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ABSTRACT 

The work presented in this paper focuses on the development of a 

computational model for describing and detecting affective 

content in everyday body movements. The approach is based on 

the extraction and analysis of dynamic motion qualities as 

opposed to limiting itself to the denotative meanings of body 

posture and gestures. To this end, a database of affective everyday 

motions such as knocking and walking has been analysed. Our 

approach makes use of a segmentation technique which can divide 

complex motions into a set of automatically derived motion 

primitives. The parsed motion is then analysed in terms of 

dynamic features which are shown to encode affective 

information. In order to adapt our algorithm to personal 

movement idiosyncrasies we developed a new approach for 

deriving unbiased motion features. We demonstrate that the 

resulting performance of our algorithm is similar to that of 

humans who took part in a comparable psychological experiment. 

 

1. INTRODUCTION 
The human body is a complex hierarchical structure which has 

evolved to enable us to perform sophisticated tasks. At the same 

time, movements and posture of our limbs, head and torso 

communicate affect and inter-personal attitudes. To a large extent 

our functioning as socially intelligent individuals relies on our 

ability to decode the affective and expressive cues we perceive 

through facial or body gestures. Research suggests that our 

responses to avatars in Immersive Virtual Environments (IVEs) 

are governed by our expectations about the presence and correct 

exhibition of those expressive cues. 

This paper describes a novel framework for analysing everyday or 

non-stylised body motion in order to detect affect. This is very 

different from analysing stylised body motions. In a stylised 

motion the entirety of the movement encodes a particular emotion. 

Stylised motions normally originate from laboratory settings, 

where subjects are asked to freely act an emotion without any 

constraints. They also arise from stylised dance. This paper, 

however, concerns itself with the more subtle aspects of human 

movement. We will examine how affect is communicated by the 

manner, in which everyday actions are performed. We hope that 

this work will open up a multitude of opportunities for intelligent 

human-machine interaction which is not viable with approaches 

that assume stereotypical, stylised body motions. 

2. MOTIVATION AND BACKGROUND 
One of the natural applications for our emotion-sensing 

technology is in the field of IVEs. A major goal for virtual reality 

research is to give the user of an IVE a sense of presence – the 

feeling of “being there” in the virtual environment [1]. In many 

cases it is beneficial or inevitable to populate a virtual 

environment with virtual humans (agents), most notably for the 

investigation of social interaction, co-operative tasks or tutoring. 

In those cases, numerous authors have argued that we deal with a 

special form of presence as relating to the sense of being with 

other social beings, called social presence or copresence. It is 

believed that a strong sense of copresence is the result of an 

intelligently acting and responsive agent [2]. One important 

aspect of this is the agent’s ability to decode and elicit cues of 

non-verbal communication (NVC) such as appropriate body 

posture and gesture as well as facial actions [3]. Our work aims to 

establish a framework which can help to give virtual humans the 

emotional intelligence they need to decode affective cues which 

the users of an IVE elicit. If the agent elicits the appropriate 

reactions, this will help to enhance the sense of presence a user 

experiences. 

In this paper we are only discussing the detection of affect from 

non-stylised everyday motions. Other authors have discussed the 

use of cues from other aspects of bodily NVC such as posture [4] 

and stylised gestures [5]. They report good results, but as we shall 

discuss later, detecting affect from the kind of non-stylised 

motions we are interested in is rather more difficult. In particular, 

we need to find a language which allows us to describe human 

body motion. One approach regards body language as analogous 

to natural language. Ray Birdwhistell argued that complex 

motions can be broken down into an ordered system of isolable 

elements which he called kinemes [6]. The notion of a universal 

set of kinemes or motion primitives is a compelling one as it gives 

structure to the otherwise vast complexity of human motion — a 

goal which the Facial Action Coding System [7] has achieved so 

successfully for the face. Furthermore, research in neurobiology 

suggests that the execution of complex motor behaviours in 

vertebrates might be based on such a combination of basic motor 

primitives [8]. In our approach it is the segmentation into motion 

primitives which will help us to discard the structural information 

of motions, leaving the essentially dynamic cues which we will 

use to distinguish different affects. 



3. MOTION ANALYSIS 
For this work we used a motion-captured database recorded at the 

Psychology Department, University of Glasgow [9]. It gave us 

access to a collection of knocking, throwing, lifting and walking 

motions performed by 30 individuals (15 male and 15 female) in 

neutral, happy, angry and sad affective styles. Most of our quoted 

results are based on the approximately 1200 knocking motions 

from the database. 

The skeletal structure of the recorded bodies is represented by 15 

joints, positioned relative to a world frame. In order to obtain a 

rotation- and scale-invariant representation, we transform the joint 

positions into a body-local coordinate system and normalise them 

with respect to body size. Let f stand for the dimension of time, 

measured in frames. We denote the time-varying signal of 

normalized joint positions as the matrix
Ψ

. We can also represent 

the motion in terms of the joint rotations over time, Θ . A 

particular body configuration at frame f can be represented as a 

row vector, denoted as f
ψ

or f

θ
. The gth positional or rotational 

degree of freedom at frame f is written as gf
ψ

, or gf ,θ  

respectively. 

3.1 Motion Segmentation 
The goal of motion segmentation is to parse high-dimensional 

body movements into a sequence of more basic primitives. In 

general, this is a hard problem which is of interest to researchers 

from many different areas, including gesture recognition and 

robotics. Our approach is based on the work by Fod et al. [10]. It 

makes use of an objective function )( fE  which is a measure for 

the overall motion energy (activation) at time frame f. In many 

ways this concept of energy is analogous to that employed in the 

segmentation of speech into phonemes or words [11]. Let gf ,θ&  

denote the angular speed of the gth rotational degree of freedom at 

time frame f. Then we can define the body’s motion energy as a 

weighted sum of the rotational limb speeds. 
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In essence, E will be large for periods of energetic motion and 

will remain small during periods of low motion energy. Figure 1 

shows E for repeated knocking. Figure 2 illustrates how the 

observed energy peaks coincide with actions such as arm raises or 

individual forward and backward movements during the knock. 

Local minima in E can be observed whenever the trajectory of the 

right arm changes direction. We can use these insights to segment 

a complex motion as follows. 

1. Compute E for the whole motion sequence. 

2. Threshold the signal at a threshold t. Mark all frames f for 

which tfE >)( . 

3. Find all connected regions of marked frames and regard them 

as individual motion segments. 

4. Extend the segments to the preceding and succeeding local 

minima of E. 

Obviously, our choice of t has a major impact on the nature of the 

segments. Fod et al. use empirically derived thresholds. If this 

method is to be used in a general framework, however, we need 

an automatic way of finding an optimal t. We propose the 

following solution. For every pair (E, tn) we obtain a number of 

segments by thresholding E at tn. Let numsegE(tn) = sn be the 

function which computes the number of segments sn for any such 

pair. Figure 3 shows numseg for the motion in Figure 1 and 

sampled at various thresholds. Our goal is to find a threshold 

which will exhibit all major motion segments (energy peaks) 

while filtering out small scale motions due to low-level signal 

noise. We note that noise is mainly registered during periods of 

low energy (e.g. between frames 250–300 and 450–500 in Figure 

1). Let t0 be an empirical noise threshold. Then the optimal 

threshold topt is defined as the threshold which maximises the 

number of major motion segments. 

 )}({maxarg tnumsegt E
t

opt =  (2) 

 

0

0.02

0.04

0.06

0.08

0.1

m
ot

io
n 

en
er

gy

100 150 200 250 300 350 400 450 500

Primitive 1
Primitive 2
Primitive 3
Primitive 4

time (frames)  

Figure 1. Objective function E(f) (top) with automatically 

calculated optimal segmentation threshold topt for part of a 

repeated knocking motion. The bottom shows the parse into 

four motion primitives and periods of no motion. 

 

 

 

Figure 2. Four phases of a knocking motion exhibiting distinct 

peaks of motion energy. Each phase is detected as a segment 

and labelled with one of four automatically derived motion 

primitives. The primitives coincide with the semantically 

meaningful basic actions “Raise arm”, “Knock”, “Retract”, 

“Lower arm”.  
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Figure 3. numsegE(tn) for a repeated knocking motion. The 

diagram also shows topt (dashed) and t0 (dotted). 

3.2 Motion Primitives 
Ideally, we would like to group the extracted segments into 

semantically meaningful clusters representing primitive motions. 

One approach to define such primitives would be to use a 

comprehensive list as devised by Birdwhistell or Bull to transcribe 

their anthropological and psychological observations [6][12]. Due 

to their generality, however, these sets are large. Many of the 

listed primitives are irrelevant for any particular context. Indeed, 

context often governs the affective and social meaning of 

movements [6]. We therefore adopt a more context-dependent 

approach to the definition of motion primitives. It is based on the 

clustering of a set of example motions which are representative for 

a certain context. For our current scenario the context is very 

specific (knocking) and therefore the number of motion primitives 

is rather small. In more complex scenarios such as “everyday 

activities” or “interpersonal conversations” we would expect to 

require a larger set of primitives to represent all observed 

movements well. 

Consider the database of affective knocking motions described 

above. After segmenting the movements, we need to find a 

representation for the segments which allows us to compare and 

cluster them. We therefore consider the joint angles of the 

motions and time-normalise them. This is done by resampling 

each segment at 25 equally spaced intervals. We also subtract the 

segments’ means in order to capture the relative motion rather 

than the absolute body configurations. Next, we wish to group the 

segments into semantically distinct categories. We hypothesised 

that the knocking motions can be divided into four basic phases: 

lift arm, repeatedly knock and retract, lower arm. We therefore 

used a simple k-means clustering algorithm with k=4. In a 

completely unsupervised scenario without any prior knowledge of 

the number of motion primitives, we would choose a clustering 

technique which automatically determines an optimal number of 

clusters such as hierarchical or Markov clustering. The following 

steps summarise our algorithm to compute a set of motion 

primitives from a set of example motions: 

1. Segment the set of motions as described in Sect. 3.1. 

2. Time-normalise all segments. Subtract sample means. 

3. Cluster the normalised segments. 

4. The clusters (or cluster centroids) represent the motion 

primitives. 

Having defined our primitives, we can now parse a new motion by 

following steps 1 and 2 as outlined above and replacing steps 3 

and 4 by an assignment to the closest cluster centroid (most 

similar primitive). Figure 1 illustrates how a repeated knocking 

motion (energy curve shown on top) has been parsed into a 

sequence of primitives (bottom). The motion is parsed in a 

semantically meaningful fashion. Figure 2 shows that primitives 1 

and 4 correspond to the larger scale motions of raising and 

lowering the right arm while primitives 2 and 3 capture the 

smaller scale knocking motions. We will now turn to the analysis 

of the dynamic and affective parameters of the segmented 

motions. 

4. Affect Recognition 
Angry movements in the analysed database tend to look energetic 

and forceful while sad knocks appear relatively slow and slack. 

Similar observations are true for the other classes of motions such 

as throwing and walking. This role of dynamic movement 

qualities such as velocity and acceleration in affect recognition 

has been stressed by other authors [5]. Never before, however, has 

the analysis of dynamics been attempted at the level of motion 

primitives. We propose this solution as a more flexible and well-

founded alternative to the use of fixed or sliding windows as used 

before. 

We are employing four statistical measures as features for affect 

recognition. They are computed over a whole motion segment 

such as an arm raise. For the analysed knocking motions only the 

right arm exhibits significant movement. Therefore all dynamic 

features are currently based on the right arm. We define the 

features as follows. 

• Maximum distance of hand from body (
h

d ) 

• Average hand speed (
h

s ) 

• Average hand acceleration (
h

a ) 

• Average hand jerk (
h

j ) 

We can also compute analogous features
e

d ,
e

s ,
e

a ,
e

j based on 

the elbow motion. For any person p and motion segment m this 

gives us the feature vector ),,,,,,,(
eeeehhhh

jasdjasd=
mp,

φ . 

4.1 The problem of individual movement bias 
In Sect. 5 we shall show that our data does indeed reveal some 

global correlation between the above features and the different 

emotion classes. Figure 4(a), however, shows that the between-

class variability of the two very different emotion classes sad and 

angry is smaller than we would hope. The hand speed distribution 

for sad knocks (black) overlaps heavily with that of angry knocks 

(white). In order to be separable through a pattern recognition 

approach, the two distributions should show a large between-class 

variability while exhibiting a small within-class variability. This 

exemplifies the problem of individual movement bias. Different 

people tend to display the same emotion in very different ways, 

thus impeding classification. 

Our approach to this problem is a normalisation procedure based 

on the following intuition. It seems a reasonable assumption that a 

person’s motion idiosyncrasies influence his or her movements in 

a consistent fashion — after all we expect them to be governed by 

gender, physical build and other constant factors. Even dynamic 



factors such as mood might be changing slowly enough to be 

assumed temporarily constant. We therefore propose to model 

individual motion bias as an additive constant signature 
p

φ  

which influences the motion features introduced above. We obtain 

an estimate of the unbiased motion features 
mp,

φ ˆ  by subtracting 

the personal bias. 

 
pmp,mp,

φφφ
−=ˆ  (3) 

An important problem is how to estimate 
p

φ . If we do not 

“know” a person, i.e. have no history of his or her movements, we 

may need to take an a priori guess, maybe conditioned on gender 

or other cues. However, if we have a history, we can compute 
p

φ  

from all the observed motions. In our case, we take an average 

over all the knocking motions in the database in order to learn 

about a person’s motion bias. Note that this operation does not 

tell us anything about affect-specific factors as all motions are 

treated equally and different affects are represented at equal 

frequencies in the database. Figure 4(b) illustrates how this 

normalisation improves the between-class variability for the two 

shown classes considerably. Sect. 5 gives a more rigorous account 

of the improvements achieved when taking movement bias into 

consideration. 
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Figure 4. Biased and unbiased feature distributions for sad 

knocks (black) and angry knocks (white). 

4.2 Machine Learning 
We can use the biased or unbiased motion features to train a 

classifier which distinguishes the four emotions neutral, happy, 

angry and sad. We decided to use support vector machines 

(SVMs) with a polynomial kernel as they tend to exhibit good 

generalisation performance. The suitability of SVMs for this 

domain was demonstrated by Kapur et al. [5]. In order to solve the 

general problem of recognising the affect of a motion sequence, 

we train a family of binary SVMs z

yx
M ,

. The classifier z

yx
M ,

 aims 

to find the maximum margin between affect classes x and y for 

motion primitives of type z. Once these binary classifiers have 

been trained, we can classify a new motion as follows:  

1. Segment the motion into a list of primitives as described in  

Sect. 3. 

2. Let the first segment in the list be of primitive type z. Apply 

all pairwise SVMs z

yx
M ,

. Classify the segment according to a 

majority vote. 

3. Remove the first segment from the list and repeat from step 2 

until the list is empty. 

4. Classify the whole motion by a majority vote of individual 

segment classifications. 

5. EXPERIMENTAL RESULTS 
With the conducted experiments we aimed to answer three 

questions: 

1. What recognition rate can be achieved with our approach? 

2. How does movement bias (see Sect. 4.1) affect the 

recognition performance? 

3. How do our results compare to related results found in the 

literature? 

We used the knocking motions from our database to run Leave-

One-Subject-Out cross-validation (LOSO-CV) tests. Overall, we 

used approximately 1200 motion samples with an equal 

proportion for each of the considered emotions neutral, happy, 

angry and sad. For each iteration of the cross-validation the 

system was therefore trained on around 1160 samples and 

validated on 40 samples. In different tests we found that the 

system does considerably better if we add some of the remaining 

40 samples to the training set or perform a subject-independent 

cross-validation. In contrast to those tests, the figures we quote 

here are representative for the generalisation performance of our 

system for an unknown person. 

The confusion matrices for LOSO-CV using biased and unbiased 

features are shown in Table 1. Note that angry and sad knocks are 

classified more reliably than neutral and happy ones. The most 

significant factor which negatively affects recognition rates 

(sensitivity) is the confusion between neutral and happy knocks. 

In answer to question 2 above, we find that using unbiased 

features improves the overall recognition rate considerably from 

50% to 81%. Our informal observations from Sect. 4.1 have hence 

been confirmed. 

Table 1. Confusion matrices for LOSO-CV using biased 

features (left) and unbiased features (right). All average and 

affect-specific sensitivities are above chance level (0.25). 

classified as  classified as 
Truth 

neu hap ang sad  neu hap ang sad 

neu 0.38 0.23 0.13 0.27  0.74 0.20 0.01 0.05 

hap 0.28 0.41 0.18 0.13  0.28 0.65 0.06 0.01 

ang 0.18 0.20 0.59 0.03  0.01 0.06 0.92 0.00 

sad 0.21 0.14 0.02 0.62  0.07 0.01 0.00 0.92 

 average sensitivity: 0.50  average sensitivity: 0.81 

We can obtain a measure for the more objective recognition 

efficiency η  if we normalise the achieved sensitivity by the 

sensitivity expected by chance (sometimes referred to as 

generality). 

 

chanceby  expectedy sensitivit

ysensitivit achieved
=η  (4) 

In our case we would expect a classifier which assigns one of the 

four affect classes at random to achieve a sensitivity of 25%. 

Therefore the efficiencies of our classifiers for biased and 

unbiased features are 0.2=
b

η  and 24.3=
ub

η  respectively. We 



can use these measures to compare our results to those of related 

experiments in the next section. 

6. DISCUSSION AND FUTURE WORK 
For our discussion we consider the results of two other related 

experiments. We were using part of a database which was created 

by Pollick et al. for psychological work. In one particular study 

they examined how accurately human subjects could classify 

affect from knocking motions displayed as point-light or full 

video stimuli [13]. The only major difference from our 

experimental setup was their forced choice between five rather 

than our four emotional states (afraid being the additional class). 

They report that humans achieved a recognition rate of 59% for 

point-light and 71% for full video stimuli. These figures illustrate 

that, although performing significantly above chance level, even 

humans are far from perfect at classifying affect from non-stylised 

body motions. We can calculate the efficiency η̂  achieved by 

humans as defined in Eq. 4. For point-light and video displays 

humans exhibit efficiencies of 95.2ˆ =
pl

η  and 55.3ˆ =
v

η  

respectively. 

One of the major contributions of our work derives from the fact 

that classifying affect from non-stylised motions is harder than 

from stylised ones. This is demonstrated by the experiments 

performed by Kapur et al. [5]. They recorded stylised emotions 

and compared the accuracy of various machine learning 

techniques as well as human performance. For the task of 

distinguishing four basic emotions from point-light displays, 

humans achieved a recognition rate of 93% ( 72.3=η ). This is 

considerably higher than human performance reported by Pollick 

et al. for non-stylised movements ( 95.2ˆ =
pl

η ). For SVMs the 

recognition rate was lower at 83.6% ( 34.3=η ). These results are 

summarised in Table 2. 

We have shown that using unbiased dynamic features based on 

motion primitives boosts the recognition rate considerably. Our 

computational approach exhibits a better efficiency than humans 

for classifying affect in non-stylised movements from point-light 

displays. The performance of our approach is also comparable to 

that of Kapur et al. This is significant since their stylised motion 

data contained solely affective information. For our non-stylised 

motions, on the other hand, only certain subtle aspects 

communicate affect while most of the motion signal is governed 

by the independent semantic meaning of the motion. 

Table 2. Comparison of our and related results. 

experiment Kapur et al. [5] Pollick et al. [13] Our results 

motions stylised non-stylised non-stylised 

classifier human SVM human SVM 

features biased Pt.-l. video biased Unbiased 

#emotions 4 4 5 5 4 4 

sensitivity 93% 84% 59% 71% 50% 81% 

efficiency 3.72 3.34 2.95 3.55 2.00 3.24 

We are currently working on extending our approach in various 

ways. In the version described here we only consider the right arm 

for extracting affect-related dynamic features. Incorporating 

features from other body parts will help us to analyse motions 

such as walking, which are not primarily based on arm 

movements. Furthermore, the torso and head can be expected to 

hold valuable cues even for heavily arm-based actions. We are 

also investigating better ways to estimate the personal movement 

signature 
p

φ . Early results suggest that our current formulation is 

relatively consistent across different types of motion. Ultimately 

we would like to be able to estimate a person’s movement 

signature from as few and unconstrained example motions as 

possible. 
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