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About me

» Research Assistant in Computational Biology/PhD student in
the Artificial Intelligence Group of the University of Cambridge’s
Computer Laboratory;

» Industrial/research experience with Microsoft, Jane Street and
Nokia Bell Labs.

» Interested in integrating machine learning techniques with
complex networks, particularly in low-data environments—one
of which is (early-stage) reinforcement learning.
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Introduction

» Contrary to my previous talks on the topic, this talk will
introduce reinforcement learning from essential first concepts.

» Assuming one is familiar with reinforcement learning and deep
neural networks, simply plugging in a neural network at the
correct moment in the pipeline. ..

» ...and deriving a “proper” supervision signal for it.. .

» ...is sufficient for making the leap to deep RL!
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The three “flavours” of machine learning

» Unsupervised learning

» Supervised learning

» Reinforcement learning
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Unsupervised learning

» The environment gives you unlabelled data—and asks you to
assign useful features/structure to it.

features X1, X2, ..., Xn _
Agent Environment

» Example: study data from patients suffering from a disease, in
order to discover different (previously unknown) types of it.
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Supervised learning

» The environment gives you labelled data (~ known input/output
pairs)—and asks you to learn the underlying function.

y’ (i‘ivy‘])a"’v()(ﬂ)yn)
X

» Example: determining whether a person will be likely to return
their loan, given their credit history (and a set of previous data
on issued loans to other customers).
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Reinforcement learning

» This time, you are allowed to perform actions within the
environment, triggering a state change and a reward
signal—your objective is to maximise future rewards.

So ai
Agent Environment
Si+1 s i

» Example: playing a video game—states correspond to
RAM/framebuffer contents, actions are available key presses
(including NOP), rewards are changes in score.
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Markov Decision Processes (MDPs)

» States, s € S, and actions, a € A(S).
» Transition model, 7(s, a,s’) ~ P(s'|s, a).
» Reward model, R(s)/R(s, a)/R(s,a,s’) € R — equivalent.

» Policy, 7(s) = a € A(s), learnt from observed (s, a, s, r) tuples.
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Properties of MDPs

+ Markov property (can encode all past states within members of
S, if necessary to make this work)

+ Stationary (model does not change with time)

— Delayed rewards (lack of immediate feedback)

— Minor parameter changes may have a significant influence on
the optimal policies!

? Temporal credit assignment problem: determining which
actions in a sequence were most responsible for the observed
reward sequence.
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Assumptions

» Infinite horizon (~ can live forever).
» for finite horizons, the policy function also takes into account the
remaining time, i.e. 7(s,f).

» Sequence utilities:

V(S0,S15---,Sn, ) > V(S0, 84,1 Sh,...)
= V(S1,82,..-,8n,...) > V(S|,Sh,...,Sp,...)

» Defining utilities in the naive way

V(S0 S, ) =Y _R(s1)

does not work for infinite horizons! (why?)
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Discounted cumulative reward

» To remedy the issue, we introduce a discount factor, v € [0,1),
which scales all future rewards:

V(So,... n, Z’}/tR St

giving rise to the discounted cumulative reward, which is the
typical metric to optimise in an RL setting.

» Assuming rewards are bounded by Rmax, We can easily show
that this metric fixes the previous issue:

Z’th st) < Z’r Rimax = Rfa;
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Optimal policy

» Our agent seeks to learn an optimal policy:

—+00

7 = argmaxE (Z'th(St)
T t=0

7T>
» Define the value of a given state s under a policy 7 as:
—+00
VT(s)=E (Zv’R(St) T, 80 = s>

t=0
» This allows us to re-express the optimal policy as:

* — T ,a, /Vﬂ* /
7*(s) arg;naxz (s,a,8 )V (s)

s/
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Bellman equation

» Setting V(s) = V™ (s), we arrive at:

V(s) = R(s) +ymax > T(s a,s)V(s)

an identity also known as the Bellman equation.

» Determining V(s) is sufficient for learning the optimal policy!
However, the max operator makes the formula nonlinear, and
therefore hard to directly solve.
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Value iteration

» Starting with random initial values Vy(s), and updating until
convergence as follows:

Vt+1 (S) = R(S) +7 maax Z T(Sa a, S/)Vl‘(sl)

SI

we arrive at the value iteration algorithm.
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Aside: Policy iteration

» While not the preferred approach by deep RL, we may also
consider policy iteration, where we optimise the policy directly:
1. Start with a random-guess policy, 7.
2. Evaluate by computing V; = V™.
3. Improve by computing 7,1(s) = argmax, > ., 7(s, a, s')Vi(s').
4. If not converged, return to step 2.

» Note that the computation rule for V; is fully linear now:

Vi(s) = R(s) +7 3 T(s,m(s), (s

S/
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» | haven’t been completely honest with you!

» In fact, recalling the obtained expression for 7*

7*(s) = argmax Y _ 7 (s,a,s)V(s)

s/

we find that learning V(s) is not sufficient for deriving 7*—we
need knowledge of the underlying transition model (7") as well!

» Generally speaking, the agent has no access to T

» Did | say “Bellman equation™?
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| meant equations!

Using R (s, a) for the reward model from now on:
» First Bellman Equation (“value”):

V(s) = max {R(s, a) + VZT(S, a, s’)V(s’)}

S/

» Second Bellman Equation (“quality”):

Q(s,a) =R(s,a)+7>_T(s as) max {Q(s'. &)}

s/

» Third Bellman Equation (“continuation”):

C(s,a)=~> T(s a5s) max {R(s,d)+C(s,d)}

S/
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Significance?

» All three equations are semantically equivalent!

» V(s) rule very useful when we have (direct or inferred)
knowledge of the 7 /R functions.

» (s, a) rule does not require knowing the underlying model
once the values are learned: the optimal policy is simply

7*(s) = argmax 9Q(s, a)
a

This procedure is often referred to as the Q-learning algorithm.

» C(s, a) has the same property, but delays reward evaluation by
one step—useful when reward signals are difficult to compute.
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The three “flavours” of reinforcement learning

. a0 ay ap
Three ways of learning from sequences (so — 81— S .. >:
0 1 2

» Model-based
(s,a.r)" —[Learner| < T/R — | Solver| — Q —[argmax| -

» Model-free

(s,a,r)" —| Value update | +> Q — =7

» Policy search

(s,a,r)* — ’ Policy update‘ om
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Temporal difference

» We still need to derive an update rule, as the Bellman equation
for Q(s, a) still requires knowledge of 7.

» A very popular approach is TD()\) (temporal difference)
learning; | will focus on the special case of TD(0), which is
usually a good choice for real-time control—for more info, ref.
Sutton, 1988.
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TD(0) update rule

» Key idea: after observing a transition s % s’, based on our
current beliefs of the O function, this transition has a value of
r+~ymaxy Q(s', &).

» Therefore we can update our belief of Q(s, a) based on this
value, according to a learning rate a; € (0, 1], as follows:

Qt1(s,a) = Qi(s, a) + o (r +ymax Qu(s',d) — Qu(s, a))

» N.B. we have now eliminated the requirement of knowing 7 /R
and are learning only from observed transitions in training.
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Aside: learning rate and convergence properties

» To guarantee convergence of the TD(0) algorithm, the following
three properties have to hold (regardless of initialisation):
1. 3% ar =+
2. Y75 a2 < +oo
3. Each state/action pair must be visited infinitely often.

» The parameter a;’s purpose is taking account of stochasticity
of the model—therefore avoiding full overwriting of the old
values. It is commonly setto a; = & for 3 < p < 1.

» However, if the environment is deterministic (next state is
always the same for a given (s, a) pair)—it is optimal to set
a¢ = 1 and fully overwrite. We will assume this hereinafter.
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(Deterministic) Q-learning

We have arrived at the familiar verison of the Q-learning algorithm!

Initialise the Q’ table with random values.
1. Choose an action ato perform in the current state, s.
2. Perform a and receive reward R (s, a).
3. Observe the new state, S (s, a).
4. Update:
Q' (s,a) « R(s,a) +v max {9 (S(s,a),0)}

5. If the next state is not terminal, go back to step 1.
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Exploration vs. exploitation

» How to choose an action to perform?

» |deally, would like to start off with a period of exploring the
environment’s characteristics, converging towards the policy
that fully exploits the learnt Q values (greedy policy).

» A very active topic of research. Two common approaches:

» Softmax (r — 0):

exp(<(s; a)/7)
20 &P(Q(s,a)/T)

P(a|s) =

» c-greedy (1 — ¢ — 0):

AL (1 —¢) - I(a = argmax Q(s, a))

P(als) =¢- A
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Issues with Q-learning

» Major issue: we often cannot store the entire Q table in
memory! (e.g. for video game-playing, consider the set of all
possible input framebuffers ~ matrices of pixels)

» It needs to be approximated somehow. ..

» By using a deep neural network as the approximator, and the
most-recent belief of the Q value as its supervision signal, we
arrive at the familiar DON architecture.
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Deep Q-learning

Initialise an empty replay memory.
Initialise two DONs, Q' and Q”, with random (small) weights.

1. Choose an action ato perform in the current state, s,
using an e-greedy strategy (with £ annealed from 1.0 to 0.1).

2. Perform a and receive reward R (s, a).

w

Observe the new state, S (s, a).
4. Add (s,a,R(s, a),S(s, a)) to the replay memory.
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Deep Q-learning, contd

5. Sample a minibatch of tuples (s;, a;, r;j, si+1) from the replay
memory, and perform stochastic gradient descent on the DON
Q’, minimising the loss function

(Q/(Sh a) — (fi +ymax{Q"(sit1, Oé)}) ) i

where Q'(s,-) and Q"(s, -) are computed by feeding s into each
of the respective DONSs.

6. If the next state is not terminal, go back to step 1.
7. Occasionally set 9" = Q'.

% CAMBRIDGE NOKIA Bell Labs



Concluding remarks

» It should be clear that, given that our supervision signal likely
does not represent ground truth, this procedure does not
preserve mathematical guarantees of the original Q-learning
algorithm.

» In fact, there are absolutely no convergence guarantees to this
approach (or any of the improved approaches such as DDQN
and Dueling DQN)!

» However, it still works quite well in practice (as you have
doubtlessly already seen). :)
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Thank you!

Questions?

petar.velickovic@cl.cam.ac.uk
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