CAMBRIDGE NOKIA Bell Labs

Reinforcement learning fundamentals
Petar VeliCkovi¢

Computer Laboratory, University of Cambridge, UK
Nokia Bell Labs, Cambridge, UK

Nokia Tech Talk Series 11 October 2016

About me

» Research Assistant in Computational Biology/PhD student in
the Artificial Intelligence Group of the University of Cambridge’s
Computer Laboratory;

» Industrial/research experience with Microsoft, Jane Street and
Nokia Bell Labs.

» Interested in integrating machine learning techniques with
complex networks, particularly in low-data environments—one
of which is (early-stage) reinforcement learning.

% CAMBRIDGE NOKIA Bell Labs

Introduction

» Contrary to my previous talks on the topic, this talk will
introduce reinforcement learning from essential first concepts.

» Assuming one is familiar with reinforcement learning and deep
neural networks, simply plugging in a neural network at the
correct moment in the pipeline. ..

» ...and deriving a “proper” supervision signal for it.. .

» ...is sufficient for making the leap to deep RL!

% CAMBRIDGE NOKIA Bell Labs

The three “flavours” of machine learning

» Unsupervised learning

» Supervised learning

» Reinforcement learning

% CAMBRIDGE NOKIA Bell Labs

Unsupervised learning

» The environment gives you unlabelled data—and asks you to
assign useful features/structure to it.

features X1, X2, ..., Xn _
Agent Environment

» Example: study data from patients suffering from a disease, in
order to discover different (previously unknown) types of it.

% CAMBRIDGE NOKIA Bell Labs

Supervised learning

» The environment gives you labelled data (~ known input/output
pairs)—and asks you to learn the underlying function.

y’ (i‘ivy‘])a"’v()(ﬂ)yn)
X

» Example: determining whether a person will be likely to return
their loan, given their credit history (and a set of previous data
on issued loans to other customers).

% CAMBRIDGE NOKIA Bell Labs

Reinforcement learning

» This time, you are allowed to perform actions within the
environment, triggering a state change and a reward
signal—your objective is to maximise future rewards.

So ai
Agent Environment
Si+1 s i

» Example: playing a video game—states correspond to
RAM/framebuffer contents, actions are available key presses
(including NOP), rewards are changes in score.

I UNIVERSITY OF

AMBRIDGE NOKIA Bell Labs

Markov Decision Processes (MDPs)

» States, s € S, and actions, a € A(S).
» Transition model, 7(s, a,s’) ~ P(s'|s, a).
» Reward model, R(s)/R(s, a)/R(s,a,s’) € R — equivalent.

» Policy, 7(s) = a € A(s), learnt from observed (s, a, s, r) tuples.

% CAMBRIDGE NOKIA Bell Labs

Properties of MDPs

+ Markov property (can encode all past states within members of
S, if necessary to make this work)

+ Stationary (model does not change with time)

— Delayed rewards (lack of immediate feedback)

— Minor parameter changes may have a significant influence on
the optimal policies!

? Temporal credit assignment problem: determining which
actions in a sequence were most responsible for the observed
reward sequence.

% CAMBRIDGE NOKIA Bell Labs

Assumptions

» Infinite horizon (~ can live forever).
» for finite horizons, the policy function also takes into account the
remaining time, i.e. 7(s,f).

» Sequence utilities:

V(S0,S15---,Sn,) > V(S0, 84,1 Sh,...)
= V(S1,82,..-,8n,...) > V(S|,Sh,...,Sp,...)

» Defining utilities in the naive way

V(S0 S,) =Y _R(s1)

does not work for infinite horizons! (why?)

AMBRIDGE NOKIA Bell Labs

Discounted cumulative reward

» To remedy the issue, we introduce a discount factor, v € [0,1),
which scales all future rewards:

V(So,... n, Z’}/tR St

giving rise to the discounted cumulative reward, which is the
typical metric to optimise in an RL setting.

» Assuming rewards are bounded by Rmax, We can easily show
that this metric fixes the previous issue:

Z’th st) < Z’r Rimax = Rfa;

% CAMBRIDGE NOKIA Bell Labs

Optimal policy

» Our agent seeks to learn an optimal policy:

—+00

7 = argmaxE (Z'th(St)
T t=0

7T>
» Define the value of a given state s under a policy 7 as:
—+00
VT(s)=E (Zv’R(St) T, 80 = s>

t=0
» This allows us to re-express the optimal policy as:

* — T ,a, /Vﬂ* /
7*(s) arg;naxz (s,a,8)V (s)

s/

% CAMBRIDGE NOKIA Bell Labs

Bellman equation

» Setting V(s) = V™ (s), we arrive at:

V(s) = R(s) +ymax > T(s a,s)V(s)

an identity also known as the Bellman equation.

» Determining V(s) is sufficient for learning the optimal policy!
However, the max operator makes the formula nonlinear, and
therefore hard to directly solve.

8z UNIVERSITY OF

AMBRIDGE NOKIA Bell Labs

Value iteration

» Starting with random initial values Vy(s), and updating until
convergence as follows:

Vt+1 (S) = R(S) +7 maax Z T(Sa a, S/)Vl‘(sl)

SI

we arrive at the value iteration algorithm.

% CAMBRIDGE NOKIA Bell Labs

Aside: Policy iteration

» While not the preferred approach by deep RL, we may also
consider policy iteration, where we optimise the policy directly:
1. Start with a random-guess policy, 7.
2. Evaluate by computing V; = V™.
3. Improve by computing 7,1(s) = argmax, > ., 7(s, a, s')Vi(s').
4. If not converged, return to step 2.

» Note that the computation rule for V; is fully linear now:

Vi(s) = R(s) +7 3 T(s,m(s), (s

S/

I UNIVERSITY OF

AMBRIDGE NOKIA Bell Labs

» | haven’t been completely honest with you!

» In fact, recalling the obtained expression for 7*

7*(s) = argmax Y _ 7 (s,a,s)V(s)

s/

we find that learning V(s) is not sufficient for deriving 7*—we
need knowledge of the underlying transition model (7") as well!

» Generally speaking, the agent has no access to T

» Did | say “Bellman equation™?

% CAMBRIDGE NOKIA Bell Labs

| meant equations!

Using R (s, a) for the reward model from now on:
» First Bellman Equation (“value”):

V(s) = max {R(s, a) + VZT(S, a, s’)V(s’)}

S/

» Second Bellman Equation (“quality”):

Q(s,a) =R(s,a)+7>_T(s as) max {Q(s'. &)}

s/

» Third Bellman Equation (“continuation”):

C(s,a)=~> T(s a5s) max {R(s,d)+C(s,d)}

S/

% CAMBRIDGE NOKIA Bell Labs

Significance?

» All three equations are semantically equivalent!

» V(s) rule very useful when we have (direct or inferred)
knowledge of the 7 /R functions.

» (s, a) rule does not require knowing the underlying model
once the values are learned: the optimal policy is simply

7*(s) = argmax 9Q(s, a)
a

This procedure is often referred to as the Q-learning algorithm.

» C(s, a) has the same property, but delays reward evaluation by
one step—useful when reward signals are difficult to compute.

% CAMBRIDGE NOKIA Bell Labs

The three “flavours” of reinforcement learning

. a0 ay ap
Three ways of learning from sequences (so — 81— S .. >:
0 1 2

» Model-based
(s,a.r)" —[Learner| < T/R — | Solver| — Q —[argmax| -

» Model-free

(s,a,r)" —| Value update | +> Q — =7

» Policy search

(s,a,r)* — ’ Policy update‘ om

% CAMBRIDGE NOKIA Bell Labs

Temporal difference

» We still need to derive an update rule, as the Bellman equation
for Q(s, a) still requires knowledge of 7.

» A very popular approach is TD()\) (temporal difference)
learning; | will focus on the special case of TD(0), which is
usually a good choice for real-time control—for more info, ref.
Sutton, 1988.

% CAMBRIDGE NOKIA Bell Labs

TD(0) update rule

» Key idea: after observing a transition s % s’, based on our
current beliefs of the O function, this transition has a value of
r+~ymaxy Q(s', &).

» Therefore we can update our belief of Q(s, a) based on this
value, according to a learning rate a; € (0, 1], as follows:

Qt1(s,a) = Qi(s, a) + o (r +ymax Qu(s',d) — Qu(s, a))

» N.B. we have now eliminated the requirement of knowing 7 /R
and are learning only from observed transitions in training.

% CAMBRIDGE NOKIA Bell Labs

Aside: learning rate and convergence properties

» To guarantee convergence of the TD(0) algorithm, the following
three properties have to hold (regardless of initialisation):
1. 3% ar =+
2. Y75 a2 < +oo
3. Each state/action pair must be visited infinitely often.

» The parameter a;’s purpose is taking account of stochasticity
of the model—therefore avoiding full overwriting of the old
values. It is commonly setto a; = & for 3 < p < 1.

» However, if the environment is deterministic (next state is
always the same for a given (s, a) pair)—it is optimal to set
a¢ = 1 and fully overwrite. We will assume this hereinafter.

% CAMBRIDGE NOKIA Bell Labs

(Deterministic) Q-learning

We have arrived at the familiar verison of the Q-learning algorithm!

Initialise the Q’ table with random values.
1. Choose an action ato perform in the current state, s.
2. Perform a and receive reward R (s, a).
3. Observe the new state, S (s, a).
4. Update:
Q' (s,a) « R(s,a) +v max {9 (S(s,a),0)}

5. If the next state is not terminal, go back to step 1.

8z UNIVERSITY OF

AMBRIDGE NOKIA Bell Labs

Exploration vs. exploitation

» How to choose an action to perform?

» |deally, would like to start off with a period of exploring the
environment’s characteristics, converging towards the policy
that fully exploits the learnt Q values (greedy policy).

» A very active topic of research. Two common approaches:

» Softmax (r — 0):

exp(<(s; a)/7)
20 &P(Q(s,a)/T)

P(a|s) =

» c-greedy (1 — ¢ — 0):

AL (1 —¢) - I(a = argmax Q(s, a))

P(als) =¢- A

58 UNIVERSITY OF NOKIA Bell Labs

AMBRIDGE

Issues with Q-learning

» Major issue: we often cannot store the entire Q table in
memory! (e.g. for video game-playing, consider the set of all
possible input framebuffers ~ matrices of pixels)

» It needs to be approximated somehow. ..

» By using a deep neural network as the approximator, and the
most-recent belief of the Q value as its supervision signal, we
arrive at the familiar DON architecture.

% CAMBRIDGE NOKIA Bell Labs

Deep Q-learning

Initialise an empty replay memory.
Initialise two DONs, Q' and Q”, with random (small) weights.

1. Choose an action ato perform in the current state, s,
using an e-greedy strategy (with £ annealed from 1.0 to 0.1).

2. Perform a and receive reward R (s, a).

w

Observe the new state, S (s, a).
4. Add (s,a,R(s, a),S(s, a)) to the replay memory.

% CAMBRIDGE NOKIA Bell Labs

Deep Q-learning, contd

5. Sample a minibatch of tuples (s;, a;, r;j, si+1) from the replay
memory, and perform stochastic gradient descent on the DON
Q’, minimising the loss function

(Q/(Sh a) — (fi +ymax{Q"(sit1, Oé)})) i

where Q'(s,-) and Q"(s, -) are computed by feeding s into each
of the respective DONSs.

6. If the next state is not terminal, go back to step 1.
7. Occasionally set 9" = Q'.

% CAMBRIDGE NOKIA Bell Labs

Concluding remarks

» It should be clear that, given that our supervision signal likely
does not represent ground truth, this procedure does not
preserve mathematical guarantees of the original Q-learning
algorithm.

» In fact, there are absolutely no convergence guarantees to this
approach (or any of the improved approaches such as DDQN
and Dueling DQN)!

» However, it still works quite well in practice (as you have
doubtlessly already seen). :)

% CAMBRIDGE NOKIA Bell Labs

Thank you!

Questions?

petar.velickovic@cl.cam.ac.uk

% CAMBRIDGE NOKIA Bell Labs

	Introduction
	Reinforcement Learning
	Deep Reinforcement Learning

