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Abstract

Self-timed systems often have to communicate with their
environment through a clocked interface. For example,
off-chip memory may require clocking and this can reduce
the benefits of self-timed design. This paper presents
the design of a delay line which may be used to control
the timing of an off-chip interface. Timing accuracy is
maintained by periodically recalibrating against a low
frequency reference clock. The design uses two delay lines
so that one can be recalibrated while the other is in use.
Recalibration is undertaken once each second; power
consumption is low as the calibration circuitry is dormant
most of the time. A particular implementation of the
design is presented which is suitable for a standard cell or
FPGA technology, together with experimental performance
figures. The paper concludes with some remarks about
possible applications in low-power synchronous design.

1. Introduction

Interfacing self-timed systems to clocked devices, in
particular to off-chip memory, can be frustrating because
many of the benefits of self-timing can easily be lost. For
example, using a high frequency off-chip oscillator to
time off-chip devices would increase power consumption
and electromagnetic emissions. Such a solution also
requires synchronisation with the self-timed part, and
may require a warm-up period from standby (typically
1ms for a crystal oscillator). An off-chip reference delay
device, which is calibrated at the time of manufacture, can
be used. However, this consumes a great deal of power,
typically about 35mA whilst powered up [1] and adds an
extra component to the system. A simple fixed length
on-chip delay line requires a large error margin to meet
minimum timing requirements regardless of manufacturing
tolerances and environmental conditions. This error margin
can severely reduce system performance. The delay line
could be calibrated post fabrication, for example with
laser trimming, ROM, or pin configuration, but this adds
expense.

An alternative approach is to calibrate an on-chip

oscillator or delay line against an off-chip low frequency
(and therefore low power) crystal oscillator. For example
the Philips PCA-5010 micro-controller [2] uses on-chip
6MHz oscillator constructed from an inverter ring. A
counter measures the number of oscillations within a
76.8kHz reference clock period. Application software can
read this counter and adjust the oscillator frequency by
controlling the supply current to the inverter ring. The
oscillator is used to time off-chip accesses and to clock
a DC-DC converter. Related work in the synchronous
design field includes a scheme for providing a dynamically
calibrated delay between a global clock and registers
sampling the device inputs [3] to compensate for inter-chip
signal skew.

Many embedded systems use a low frequency (32kHz)
crystal oscillator to maintain a real-time clock. We
propose to use this existing time reference to dynamically
calibrate an on-chip delay line, with the intent of making
calibration as transparent to the user of the delay line as
possible, within a standard cell implementation. In normal
operation an adjustable delay line is used to time each
off-chip memory access. During calibration the delay line
is used as an oscillator and the number of oscillations
within one period of the 32kHz reference clock is counted.
Amulet3i uses a similar technique [4] but requires software
level calibration during which off-chip accesses must be
avoided. The control structure for the Amulet3i delay
line may require less chip-area, provided that asymmetric
3-input C-elements are available.

The next sections describe the circuitry involved. First
a simple tunable delay line is introduced. A ‘fast-mode’
feature is then added to speed up calibration at initial
reset. Two of these delay lines are then combined into
a double-buffering scheme such that whilst one delay
is being recalibrated the other is available for use. The
calibration and control system is then discussed. The
penultimate section presents experimental data obtained
from a test implementation on an FPGA device before the
final section gives some concluding remarks.



2. Tunable delay

The delay line shown in Figure 1 (input din output
dout), consists of a sequence of delay cells, shown in
Figure 2. Each delay cell consists of three sections: a
delay element, some control circuitry and completion
detection. The number of delay cells required depends on
the implementation technology, the delay desired and the
range of environmental conditions.
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Figure 1: Tunable delay line
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Figure 2: Single delay cell

Each delay cell can be in one of two modes depending
on the flip-flop state sout.

sout low —The delay input din is delayed via the delay
element and passed on dout to the next cell. This is
repeated until a cell with sout high is encountered.

sout high —The delay input din is passed down to the
completion stage on tap.

The delay element implementation is technology
specific and depends on the desired granularity of the
tunable delay. Using a slower delay element decreases the
number of cells needed at the expense of large granularity
and hence decreased accuracy. Note that only delay cells
which are actually required are active, enabling many extra
cells to be added to take care of extreme environmental
conditions (such as a large supply voltage increase to cope
with a demand for higher performance elsewhere in the

system) without increasing power consumption during
normal operation. The number of delay cells could be
reduced by adding a constant, non-tunable, offset delay at
the start of the delay line.

The completion section ORs together all the tap
signals to produce the output from the delay line. A
linear structure is used which delays the signal by an
amount proportional to the tunable delay length. Other OR
structures are possible but might incur large discontinuities
in the tunable delay.

The control structure section forms a simple
bidirectional shift register across the delay line. The shift
direction is controlled by slr and the register is clocked
from sclk. Zero’s are shifted in from the left and one’s
are shifted in from the right. The state of the left and right
most cells indicate if the tunable delay has reached the
minimum or maximum delay possible. At initialisation all
registers are cleared resulting in the maximum delay.

Initially we experimented with binary and Gray code
counters instead of the shift register to reduce the number
of state holding registers, however, this required extra
decode logic and increased layout complexity. The shift
register control signals, slr and sclk, can be timed with
a generous margin without reducing availability, because
double buffering is used (discussed in the next section).

During normal operation it should not be necessary to
adjust the tunable delay often. For example, one shift left
or right at rate of 1Hz should suffice. However, at initial
switch-on, or after a sudden environmental change, it may
be desirable to tune the delay quickly. A small amount
of extra circuitry, shown in Figure 3, is added to detect
when the last two shifts were in the same direction and the
tunable delay has not reached the corresponding minimum
or maximum (using the min and notmax signals). The
fastmode signal then informs the control system that
adjustment should be performed more frequently.
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Figure 3: Fastmode detection circuit

3. Double buffering

Calibrating the tunable delay line requires two steps.
Firstly the delay line is used as an oscillator and the
number of oscillations within a reference period counted.



Secondly the delay line is adjusted. During calibration
the delay line is unavailable for normal use. The control
system described later takes several 32kHz clock periods
to perform a calibration, which is an unacceptably long
period of unavailability for our purposes. Therefore, we
propose the use of two delay lines. Whilst one delay line
is being calibrated the other is available for use. The delay
lines are swapped over after each calibration. The delay
line available for use will be at worst one second out of
calibration.
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Figure 4: Double buffered delay line

Figure 4 shows a double buffered delay line. Signal
dsel is used to select which delay is calibrated via
cin and cout and which delay is available for use via
din and dout. The shift register control signals are
also demultiplexed according to dsel. Whilst it would
be possible to indicate fastmode for each delay line
separately, this would add unnecessary complexity. If one
delay line requires faster calibration it is likely the other
will as well. The crossbar switch is the simple circuit
shown in Figure 5.
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4. Overall view

The overall system is shown in Figure 6. The toggle
flip-flop in the middle holds the state of which delay
is currently in use. Signal swapreq from the control
module requests that the delays be swapped, swapack
acknowledges, with a four phase-handshake. Delay D1
matches the time required for the swap.

A period of unavailability, determined by D1, is
necessary whilst the delays are being swapped. During
such unavailability, a delay request on din may still be
made but the request may be delayed by an extra amount.
D1 may be very conservative, to allow for the expected
varying environmental conditions. This would not affect
performance except during the infrequent swapping of
delays. In practice D1 need not be long and, when the
delays present in the control module and arbiter are taken
into account, may be omitted. The critical part of swapping
requires changing of the cross-bar switches which involves
a logic depth of one gate.

An arbiter is needed to arbitrate between use of the
delay line (via din) and swapping the delay lines over.
Since delays are swapped infrequently it is unlikely that
arbitration is often required. It is the arbitration which may
add extra delay to a request during swapping.

The Q-element [5] is used to send both rising and falling
events through the delay line before acknowledging dout.
The Q-element ensures that the arbiter is not released until
the delay line has been through both rising and falling
edge phases. Additionally, this permits the delay length to
be doubled without requiring extra delay cells, but at the
expense of reduced granularity. The STG and the circuit
derived using Petrify [6] for the Q-element are shown in
Figures 7 and 8.

The control module, described later, does not wait for
swapack. Therefore, it is assumed that the arbiter will
have successfully arbitrated and that the delay lines will
have swapped over before the next calibration. Calibrations
occur most frequently when fastmode is active, which
is every 5 � 1=32:768kHz = 152�s. This assumption is
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reasonable, 152�s is equivalent to over 300,000 gate delays
in a typical 0:35�m process.
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Figure 9: Decoupler STG

However, it is also possible that the environment chooses
to keep din high for a long time. The swap would be
delayed and it is then possible, that after some time, the
control logic may attempt another calibration, during which
the environment lowers din, resulting in the delays being
swapped during calibration. The environment is hence
required to lower din in good time to permit a swap to
occur before the next calibration. Given that calibrations
occur at most every 152�s, and that a typical delay is
of the order of 10 to 100nS, such an assumption would
seem reasonable. If not, the falling handshake decoupler
circuit, shown in Figures 9 and 10, can be inserted to move
the assumption from the environment to within our circuit,
where it is easily met.

5. Control module

The control module referred to in Figure 6 is shown in
Figure 11. The overall function is to time how many pulses
can be passed through one delay line during one 32kHz
reference clock period. Timing is normally performed
once every second, unless fast-mode is active, in which
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Figure 10: Decoupler circuit

case timing and adjustment are performed repeatedly until
calibration is complete.
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Figure 11: Control module

A synchronous state-machine, shown in Figure 12,
clocked from the continuously running 32kHz reference
clock forms the basis of the control module. The state
machine is one-hot encoded to ensure that the state outputs,
some of which are used to clock other flip-flops, are glitch
free. A divider, consisting of a chain of toggle flip-flops,
informs the state-machine when a calibration is due. The
1Hz signal is synchronised with the 32kHz clock falling to
ensure proper timing when sampled. A ripple counter is
used to count how many pulses can be transmitted through
the delay line in a reference time period.

Operation is as follows. Initially the state-machine
is in state SwaitHz waiting for the 1Hz signal, upon
which the next state Sclear clears the counter. The next
state Scount enables the calibration loop, via the arbiter
discussed below. At this point the loop formed around
cout, cin and the delay line under calibration form an
oscillator. The counter increments every oscillation, until
the next control state Swait reasserts the upper request
input to the arbiter stopping oscillation. The Swait state
provides time for the counter and >MaxCount comparator
to stabilise before the Slr state samples the comparison
result. The result determines if the delay line shift register
should move left to decrease the delay, or right to increase
the delay. The next state Sshift clocks the shift register.
State Sswap then triggers the swapreq, swapack
handshake, controlled by a flip-flop. Finally another
calibration is then performed if fastmode was set in



response to sclk, or if not the state machine waits for the
next 1Hz signal.
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Figure 12: One-hot encoded state machine

There are several timing assumptions involved in this
scheme. The shift register requires a setup time before
clocking. The fast mode signal is likewise assumed to
be valid before Sswap finishes. These and other typical
assumptions required in clocked systems are easily met
because the clock period of 30:5�s is so long.

However, there is one other assumption worth noting,
and an oddity surrounding the use of the arbiter which
needs further explanation. If the arbiter (and input inverter)
were replaced with a simple AND gate, it would be
possible for the counter to receive a runt clock pulse,
perhaps resulting in metastability on the comparator
output. Although one 30:5�s clock period would be
available for the metastability to resolve before the
comparator output would be sampled.

Instead an arbiter was added to ensure that the counter
always receives a proper clock. The oscillator is stopped
by requesting the upper arbiter input. However, there is
no safe way for the clocked state-machine to wait for the
corresponding grant output from the arbiter; the output is
not connected. A problem would occur if the arbiter took
just the right amount of time to arbitrate such that the
counter was clocked just before the comparator output was
sampled. For this to occur the arbiter would have to take
an exceedingly long time to arbitrate (30:5�s). Therefore,
as before it is assumed that the arbiter completes within a
30:5�s period (equivalent to at least 100,000 gate delays).
Note that a NOR gate with reset is required to ensure
correct initialisation. Until now, the global reset signal has
not been shown.

An alternative strategy would be to use a self-timed
control circuit instead of the clocked state-machine.
However, the synchronisation problem would move to the
1Hz input and would require additional circuitry to delay

match or completion detect various activities such as the
shift register setup time and the counter clear time. An
asynchronous counter could then be employed but it was
decided such an approach would be more complicated than
necessary.

There is one further important reason for using the
arbiter, and the Q-element. The delay path from din to
dout in Figure 6 also involves these components. The
only difference between the calibration delay path and the
externally available delay path is the decoupler element
in the real path and the NOR gate in the calibration path;
these have fairly similar delays. The Q-element could
be omitted from the calibration path, for example, if its
presence means the counter clock is not low for long
enough. However, having both the Q-element and arbiter
in the calibration path increases the accuracy with which
the calibration and real delay paths match.

6. Implementation

A test implementation was performed with a Xilinx
XC4000 FPGA device. The delay element present in
the delay cell (Figure 2) is implemented by constraining
the AND gate preceding it to be in a unique CLB. The
delay is thus formed from a CLB and routing between the
previous and next cells in the delay line. The cell delay is
approximately 7-8ns at ambient temperature in the device
used. A delay length of 25 cells was chosen with a target
delay of 120ns, which was found to require about 13
delay cells. Note that additional delay exists in the routing
outside of the delay line. Also, clock buffers, not shown in
diagrams, were inserted in appropriate places.

A component not available in the Xilinx architecture
is the arbiter, which was implemented using the approach
shown in Figure 13, a simplified version of that in [7]. A
state machine performs decision making, clocked by a
locally generated clock which is active whenever one of
the ports is non-zero. It is assumed that the metastability
on the input flip-flops will have resolved before the output
flip-flops are next clocked. This is sufficient for a test
implementation, but would obviously be replaced by a
cleaner Seitz arbiter [8] for a CMOS implementation, or an
FPGA with an Arbiter cell could be used [9].

Simple floor-planning, but not detailed layout, was
performed, to try and ensure that circuitry specific to the
calibration path has similar routing delays to circuitry
specific to the real delay path. In the absence of full layout,
routing differences are still likely to be a source of error.
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7. Results

To test the implementation a pulse was sent through the
delay line path (din to dout) after each delay swap. A
record of the delay of each delay line (by extracting every
second result) with varying environment was made. It is
unwise to vary the supply voltage to a Xilinx device, as this
might result in a corrupt configuration, I/O malfunction or
other damage, so instead the temperature was varied using
a hot air gun and freezer spray. The temperature range was
approximately -35ÆC to 60ÆC.
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Figure 14: Measured delay vs time for switch-on,
freeze and reheat

Figure 14 shows the results obtained. Two plots are
shown, one for each delay line. To facilitate recording
and viewing of the initial calibration the fast-mode feature
was disabled. The graph divides into five chronological
sections, initial switch-on (reset) whilst at a maximum
temperature, continued heat, application of freezer spray,

no heating or cooling and re-heating.
It can be seen that the delay lines are re-calibrated

every second, switching between a delay which is slightly
too large and slightly too small. Initially one delay line
was switching between 10 and 11 delay elements and
the other between 11 and 12, representing a difference
in layout and routing between them. Another, expected,
observation is that the step sizes are larger at a higher
temperature because the delay of each cell increases with
temperature. Around where the freezer spray is applied the
delay increases in small steps and decreases in a large step.
Each small increase represents one more delay element
minus the effect of extra cooling, and a large decrease
represents one less delay element plus extra cooling. If
the fast-mode feature had been enabled, the first two
successive steps up would have switched on fast-mode,
speeding up compensation for the falling temperature.

The maximum and minimum delays obtained were
131ns and 115ns. From the graph it can also be deduced
that a delay of 122-123ns was the calibration target. The
2-3ns discrepancy from the requested 120ns is due to a
lack of careful layout and routing. The expected error is
plus or minus one delay cell delay and the observed results
confirm this. A somewhat lower error is thus expected
from an ASIC implementation, where the granularity of
the tunable delay is much smaller.

8. Conclusion

This paper has presented a dynamically calibrated
delay-line suitable for low power self-timed embedded
systems. The delay line uses a standard low frequency
clock source as a reference. A double buffering scheme
was used to increase availability. Experimental results
performed using a FPGA implementation confirm the
expected accuracy of the calibration across a widely
varying temperature. An ASIC implementation would
improve the accuracy due to both a finer granularity and a
more balanced layout. Design extensions such as allowing
the requested delay to be changed during operation are also
possible. An alternative application of the delay line is in
the provision of a high frequency clock for synchronous
circuits, permitting an embedded micro-controller to
resume instantly from a sleep state [10].
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