
From ML to C via Modula-3

an approach to teaching programming

Peter Robinson

University of Cambridge

Revised December 1994

1 Abstract

The Computer Science course at the University of Cambridge teaches ML as an
introductory language at the beginning of the freshman year, and then uses Modula-
3 to introduce imperative programming at the end of that year. Further lectures
on advanced features of Modula-3 are given early in the second year, together with
separate lectures on C. Other, specialised languages are introduced subsequently as
the course progresses.

This paper explains why this strategy for teaching was adopted and evaluates
its operation in practice. The key features of ML and Modula-3 are presented and
illustrated through a collection of example programs. Finally, a general assessment
of the two languages is also presented.

2 Introduction

Choosing the right programming language for a commercial computing project in-
volves balancing a number of conflicting requirements, but is usually resolved by
commercial considerations rather than technical ones. Choosing the right language
for introducing newcomers to Computer Science is free from such external con-
straints, and therefore much harder. Indeed, students in scientific disciplines are
often taught to program when it is no longer clear that this is relevant as part of
their professional development; teaching them to use standard software packages
may be more appropriate.

The main Computer Science course at the University of Cambridge is the three-
year Computer Science Tripos. Half of the first year is devoted to Computer Science
topics (including discrete mathematics), and the other half is drawn from lectures
given to Natural Scientists, including continuous mathematics and a particular sci-
ence subject.

Until recently, all Natural Scientists were taught elementary programming in
Fortran as part of the mathematics component of their first year course. This
has now been changed so that they receive instead lectures on utility computing,
using a word processor (Microsoft Word), a spreadsheet (Microsoft Excel) and a
symbolic mathematics system (MathCad). These are used to convey the principles
of data handling and algorithm design (even going so far as to ilustrate the numerical
solution of differential equations in a spreadsheet) which seems sufficient for students
who will be computer users rather than developers of new computer systems.

1

2.1 The first language

Computer Scientists are, of course, rather different. They need to start with a
sound foundation for programming that can establish the principles which will sub-
sequently be applied in many different languages. Three main objectives can be
established:

Mathematical basis: Formal manipulation of computer programs and proof of
their correctness is becoming increasingly important. Students need to see
programs as formal descriptions of abstract algorithms. A mathematical lan-
guage also relates directly to parallel first-year courses in digital logic and
discrete mathematics.

Strong typing: The value of strong typing in writing correct and maintainable
programs is now well established. This is particularly important in evolution
of large systems where a team of programmers may have to work together
over a number of years. A rich type system also allows data structures to be
introduced clearly.

Functional emphasis: A functional style of programming is conducive to correct
programming, and also lends itself to mathematical analysis of algorithms.

It should also be said that a friendly environment for experimenting is a great virtue;
this probably implies the use of an interpreted language.

However, it is important to emphasise that commercial relevance is not in this
list. A university Computer Science course is not an industrial training course. The
graduates’ value comes not from their skill with a particular language that happens
to be popular at the moment, but from understanding the principles of programming
languages in such a way that they can learn and evaluate new languages as they
encounter them in their professional careers.

These objectives led us to the choice of ML as the initial teaching language
for Computer Scientists. This choice also has an interesting side effect. Students
entering the course vary widely in their previous experience of computers and pro-
gramming, from those who have hardly touched a keyboard to those who may have
spent a year programming in industry before coming to university. It is important
not to make the beginners feel themseleves to be at a disadvantage, and also not to
bore the experts. ML meets these requirements nicely – the experts tend to have
used imperative languages such as Basic, C or Pascal and find themselves with no
great advantage over the beginners. Indeed, their preconceptions and self-taught
programming habits often put them at a disadvantage.

2.2 The second language

After starting with ML, it is useful to move on to a more conventional imperative
programming language with a new set of objectives:

Completeness: The language should exhibit all the facilities of a modern lan-
guage – objects and inheritance, exception handling, garbage collection and
concurrency.

Large scale programming: Strong typing should extend across separately com-
piled modules, but there should be a controlled way of circumventing its
protection for low level code. This suggests the use of a separate interface
description language.

Libraries and environment: Extensive libraries serve two purposes. First they
serve as illustrations of programming style and the construction of re-usuable

2

code. Secondly, they provide a rich environment of facilties which students
can draw on when they undertake substantial projects of their own later in
the course.

At the same time, the language should not lose sight of the objectives for an initial
programming language listed above.

Again, there is no requirement for the language to be popular with industry; it
is the principles that matter.

Modula-3 meets these requirements and is introduced towards the end of the first
year of the Computer Science course. The languages thread of the course continues
with lectures on C/C++ and Prolog, together with brief historical excursions into
LISP and COBOL. C is included as a concession to its widespread use as a sort of
machine-independent low-level language, and Prolog introduces a rather different
style of programming. This exposure to a variety of programming idioms equips the
students to understand, assess and use a very wide variety of languages in practice.
For example, many use embedded scripting languages such as Tcl, Python or Obliq
in their final year projects with no further formal training.

ML and Modula-3 will now be discussed in more detail, and the paper concludes
with an evaluation of their strengths and weaknesses. This is not intended as a com-
plete description of either language, but rather as a summary of their distinguishing
characteristics, illustrated by examples.

3 ML

Standard ML is descended from the meta-language (hence ML) for the LCF proof
system developed at Edinburgh in the 1970s [4]. It is defined in a report from
the University of Edinburgh [7] which is accompanied by a gentler introduction
[6]. The language has become popular for teaching programming and a number
of introductory texts have now been published [13, 19, 20] together with a more
advanced book ilustrating the language’s use for a wide variety of problems [15].

The key features of ML are [6]:

Functional: Functions are first class data objects which may be passed as argu-
ments, returned as results and stored in data structures. Assignment and
other side-effects are discouraged.

Interactive: Phrases are typed in, analysed, compiled and executed interactively
with any results being printed out directly. There are also more conventinal
compilers.

Strong typing: Every legal expression has a type which constrains its use. How-
ever, most types are inferred by the compiler rather than having to be specified
by the programmer.

Polymorphism: The compiler infers the most general type of an expression, and
this is specialised in actual use. This supports generic programming with no
additional effort by the programmer.

Abstract types: Types can be defined in terms of permitted operations while
keeping implementation details private.

Static scoping: All identifiers are resolved at compile time. However, procedure
execution can be controlled by pattern matching of arguments at run time.

Type-safe exceptions: Exceptions allow procedures to return out-of-band results
(often arising from abnormal conditions) to be communicated in a type-safe
way.

3

Modules: Type safety is maintained when large programs can be constructed out
of separately compiled components.

The language will now be illustrated by a number of examples and then evalu-
ated.

3.1 Big numbers

Consider the manipulation of arbitrarily large natural numbers, stored as a list of
digits to the base 10. It is convenient to use a little-endian convention, storing the
least significant digit at the head of the list. We can start with a couple of utility
routines to convert between big numbers and ordinary integers. These can be typed
directly into the ML interpreter: the - is its normal prompt and = its prompt for a
continuation line of a phrase. Each complete unit of input concludes with a semi-
colon. The interpreter responds by printing out the value and type of the input
which is also stored as the current value, it, initially empty.

Standard ML of New Jersey, Version 0.93, February 15, 1993

val it = () : unit

- fun big2int nil = 0

= | big2int (b :: bb) = b + 10 * big2int bb;

val big2int = fn : int list -> int

- big2int [1, 2, 3];

val it = 321 : int

- big2int [1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];

uncaught exception Overflow

-

In this we see the function big2int defined and then tested on a couple of input
values. The function is defined using pattern matching; if the input value is an
empty list, nil, the literal value 0 is returned, otherwise the input is a list with first
element b and tail bb which represents the integer value of b plus 10 times the value
of the tail. These patterns appear after the fun keyword as repeated definitions of
the function separated by vertical bars, |. The ML type system infers that the input
must be a list of integers and that the result is a single integer, and the interpreter
prints the signature of big2int as fn : int list -> int correspondingly.

This is then tested by trying it out on a couple of lists of integers. The first
duly prints out the value 321 as the value of the expression stored in it but the
second raises a run-time exception when there is arithmetic overflow because the
input list represents a number that is too big to fit into an integer. (More recent
ML system use arbitrary length integers by default, so this would still work. Of
course, it would also render this example somewhat pointless.)

The converse function int2big is defined and tested similarly:

- fun int2big 0 = nil

= | int2big i = (i mod 10) :: int2big (i div 10);

val int2big = fn : int -> int list

- int2big 123;

val it = [3,2,1] : int list

-

In this case the :: operator is used to construct a list. Notice how recusion is
used to manipulate recursive data structures.

Finally, a procedure to add big numbers and so to compute powers of two can
be written:

4

- fun add aa bb =

= let fun doadd (nil, nil, c) = if c = 0 then nil else [c]

= | doadd ((a::aa), nil, c) =

= ((a+c) mod 10) :: doadd (aa, nil, (a+c) div 10)

= | doadd (nil, (b::bb), c) = doadd ((b::bb), nil, c)

= | doadd (a::aa, b::bb, c) =

= ((a+b+c) mod 10) :: doadd (aa, bb, (a+b+c) div 10)

= in

= doadd (aa, bb, 0)

= end;

val add = fn : int list -> int list -> int list

- fun twoto n = if n < 1 then [1] else

= let val h = twoto (n-1)

= in add h h

= end;

val twoto = fn : int -> int list

- twoto 7;

val it = [8,2,1] : int list

- big2int it;

val it = 128 : int

-

An auxiliary function doadd is defined locally with an extra argument (the
carry between the addition of successive digits). In fact there is a further subtle
difference between the signatures of add and doadd relating to the fact that all ML
functions take a single argument. add is curried, so this argument is just the first
big number, aa, and it returns an anonymous function that takes the argument
bb, returning the sum of the lists. This is reflected in the signature printed by
the interpreter. doadd on the other hand takes a triple consisitng of two lists
and an integer as its single argument. Its signature is not printed, but would be
fn : int list * int list * int -> int list.

Finally, this is tested by working out 27 and converting the result back to an
integer.

3.2 A stack of records

The triple in doadd is an example of a record, but its fields are identified by their
order. It is also possible to name fields, for example:

- val pr = {name = "Peter Robinson", address = "Cambridge"};

val pr = {address="Cambridge",name="Peter Robinson"}

: {address:string, name:string}

- val mw = {address = "Milton Keynes", name = "Mark Woodman"};

val mw = {address="Milton Keynes",name="Mark Woodman"}

: {address:string, name:string}

-

defines values pr and mw both of whose types are records with two named fields,
both of type string. The order of the fields in the definition is irrelevant; they are
automatically arranged in a canonical order. Individual fields can be extracted with
a selection operator:

- #name pr;

val it = "Peter Robinson" : string

-

5

The simplest way to make a stack of such records would be to write a couple of
functions manipulating lists:

- fun push (s, r) = r :: s;

val push = fn : ’a list * ’a -> ’a list

- fun pop (r :: s) = (s, r);

std_in:0.0-0.0 Warning: match nonexhaustive

r :: s => ...

val pop = fn : ’a list -> ’a list * ’a

-

The type inference system works out that the push function is generic, that is it
can operate on stacks of any base type. This is represented by the use of ’a (read
as α) for a type variable. pop takes a stack and returns a pair consisting of the
popped stack and its former first item. However, there are a couple of deficiencies
in this approach: the empty stack is represented by the empty list, nil, which is
untidy and the action of pop on an empty stack is undefined. This is identified by
the ML interpreter as an incomplete set of patterns for the arguments to pop; an
empty list does not match the single pattern and so would give rise to a run-time
exception.

A better approach would be to define a stack by the operations permitted on
it, more in the object-oriented style. We can define a stack to be either empty or
constructed by pushing an item of an arbitrary type α onto an existing stack of αs:

- datatype ’a stack = empty | push of (’a stack) * ’a ;

datatype ’a stack

con empty : ’a stack

con push : ’a stack * ’a -> ’a stack

- empty;

val it = empty : ’a stack

- push (it, pr);

val it = push (empty,{address="Cambridge",name="Peter Robinson"})

: {address:string, name:string} stack

- push (it, 42);

std_in:7.1-7.13 Error: operator and operand don’t agree (tycon mismatch)

operator domain: {address:string, name:string} stack

* {address:string, name:string}

operand: {address:string, name:string} stack * int

in expression:

push (it,42)

-

Here an abstract, generic type, an α stack is defined by its two possible construc-
tors: empty which gives an empty stack and push which puts an extra item onto the
stack. empty is then used to produce an empty stack which appears as the current
expression, it. Note that it has a generic type at this point. A name and address
record is then pushed onto the stack, whose type now becomes specifically that of
a stack of name and address records. It would now be possible to push other such
records (such as mw defined above) onto the stack, but instead an attempt is made
to push an integer onto the stack; this is an incompatible type and a diagnostic
message is printed.

A funtion to pop items off the stack matches against the two possible patterns,
but first an exception is defined to deal with the special case of an empty stack:

- exception nocando;

exception nocando

6

- fun pop empty = raise nocando

= | pop (push (s, r)) = (s, r);

val pop = fn : ’a stack -> ’a stack * ’a

- pop it;

val it = (empty,{address="Cambridge",name="Peter Robinson"})

: {address:string, name:string} stack * {address:string, name:string}

- #1 it;

val it = empty : {address:string, name:string} stack

- pop it;

uncaught exception nocando

-

The #1 operator picks the first element of a tuple rather like selecting a field from
a record.

A client using these routines could catch the exception simply by following the
invocation of pop by a clause handle nocando => ... where the ellipses denote an
appropriate expression to be returned in this case, which would have to have the
same type as the normal return from pop. An example of this will be given later.

3.3 A workshop database

Finally, consider a type structure for a database to process people attending a work-
shop. The main record structure could be roughly as for the names and addresses
above, but additional information is needed for particular classes of person. This
is most easily handled by defining a new property type together with a function to
yield a text string explaining the property:

- datatype property = presenter of (string * string) | chair of string | ou;

datatype property

con chair : string -> property

con ou : property

con presenter : string * string -> property

- fun text (presenter (s, t)) = "Presenting " ^ s ^ " at " ^ t

= | text (chair (s)) = "Chairing " ^ s

= | text ou = "from Open University";

val text = fn : property -> string

-

Pattern matching is used in the text function to distinguish the different variants
of the property type, and ^ is the string concatenation operator.

A stack of properties could then be attached to each person attending the work-
shop:

- empty;

val it = empty : ’a stack

- push (it, presenter ("From ML to M3", "15:50"));

val it = push (empty,presenter ("From ML to M3","15:50")) : property stack

- push (it, ou);

val it = push (push (empty,presenter #),ou) : property stack

- fun props ps =

= let val (s, p) = pop ps

= in (text p) ^ "\n" ^ props s end

= handle nocando => "";

val props = fn : property stack -> string

- props it;

7

val it = "from Open University\nPresenting From ML to M3 at 15:50\n" : string

- print it;

from Open University

Presenting From ML to M3 at 15:50

val it = () : unit

-

Here an empty stack is created and then two properties (the presenter property
with two field values and the unparameterised ou property) pushed onto it. The
props function concatenates all the proeprties on the stack into a single string.
Note how the exception for an empty stack is caught and used to return an empty
string and how the result from pop is split into its components with a nested let

clause. "\n" indicates the new line character, as is shown when the final string is
printed.

3.4 Evaluation

These examples should have given a the general flavour of ML, but what is its
real rôle? It certainly meets all the criteria for an initial teaching language, but
it has much broader uses than that. ML has been widely used for research work
on theorem proving and, in particular, for work on formal verification of hardware
and software. This is now moving into industrial projects and full commercially
supported implementations are available on small PCs as well as professional work-
stations, although development environments are still rather limited.

The core of the language is very simple and can be defined in just a few pages;
however, it is also quite appropriate to use it for large projects. Its mathematical
basis gives it great coherence and uniformity. The strong type checking and ab-
stract data types shown in the examples are obviously of value in large systems and
ML also supports a mechanism for hiding internal information in packages, revealing
only a chosen set of definitions through a signature. This facilitates the orderly con-
struction and maintenance of large systems consisting of many, separately compiled
files of code.

The language lends itself to formal specification and analysis, but is not so well
suited for some applications. For example, commercial data processing does not
fit well with a functional style of programming (although spreadsheets have been
written in ML).

Although this was deliberately omitted from the examples above, it is possible
to define mutable variables and for functions to have side effects, but these are not
comfortable within the language. Garbage collection and an interpreted implemen-
tation are not obviously suitable for real-time systems either, although there are
now compilers generating efficient code and modern garabage collectors are not as
disruptive as their predecessors.

4 Modula-3

Modula-3 is descended from Pascal [21, 8] via Mesa [12], Cedar [9], Modula-2 [22, 23]
and Modula-2+ [17]. It is defined in Greg Nelson’s book [14], which also gives a
rationale for the language design and gives examples of its novel features in use.
There is an introductory textbook [5] and a version of Robert Sedgewick’s book on
algorithms using Modula-3 [18].

The langauge’s design goals are encapsulated in the preface to the Modula-3

report [3]:

8

The goal of Modula-3 is to be as simple and safe as it can be while
meeting the needs of modern systems programmers. Instead of exploring
new features, we studied the features of the Modula family of languages
that have proven themselves in practice and tried to simplify them into
a harmonious language. We found that most of the successful features
were aimed at one of two main goals: greater robustness, and a simpler,
more systematic type system.

Modula-3 descends from Mesa, Modula-2, Cedar, and Modula-2+.
It also resembles its cousins Object Pascal, Oberon, and Euclid.

Modula-3 retains one of Modula-2’s most successful features, the
provision for explicit interfaces between modules. It adds objects and
classes, exception handling, garbage collection, lightweight processes (or
threads), and the isolation of unsafe features.

The key features of Modula-3 are [14]:

Interfaces: An explicit interface reveals only the public declarations in a module,
while allowing other parts of it to be kept private. Each module imports the
interfaces which it requries and exports the interfaces that it implements. The
interface can be thought of as a contract between the supplier and client of
a library module, specifying (amongst other things) the signatures of its pro-
cedures, while deferring until later the exact nature of their implementation.
They form a natural part of the design documentation of a large program.

Objects: An object is an abstract data type defined in terms of the operations or
methods permitted on it. A new object type can be defined as a subtype of an
existing type, in which case it inherits all the methods of the parent type while
possibly adding new methods. It can also override the existing methods with
alternative implementations having the same signature. (It is also possible
to mask an inherited method by a new method with the same name but a
different signature, but the obscured method can still be invoked.)

Objects and interfaces are combined in Modula-3 to provide partially opaque

types, where some of an object’s fields are visible in a scope while others are
hidden.

Generics: Modula-3 does not provide the full polymorphism of ML, but does allow
a module (both interface and implementation) to be parameterised by another
module. The generic module acts as a template in which some of the imported
interfaces are regarded as formal parameters, bound to actual interfaces when
the generic is instantiated. This is effectively a textual operation, undertaken
at compilation time.

Threads: Dividing a computation into concurrent processes (or threads of con-
trol) is a fundamental method of separating concerns. In particular, any
program dealing with external activities – filing system, communications net-
work, human users and so on – should not suspend its dealing with all of them
while waiting for just one to respond. Separating the program’s activities into
separate threads which can block individually without affecting the others’
execution makes this simpler to deal with.

Safety: Many of the problems with low-level langauges such as C arise through
accidental corruption of a program’s code or data after using an invalid ar-
ray index or performing incorrect address arithmetic. Such programs can
be protected (at least from eachother) by placing them in separate address
spaces, but this may limit performance. It is better to check for incorrect

9

behaviour and handle it gracefully, rather than allow the program to continue
unpredictably.

Garbage collection: A particular unsafe run-time error is to free a data structure
still referred to by dangling pointers. Alternatively, storage leaks caused by
failure to free unreachable structures cause an executing program’s data to
grow without bound. Both of these problems can be resolved by tracing
references and recovering redundant space by automatic garbage collection.

Exceptions: Another class of unsafe error arises when procedures report errors by
returning special values, which are too easily left unchecked by the program-
mer. Exceptions allow such out-of-band results to be returned and checked
with very low overhead in the normal, error-free case, while making the be-
haviour clear in the abnormal case.

Type system: Modula-3 is strongly typed and particular attention has been paid
to making the type system uniform. In particular, a sub-type relation is de-
fined and used to specify assignment compatibility and inheritance rules; the
type of every expression can be determined from its constituents indepen-
dently of its use and there are no automatic type conversions.

Simplicity: C.A.R. Hoare has suggested that as a rule of thumb a language is too
complicated if it can’t be described precisely and readably in 50 pages. The
designers of Modula-3 elevated this to a design principle, which they only
narrowly failed to achieve.

As with ML, the language will be illustrated by a number of examples and then
discussed.

4.1 Big numbers

Again, arbitrarily large natural numbers will be stored as a list of digits to the base
10. However, in Modula-3 the list is constructed explicitly with pointers rather than
being manipulated directly within the language as in ML.

The Modula-3 compiler operates on complete modules, so it useful to see the
entire program at once:

MODULE Main;

IMPORT Char, Stdio, Text, Wr;

CONST Base = 10;

TYPE

BigNum = REF RECORD

digit: INTEGER;

rest : BigNum := NIL;

END;

PROCEDURE Create (i: INTEGER): BigNum =

BEGIN

IF i = 0 THEN

RETURN NIL

ELSE

RETURN

NEW (BigNum, digit := i MOD Base, rest := Create (i DIV Base));

10

END;

END Create;

PROCEDURE Add (a, b: BigNum; carryIn := 0): BigNum =

BEGIN

IF a = NIL THEN

IF carryIn > 0 THEN

RETURN Add (b, Create (carryIn))

ELSE

RETURN b

END;

ELSIF b = NIL THEN

IF carryIn > 0 THEN

RETURN Add (a, Create (carryIn))

ELSE

RETURN a

END;

ELSE

WITH d = a.digit + b.digit + carryIn DO

RETURN NEW (BigNum, digit := d MOD Base,

rest := Add (a.rest, b.rest, d DIV Base));

END;

END;

END Add;

PROCEDURE ToText (b: BigNum; first := TRUE): TEXT =

BEGIN

IF b = NIL THEN

IF first THEN RETURN "0" ELSE RETURN "" END

ELSE

RETURN ToText (b.rest, FALSE)

& Text.FromChar (VAL (ORD (’0’) + b.digit, CHAR))

END;

END ToText;

PROCEDURE FromText (t: TEXT): BigNum =

VAR b: BigNum := NIL;

BEGIN

FOR i := 0 TO Text.Length (t) - 1 DO

WITH ch = Text.GetChar (t, i) DO

IF ch IN Char.Digits THEN

b := NEW (BigNum, digit := ORD (ch) - ORD (’0’), rest := b);

END;

END;

END;

RETURN b;

END FromText;

VAR bi := Create (1);

BEGIN

FOR i := 1 TO 100 DO

bi := Add (bi, bi);

Wr.PutText (Stdio.stdout, ToText (bi) & "\n");

11

END;

Wr.Close (Stdio.stdout);

END Main.

The first observation is that there is a lot more boiler-plate text wrapped round
this program than is need for its equivalent in ML. First, there is a heading identi-
fying the module; in fact this has the special name Main identifying it as the main
program. Secondly, there are explicit IMPORT requests for separately compiled mod-
ules used by this program. The definitions in the corresponding interfaces are made
available in the ensuing scope. Thirdly, all the type information is explicit; every
detail of the BigNum is specified as a pointer to a record with two fields. A small
detail worth noting is that the fields can have default values, initialised whenever a
record is allocated. In this case the tail pointer is set to default to NIL.

As noted above, the type of an expression is computed from its constituents. In
this example, the type of the constant Base will be inferred to be an integer, and
this tested for compatibility wherever it is used. This can often be done by the
compiler, but may require a run-time check.

The bulk of the program is taken up with the definition of four procedures which
should be fairly self-explanatory. The NEW procedure allocates space on the heap,
returning a pointer. Its first argument is a reference type and any further arguments
specify initial values for fields in the record referred to. The third argument to the
Add procedure has a default value of 0; this avoids the need for the auxiliary doadd

function used in the ML equivalent above. Otherwise, the procedure is roughly
equivalent to the ML, eccept that the pattern matching of arguments is replaced
by explicit testing. Conversions between big numbers and Modula-3’s built-in TEXT

type make use of utility routines in the standard Char and Text interfaces.
Finally, the body of the module creates a big number with value 1 and adds it

to itself repeatedly, printing out values from 21 to 2100. Incidentally, the repeated
assignment to the variable bi and the various manipulations of the TEXT type will
result in the generation of large amounts of unreachable heap storage which will be
recovered by the garbage collector.

4.2 A stack of records

A name and address record could be defined as a type in Modula-3 as follows:

TYPE Record = RECORD

name,

address: TEXT := "";

END;

Both fields are of the built-in TEXT type and have default values of empty strings.
The langauge is case sensitive, so there is no confusion between the user-defined
Record type and the built-in type constructor RECORD.

It is common practice to have a separate interface for each abstract data type,
so a better definition might be to create a separate file:

INTERFACE Record;

TYPE T = RECORD

name,

address: TEXT := "";

END;

END Record.

12

It is conventional to call the main type in an interface T and it is then referred to
in other modules in qualified form as Record.T.

A stack of these records could then be constructed using a linked list as follows:

MODULE Main;

IMPORT Record, Stdio, Wr;

TYPE Stack = REF RECORD

item: Record.T;

next: Stack := NIL;

END;

EXCEPTION NoCanDo;

PROCEDURE Push (VAR s: Stack; r: Record.T) =

BEGIN

s := NEW (Stack, item := r, next := s);

END Push;

PROCEDURE Pop (VAR s: Stack): Record.T RAISES {NoCanDo} =

BEGIN

IF s = NIL THEN RAISE NoCanDo

ELSE

VAR r := s.item;

BEGIN

s := s.next;

RETURN r;

END;

END;

END Pop;

VAR stack: Stack := NIL;

BEGIN

Push (stack, Record.T {name := "Peter Robinson", address := "Cambridge"});

Push (stack, Record.T {name := "Mark Woodman", address := "Milton Keynes"});

TRY

LOOP Wr.PutText (Stdio.stdout, Pop (stack) .name & "\n") END;

EXCEPT

NoCanDo => Wr.PutText (Stdio.stdout, "That’s all folks!\n");

END;

Wr.Close (Stdio.stdout);

END Main.

This is fairly standard imperative programming. Both the Push and Pop procedures
take the stack as a variable argument, implying call-by-reference, and allowing them
to have side effects, modifying the contents of the stack. A more functional approach
would bee to return the modified stack, as in the ML example above. The initial
stack is empty, indicated by a NIL value. Push is then invoked on it with a couple
of literal record constructors to insert some data. The Pop procedure raises an
exception when passed an empty stack as its argument and this is used in the
main body of the program to terminate an otherwise infinite loop. When run, this

13

program would print out the two names on the stack, together with the message
That’s all folks!

This program can be refined in three ways: the stack can be made generic,
capable of stacking elements of any type, it can be made into an abstract data type
as an object with push and pop methods, and the implementations of these methods
can be hidden. The finished result would consist of several further files. In addition
to the Record interface above, there is a generic stack interface:

GENERIC INTERFACE Stack (Value);

EXCEPTION Empty;

TYPE

Public = OBJECT METHODS

push (v: Value.T);

pop (): Value.T RAISES {Empty};

END;

T <: Public;

END Stack.

This has the formal parameter Value which will be instantiated to an actual inter-
face name later; it can be thought of as a further imported interface. The actual
interface will have to provide a definition for a type T since this interface refers to
Value.T. For this application the Record interface defined above will be suitable,
but so would many others including, for example, the standard Text interface.

The type declarations achieve the second and third refinements. Public is an
object type with two methods whose signatures are given. The actual procedures
supplied later to implement these methods all have an additional first argument
which identifies the instance on which they are being invoked.

T is simply defined to be a specialisation of Public; it will provide the same
methods but their implementations are hidden and extra data fields may be added
to the object. This is an example of an opaque type in Modula-3 – there is only a
partial revelation of T.

This would be accompanied by a generic implementation:

GENERIC MODULE Stack (Value);

TYPE

List = REF RECORD

item: Value.T;

next: List := NIL;

END;

REVEAL

T = Public BRANDED OBJECT

list: List := NIL;

OVERRIDES

push := Push;

pop := Pop;

END;

PROCEDURE Push (self: T; value: Value.T) =

BEGIN

14

self.list := NEW (List, item := value, next := self.list);

END Push;

PROCEDURE Pop (self: T): Value.T RAISES {Empty} =

BEGIN

IF self.list = NIL THEN RAISE Empty

ELSE

VAR v := self.list.item;

BEGIN

self.list := self.list.next;

RETURN v;

END;

END;

END Pop;

BEGIN

END Stack.

This more-or-less follows the earlier, direct program with the important addition of
a revelation of the implementation of T within the scope of this module. In fact, T
is declared to be a specialisation of Public, it is BRANDED to make its type unique,
it has a private data field to hold the linked list storing the contents of the stack,
and it overrides the (null) methods of the Public type with new implementations.

Push and Pop have signatures that match the method declarations in Public,
with the addition of an additional first argument identifying the particular instance
of the Stack.T object for which they are being invoked. The code is much as before.

The generic interface and implementation are instantiated for the Record inter-
face to give specific RecordStacks:

INTERFACE RecordStack = Stack (Record) END RecordStack.

MODULE RecordStack = Stack (Record) END RecordStack.

Finally, these can be tested by a new main program:

MODULE Main;

IMPORT Record, RecordStack, Stdio, Wr;

VAR stack := NEW (RecordStack.T);

BEGIN

stack.push (Record.T {name := "Peter Robinson", address := "Cambridge"});

stack.push (Record.T {name := "Mark Woodman", address := "Milton Keynes"});

TRY

LOOP Wr.PutText (Stdio.stdout, stack.pop () .name & "\n") END;

EXCEPT

RecordStack.Empty => Wr.PutText (Stdio.stdout, "That’s all folks!\n");

END;

Wr.Close (Stdio.stdout);

END Main.

which works in exactly the same way as its predecessor.

15

4.3 A workshop database

As with the ML example, the main record structure is fairly straightforward but a
new type is needed to handle the properties of delegates. A stack of these properties
could then be included in the main record.

The interface looks like this:

INTERFACE Properties;

TYPE

T = OBJECT METHODS

text (): TEXT;

END;

PresenterP = T OBJECT METHODS

init (subject, slot: TEXT): Presenter;

END;

Presenter <: PresenterP;

ChairP = T OBJECT METHODS

init (session: TEXT): Chair;

END;

Chair <: ChairP;

OU <: T;

END Properties.

A base type, Properties.T is defined which has a single method that yields a text
string describing the property. Separate public sub-types PresenterP and ChairP

are derived from this for each property to be stored. These have distinct init

methods that allow their private data fields to be given appropriate initial values.
Finally, Presenter and Chair are partially revealed to be sub-types of these.

The implementation supplies revelations for the opaque types together with
implementations of all their methods:

MODULE Properties;

REVEAL

Presenter = PresenterP BRANDED OBJECT

subject,

slot: TEXT;

OVERRIDES

init := PresenterInit;

text := PresenterText;

END;

Chair = ChairP BRANDED OBJECT

session: TEXT;

OVERRIDES

init := ChairInit;

text := ChairText;

END;

OU = T BRANDED OBJECT OVERRIDES

16

text := OUText;

END;

PROCEDURE PresenterInit (self: Presenter; subject, slot: TEXT): Presenter =

BEGIN

self.subject := subject;

self.slot := slot;

RETURN self;

END PresenterInit;

PROCEDURE PresenterText (self: Presenter): TEXT =

BEGIN

RETURN "Presenting " & self.subject & " at " & self.slot;

END PresenterText;

PROCEDURE ChairInit (self: Chair; session: TEXT): Chair =

BEGIN

self.session := session;

RETURN self;

END ChairInit;

PROCEDURE ChairText (self: Chair): TEXT =

BEGIN

RETURN "Chairing " & self.session;

END ChairText;

PROCEDURE OUText (self: OU): TEXT =

BEGIN

RETURN "from Open University";

END OUText;

BEGIN

END Properties.

This is somewhat verbose, but most of the code is mechanical in nature. Note how
the different overriding implementations of the text method for the specialisations
of Properties.T compose the appropriate text strings for the respective properties.

The interface and implementation for a property stack can now be instantiated
from the generic stack:

INTERFACE PropStack = Stack (Properties) END PropStack.

MODULE PropStack = Stack (Properties) END PropStack.

Finally, a test program can use all this:

MODULE Workshop EXPORTS Main;

IMPORT Properties, PropStack, Stdio, Wr;

TYPE

Person = OBJECT

name: TEXT := "";

props: PropStack.T;

METHODS

init (name: TEXT): Person := Init;

17

text (): TEXT := Text;

END;

PROCEDURE Init (self: Person; name: TEXT): Person =

BEGIN

self.name := name;

self.props := NEW (PropStack.T);

RETURN self;

END Init;

PROCEDURE Text (self: Person): TEXT =

VAR t := self.name & ":\n";

BEGIN

TRY

LOOP t := t & self.props.pop () .text () & "\n" END;

EXCEPT

PropStack.Empty => RETURN t;

END;

END Text;

VAR p := NEW (Person) .init ("Robinson");

BEGIN

p.props.push (NEW (Properties.Presenter) .init ("From ML to M3", "15:50"));

p.props.push (NEW (Properties.OU));

Wr.PutText (Stdio.stdout, p.text ());

Wr.Close (Stdio.stdout);

END Workshop.

The same general approach is taken here. A Person type is defined whose initiali-
sation method stores a name in the record and sets up an empty stack of properties.
Various properties are then pushed onto the stack. These have different types, but
they are all sub-types of properties.T and so are compatible for pushing onto a
PropStack.T, and this can be checked by the compiler with no run-time overhead.
A text method pops all the properties off the stack and concatenates them into a
text string. (A purist might argue that the definition of the Person type and its
methods should be removed to a separate module, and would probably be right.)

When run, the program would print out:

Robinson:

from Open University

Presenting From ML to M3 at 15:50

The observant reader will have noticed that calling the text method on a person
removes all their properties; such are the perils of programming with side effects.
In practice, a new method would be added to the generic stack to allow iteration
over its elements without actually popping them.

4.4 Evaluation

Modula-3 is still a relatively young language and its use is mainly concentrated
in universities and commercial research laboratories. The most widely used imple-
mentation comes from DEC’s Systems Research Center in Palo Alto and runs on

18

many Unix platforms. An experimental PC implementation is available and fur-
ther developments, including a GNU implementation, should be available presently.
Several hundred library modules are freely distributed. These include a general
toolkit for the X window system [11, 10], a more specialised interface toolkit [2] and
a system for building graphical user interfaces [1]. There are also three different
implementations of network object systems for writing distributed programs.

The latest DEC SRC implementation uses the GNU back-ends which makes
it reasonably efficient and highly portable. However, programs tend to be rather
large, not least because of the run-time library needed to manage threads, garbage
collection and so on, although shared libraries alleviate this where the operating
system permits it.

The langauge is not suitable for teaching as a first language: it is too big, too
much knowledge about the environment is needed, the turnround for compiling
and linking is too slow, debugging facilities are primitive and so on. However, it
serves very well as a vehicle for exploring programming techniques in a conventional
data structures and algorithms course, for teaching concurrency and programming
language design, for looking at compilation issues and for practical software engi-
neering. It is excellent for students’ final year projects where the modules facilitate
the management of a large system and the extensive libraries can be exploited. The
easy construction of graphical user interfaces to Modula-3 programs is particularly
attractive.

The same considerations mean that Modula-3 is an excellent vehicle for large
commercial projects, and it has been used for a number of substantial systems
running to hundreds of thousands of lines of code at DEC and Xerox. These include
operating system work, real-time communications and straightforward applications.
At the moment, the programming environment and project management tools tend
to be constructed from standard Unix tools, which is a disadvantage, although work
on more conventional development systems is being undertaken.

The goal of Modula-3 was to be as simple and safe as it could be while meet-
ing the needs of modern systems programmers. This goal has substantially been
met. Exceptions, threads and garbage collection all help to avoid common errors
in programs, particularly those that will have to run continuously for long periods.
Strong typing extended through interfaces across separately compiled modules is a
proven technique for building large systems and assists the reuse of existing code,
especially in conjunction with generics. The use of objects and partial revelations
gives control over levels of abstraction in libraries, allowing compromises to be made
between modularity and efficiency as the need dictates.

Some might question Modula-3’s restriction to single inheritance where each ob-
ject type is derived from a single parent type. This restriction gives much cleaner
semantics to the language, which is important for formal verification, and also ad-
mits more efficient implementations. Moreover, there seem to be very few practical
cases where multiple inheritance is actually of significant value.

The type system for Modula-3 was to some extent dictated by considerations of
type safety in distributed systems. In particular, it was designed to allow structured
values to be passed between programs safely. As a consequence it is also possible to
save data structures in a filing system and recover them in a type-safe way through
a system of pickles which provides the basis for programming persistent systems.

5 Conclusion

This paper has presented a set of guidelines for selecting initial languages for teach-
ing programming and has suggested that two languages — ML and Modula-3 —
are particularly well suited to the task. The main features of these two languages

19

were then presented and illustrated through extended examples, and the languages
evaluated.

ML has been used as the initial teaching language for the Computer Science
Tripos at Cambridge since 1987 and this has been followed by Modula-3 since 1990.
16 hours of lectures are budgeted for ML, but some of the more advanced features
of the language (exceptions and modules) are omitted. These are accompanied by a
series of graduated practical classes and exercises. The whole of Modula-3 is taught
in two series of 12 lectures each, again accompanied by practical work [16].

The use of practical classes is important. Programming is a practical skill and
can not be taught purely through lectures; carefully supervised classes are vital
if the students are to develop reasonable programming style as well as technical
familiarity with the language. Each language has its own idiomatic usage which can
be illustrated through examples in lectures (and, indeed, in this paper), but this
can only be fully appreciated when it is being applied to a new problem. Lectures
on dynamics can not teach you how to ride a bicycle!

Moreover the approach appears to be popular with the students. ML and,
particularly, Modula-3 are the langauges of choice for final-year projects. There also
appears to be a correlation between the use of these languages and higher marks
for the project. It would appear that all desiderata for systems programming are
genuinely valuable and a language like Modula-3 is conducive to higher productivity.

The same considerations suggest that ML and Modula-3 would be of value in
commercial projects. ML has already found favour where mathematical analysis
is deemed to be important and its interpreted implementation lends itself to rapid
prototyping of systems. However, Modula-3 is still mainly used only in academic
and research environments. This seems odd: Modula-3 meets the requirements
of a langauge like Ada but avoids unnecessary complexity and achieves greater
coherence. Further competition comes from C++, which is widely used but shares
the worst aspects of C’s syntax and unsafe features. Indeed, a common complaint
amongst systems programmers is that company policy dictates the use of C++ when
their professional judgement would be to use a safer language such as Modula-3. Of
course, it is possible to write correct and maintainable programs in any language,
but a language like Modula-3 makes it more natural. Fortunately, students who
have learned the idiom of Modula-3 are then able to approach other languages,
learn them and use them in a disciplined way. Perhaps the availability of better
supported implementations will allow more rational policies to be adopted and such
contortions avoided.

References

[1] Marc Brown and James Meehan. The FormsVBT reference manual. Technical
report, DEC Systems Research Center, March 1993.

[2] Marc Brown and James Meehan. VBTkit reference manual. Technical report,
DEC Systems Research Center, March 1993.

[3] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow,
and Greg Nelson. The Modula-3 report (revised). Technical report, DEC
Systems Research Center and Olivetti Research Center, November 1989.

[4] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF.
Springer-Verlag, 1978.

[5] Sam Harbison. Modula-3. Prentice-Hall, Englewood Cliffs, NJ 07632, 1992.

20

[6] Robert Harper. Introduction to Standard ML. Technical Report ECS-LFCS-86-
14, University of Edinburgh, Laboratory for Foundations of Computer Science,
November 1986.

[7] Robert Harper, David MacQueen, and Robin Milner. Standard ML. Technical
Report ECS-LFCS-86-2, University of Edinburgh, Laboratory for Foundations
of Computer Science, March 1986.

[8] Kathleen Jensen and Niklaus Wirth. Pascal user manual and report. Springer-
Verlag, 1975.

[9] Butler Lampson. A description of the Cedar language. Technical Report CSL-
83-15, Xerox PARC, 1983.

[10] Mark Manasse and Greg Nelson. Trestle tutorial. Technical Report 69, DEC
Systems Research Center, May 1921.

[11] Mark Manasse and Greg Nelson. Trestle reference manual. Technical Report 68,
DEC Systems Research Center, December 1991.

[12] James Mitchell, William Maybury, and Richard Sweet. Mesa language manual.
Technical Report CSL-79-3, Xerox PARC, April 1979.

[13] Colin Myers, Chris Clack, and Ellen Poon. Programming with Standard ML.
Prentice-Hall, 1993.

[14] Greg Nelson, editor. Systems Programming With Modula-3. Prentice-Hall,
Englewood Cliffs, NJ 07632, 1991.

[15] Laurence Paulson. ML for the working programmer. Cambridge University
Press, 1991.

[16] Peter Robinson. Modula-3 in an undergraduate Computer Science course. Proc.

2nd International Modula-2 Conference, September 1991.

[17] Paul Rovner, Roy Levin, and John Wick. On extending Modula-2 for building
large integrated systems. Technical Report 3, DEC Systems Research Center,
January 1985.

[18] Robert Sedgwick. Algorithms in Modula-3. Addison-Wesley, 1993.

[19] Jeffrey D Ullman. Elements of ML programming. Prentice-Hall, 1993.

[20] Åke Wikström. Functional programming using Standard ML. Prentice-Hall,
1987.

[21] Niklaus Wirth. The programming language Pascal. Acta Informatica, 1(1):35–
63, 1971.

[22] Niklaus Wirth. Modula-2. Technical Report 36, ETH Zürich, March 1980.

[23] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 4 edition, 1988.

21

