcal{Q}'(\mathcal{S}(\boldsymbol{s}, \boldsymbol{a}), \alpha) \right\}$

NOKIA Bell Labs

5. If the next state is not terminal, go back to step 1.

Exploration vs. exploitation

- How to choose an action to perform?
- ► Ideally, would like to start off with a period of *exploring* the environment's characteristics, converging towards the policy that fully *exploits* the learnt *Q* values (greedy policy).
- ► A very active topic of research. Two common approaches:
 - ► Softmax (τ → 0):

$$\mathbb{P}(\boldsymbol{a}|\boldsymbol{s}) = \frac{\exp(\mathcal{Q}(\boldsymbol{s},\boldsymbol{a})/\tau)}{\sum_{\alpha}\exp(\mathcal{Q}(\boldsymbol{s},\alpha)/\tau)}$$

• ε -greedy (1 $\rightarrow \varepsilon \rightarrow$ 0):

$$\mathbb{P}(a|s) = \varepsilon \cdot \frac{1}{|A|} + (1 - \varepsilon) \cdot \mathbb{I}(a = \operatorname*{argmax}_{\alpha} \mathcal{Q}(s, \alpha))$$

Issues with Q-learning

- Major issue: we often cannot store the entire Q table in memory! (e.g. for video game-playing, consider the set of all possible input framebuffers ~ matrices of pixels)
- It needs to be approximated somehow...
- ► By using a *deep neural network* as the approximator, and the most-recent belief of the Q value as its supervision signal, we arrive at the familiar DQN architecture.

Initialise an empty replay memory.

Initialise two DQNs, Q' and Q'', with random (small) weights.

- 1. Choose an action *a* to perform in the current state, *s*, using an ε -greedy strategy (with ε annealed from 1.0 to 0.1).
- 2. Perform *a* and receive reward $\mathcal{R}(s, a)$.
- 3. Observe the new state, S(s, a).
- 4. Add $(s, a, \mathcal{R}(s, a), \mathcal{S}(s, a))$ to the replay memory.

Deep Q-learning, cont'd

5. Sample a minibatch of tuples (s_i, a_i, r_i, s_{i+1}) from the replay memory, and perform stochastic gradient descent on the DQN Q', minimising the loss function

$$\left(\mathcal{Q}'(\boldsymbol{s}_i, \boldsymbol{a}) - \left(\boldsymbol{r}_i + \gamma \max_{\alpha} \{\mathcal{Q}''(\boldsymbol{s}_{i+1}, \alpha)\}\right)\right)^2$$

where $Q'(s, \cdot)$ and $Q''(s, \cdot)$ are computed by feeding *s* into each of the respective DQNs.

- 6. If the next state is not terminal, go back to step 1.
- 7. Occasionally set Q'' = Q'.

Concluding remarks

- ► It should be clear that, given that our supervision signal *likely* does not represent ground truth, this procedure does not preserve mathematical guarantees of the original *Q*-learning algorithm.
- In fact, there are absolutely no convergence guarantees to this approach (or any of the improved approaches such as DDQN and Dueling DQN)!
- However, it still works quite well in practice (as you have doubtlessly already seen). :)

Questions?

petar.velickovic@cl.cam.ac.uk

