
BrightBoard:A Video-Augmented
Environment

Keywords
Augmented reality, image processing, machine vision, pattern recognition, ubiquitous computing

Contents:
1. Introduction
2. Achieving Augmented Environments
3. BrightBoard: The Whiteboard as a User Interface
4. What is BrightBoard?

Quentin Stafford-Fraser † * Peter Robinson *

† Rank Xerox Research Centre (EuroPARC)
Ravenscroft House, 61 Regent Street

Cambridge CB2 1AB, United Kingdom
Tel: +44 1223 341521

E-mail: fraser@europarc.xerox.com

* University of Cambridge Computer Laboratory
New Museums Site, Pembroke Street

Cambridge CB2 3QG, United Kingdom
Tel: +44 1223 334637

E-mail: pr@cl.cam.ac.uk

Abstract
The goal of `Computer Augmented Environments' is to bring
computational power to everyday objects with which users are already
familiar, so that the user interface to this computational power becomes
almost invisible. Video is a very important tool in creating Augmented
Environments and recent camera-manufacturing techniques make it an
economically viable proposition in the general marketplace. BrightBoard
is an example system which uses a video camera and audio feedback to
enhance the facilities of an ordinary whiteboard, allowing a user to
control a computer through simple marks made on the board. We describe
its operation in some detail, and discuss how it tackles some of the
problems common to these `Video-Augmented Environments'.

Page 1 of 13BrightBoard: A Video-Augmented Environment

04/08/2009http://www.sigchi.org/chi96/proceedings/papers/Stafford-Fraser/qsf_txt.htm

5. How does BrightBoard Work?
Triggering
Thresholding
Item recognition
Analysing
Executing

6. Future Possibilities
7. Conclusions
8. Acknowledgements
9. References

Introduction
Video cameras can now be produced, with controlling circuitry, on a single chip. Digital output
reduces the need for expensive frame-capture cards, and it is reasonable to assume that simple
cameras, being devoid of moving parts, will soon be a cheaper accessory for personal computers
than keyboards, microphones, and mice. The possibilities for video-conferencing and other human-
human interactions are obvious, but how might the ready availability of video sources enrich the
way we interact with the machines themselves?

Augmented Environments

In the office environment the computer has traditionally been thought of as a tool, in the same way
that a typewriter or Rolodex is a tool. It is something employed by a user to accomplish a particular
task. It is a very flexible tool, and can fulfil the roles of typewriter, Rolodex and calculator
simultaneously, but the activity is generally initiated by a `user', a term which succinctly describes
the relationship.

We might hope that the computer of the future would be more like an assistant than like a
typewriter, that it would perform mundane tasks on your behalf when it sees they are necessary
rather than always operating directly under your control. The more a secretary knows about your
way of life, your preferred modes of work, how cluttered your desk is and when you are in a
meeting, the more useful he or she can be to you. The same applies to a computer, but the average
PC has no knowledge of the world outside its box and has to be spoon-fed with information through
its limited range of input devices.

This is part of the philosophy behind Computer-Augmented Environments; the desire to bring the
computer `out of its box' and give it more awareness of the world around, so that it augments and
enhances daily life rather than attempting to replace it. Can we, for example, make the computer
understand what we do in our offices rather than putting an impoverished `office metaphor' on the
machine's screen? Can we centre computational power around everyday objects with which users
are already so familiar that they don't think of them as a human-computer interface? During work
on the DigitalDesk [10, 16], for example, we experimented with ways of enabling the computer to
recognise an ordinary pencil eraser, and using that as the means of deleting parts of an electronic
image projected onto the desk. The motivation was simple: people already know how to use erasers,
and will continue to use them for hand-drawn pictures. By augmenting the eraser's capabilities we
simply expand its scope of use. We neither detract from its abilities to erase pencil, nor require the
user to learn a new tool.

Achieving Augmented Environments

Page 2 of 13BrightBoard: A Video-Augmented Environment

04/08/2009http://www.sigchi.org/chi96/proceedings/papers/Stafford-Fraser/qsf_txt.htm

There is an inherent difficulty in the goals of Computer-Augmented Environments (CAEs). For
computers to have much understanding of the world around, they must be equipped with sensors to
monitor it. These may be directly connected to the computer, or they may relay information to it via
some communication medium. The more sensors, the more complete will be the picture a computer
can create of its surroundings and the activities of its users. However, the more sensors we embed in
the environment, along with the associated cables, batteries and power supplies, the more
investment is needed to bring about our goal and the more intrusive the technology becomes, so
frustrating the aim of an `invisible' user interface.

The solution is to give the computer a small number of senses which have a broad scope of
application and which operate remotely, i.e. without direct contact with the objects being sensed.
The obvious candidates are vision and hearing, through the use of video cameras and microphones.
Similarly, if the computer is to communicate with humans, then the analogous output systems are
audio feedback and perhaps some projection facilities. Not only do cameras and microphones have
a broad range of application, they can often be applied to more than one task at the same time. A
single camera might monitor a whole room, and detect when the room is occupied, when a meeting
is in progress, and when an overhead projector is being used, as well as recording the meeting.

This paper describes the use of video in the creation of a Computer-Augmented Environment called
BrightBoard, which uses a video camera and audio feedback to augment the facilities of an ordinary
whiteboard. Until fairly recently the deployment of such systems in the average workplace would
be limited by the cost both of cameras and of the computing power required to process video
signals. However, manufacturing developments are making video cameras an economically viable
alternative to more conventional sensors, and the typical office workstation is now fast enough for
the simple image processing required for many of these `Video-Augmented Environments' (VAEs).

BrightBoard: The Whiteboard as a User Interface
From prehistoric cave paintings to modern graffiti, mankind has conveyed information by writing
on walls. They provide a working surface at a convenient angle for humans to use, with space for
expansive self-expression, and they form a natural focus for a presentation or group discussion. The
blackboard, the more recent whiteboard, and to some degree the overhead projector, are an
extension of this basic theme, with the added facility of being able to erase easily any information
which is no longer needed. Whiteboards have become very popular tools in environments ranging
from the kindergarten to the company boardroom.

BrightBoard aims to capitalise on this natural means of expression by making use of the whiteboard
as a user interface. It is not the first system to explore the whiteboard's potential. Projects such as
Tivoli [11] have tried to capitalise on this natural means of expression, and have created note-
taking, shared drawing and even remote conferencing systems by emulating and enhancing a
whiteboard using a computer. There have been many variations on the whiteboard theme as well.
VideoWhiteboard [15] used a translucent drawing screen on which the silhouette of the other party
could be seen. Clearboard [8] was a similar system which used the metaphor of a glass whiteboard
where the parties in a two-way video conference were on opposite sides of the glass, allowing both
face-to-face discussion and shared use of a drawing space. Typically, these systems use a large-
screen display and electronic pens whose position in the plane of the screen can be sensed and
which may have pressure-sensitive tips to control the flow of `ink', thus giving a more realistic feel
to the whiteboard metaphor. The Xerox Liveboard [4] is an example of a complete, self-contained,
commercially available unit built on this basis; it has a workstation, Tivoli software, display and
pens in one ready-to-install package. The software allows several users (potentially at different
locations) to draw on a shared multi-page whiteboard where each page may be larger than the
screen and scrollable. The software is controlled by a combination of gestures, buttons and pop-up

Page 3 of 13BrightBoard: A Video-Augmented Environment

04/08/2009http://www.sigchi.org/chi96/proceedings/papers/Stafford-Fraser/qsf_txt.htm

menus. A more recent commercial offering is SoftBoard. This is a special whiteboard which uses
pens and erasers similar to conventional which have a reflective sleeve allowing their position to be
detected by an infra-red laser scanning device fitted to the board. The movements of the pens and
erasers are relayed by the board to a computer, which can then construct an electronic version of the
image on the board.

Such systems, while useful, have their failings. Their price is typically quoted in thousands of
dollars, they are often delivered by a forklift truck, and are generally installed in board-rooms
whose primary users have neither the time nor the inclination to master the software. They also fail
to achieve the ease of use of a conventional whiteboard, even for those experienced with them. To
quote one user, "The computer never quite gets out of the way".

Examples of whiteboard use observed by the author, which tend not to translate well into the
electronic domain, include the following:

A `y' was written on the board, but looked rather like a `g'. The writer used a finger to erase
part of the letter before continuing; a process which barely interrupted the flow of the writing.
During the design of a user interface, screen components such as buttons and scrollbars were
drawn on Post-It notes or on pieces of paper affixed to the board with magnets. They could
then be added, removed or repositioned easily within the sketches on the board.
The whiteboard eraser had been temporarily mislaid, and a paper towel was used instead.

A computer-based "whiteboard metaphor" always breaks down somewhere because the computer's
view of the board differs from the user's.

What is BrightBoard?
BrightBoard is a whiteboard. Anyone who can use an ordinary whiteboard can use it. In addition, it
provides some of the functionality of electronic documents - the images on the board can be saved,
printed, faxed and emailed simply by walking up to the board and making particular marks. (See
examples below).

BrightBoard can also operate as a more general input device for any computer-controlled system.
An example of its use might be as follows:

Eric is leading a meeting in a room equipped with a BrightBoard camera. He arrives
early to discover that the room is a little chilly, so he writes the temperature he requires
on the whiteboard, ,and the air-conditioning reacts appropriately. When the
participants arrive, he makes a mark on the board to start the video-recording of the

A `Print' command

Selecting an area of the board

A `Fax to Peter' command

Some sample BrightBoard commands

Page 4 of 13BrightBoard: A Video-Augmented Environment

04/08/2009http://www.sigchi.org/chi96/proceedings/papers/Stafford-Fraser/qsf_txt.htm

meeting, , and then uses the board as normal. During the meeting the participants
request a copy of a diagram on the board, so Eric marks that area of the board and
prints off six copies . As the meeting draws to a close, Eric scribbles a quick note
requesting coffee for six, marks out the area as before, and mails it to his secretary .
Finally, he switches off the video-recorder and the air-conditioning by erasing his
original marks.

All this control has been achieved without Eric leaving the focal point of the meeting - the
whiteboard - and without direct interaction with any machines or controls. It is easy to configure:

the marks that BrightBoard will recognise, by capturing and labelling samples.
("This mark is an `S'.").
the relationships between different marks required to constitute a command.
("A save command is an `S' inside a box.").
the action to be taken when a particular command is specified.
("When you see a save command, execute this shell script.")

Corner marks can be used to delimit an area of the board, and commands can then be made to act
only on this area. Inexperienced users may find it useful to have a summary of the available
commands posted beside the whiteboard.

BrightBoard uses a video camera pointed at a standard
whiteboard, thus eliminating the need for expensive installations
and electronic pens. It uses audio or other feedback, and so has
no need of a large display. The program, once configured, puts
minimal load on the workstation, and requires no manual
intervention. The computer can therefore be shut away in a
cupboard, or put in a separate room - particularly useful for
meeting rooms where the hum of fans and the flicker of screens
can be a distraction.

How Does BrightBoard Work?
BrightBoard consists of several programs, but the main one has a structure common to many VAE
applications. It centres around a loop containing the following steps:

Triggering - Wait until a suitable image can be captured, and then do so.
Preprocessing of the image. (Thresholding, in the case of BrightBoard)
Item Recognition. (Finding & Recognising marks)
Analysis of the items found looking for particular situations.
Execution of some action(s) based on the situations found.

Page 5 of 13BrightBoard: A Video-Augmented Environment

04/08/2009http://www.sigchi.org/chi96/proceedings/papers/Stafford-Fraser/qsf_txt.htm

In practice, these stages may not be strictly sequential. The triggering might be accomplished by
dedicated hardware inside the camera, for example. In BrightBoard the execution of external
commands is done as a separate background process.

We shall look at each of these stages in turn.

Triggering

There are two considerations here:

Whiteboards suffer badly from obstruction - the interesting things are generally happening
when somebody is obscuring the camera's view. We must detect when people are in the
image and wait until they have moved out of the way. Humans have a very useful
characteristic in that they tend to keep moving, and in many VAEs this can be sufficient to
separate them from an inanimate background.
One of the aims of BrightBoard is that it should be practical to have it running all the time. To
start it up whenever a user wished to write on the board would largely defeat the object of the
exercise, but, on the other hand, it would not be acceptable for an infrequently used facility to
consume too many resources on the user's workstation.

Both problems can be solved by the use of a `triggering' module. BrightBoard normally operates in
a semi-dormant `standby' mode. Every half-second or so, the triggering module captures a low-
resolution image and examines a 40x30 grid of pixels, comparing each with the equivalent pixel in
the previous image. It calculates the percentage P of these pixels which have changed by more than
a certain threshold. This puts very little load on a typical workstation. The threshold for each pixel
is based on the statistics of the noise seen at that pixel position in ten calibration frames captured at
startup time. This allows the system to compensate for regions of the image which are inherently
noisier due to lower light levels, reflections of flickering screens, etc. In addition, these thresholds
are adjusted slowly over time, to cope with changes in lighting during the day.

The triggering module can wait either for movement, or for stability. By concatenating these two
modes we say, in effect: "Ignore an unchanging whiteboard. Wait until you see movement in front
of it, and when this movement has finished, then proceed with your analysis". A full-resolution
image can then be captured, to be used in the following stages.

Thresholding

If we are to analyse the writing on the board, we must now distinguish it from the background of the
board itself. A simple global threshold will not suffice, for two reasons:

The high proportion of white to black pixels means that analysis of the histogram does not
generally reveal clear maxima and minima - the `black peak' tends to get lost amid the noise
of the `white'. 1
the level of illumination on the board often varies dramatically from one side to the other.

There are many sophisticated methods available which attempt to solve the former by examining
only pixels near the black/white boundaries, thus giving a better balance of black and white pixels
[5], and the latter by dividing the board into tiles, finding local thresholds suitable for the centre of
each tile, and then extrapolating suitable values for points between these centres [3].

Unfortunately, these methods are rather too slow for an interactive system, so we use an adaptive
thresholding algorithm developed by Wellner for the DigitalDesk [16]. This involves scanning the
rows of pixels one at a time, alternating the direction of travel, and maintaining a running average of

Page 6 of 13BrightBoard: A Video-Augmented Environment

04/08/2009http://www.sigchi.org/chi96/proceedings/papers/Stafford-Fraser/qsf_txt.htm

the pixel values. Any pixel significantly darker than the running average at that point is treated as
black, while the others are taken to be white. This simple algorithm works remarkably well in cases
where the image is known to have small areas of dark on a light background, such as we find in the
typical printed page and on a whiteboard, and it only involves a single examination of each pixel.

Item recognition

There are two distinct operations here; first we find the marks on the image of the board, then we
attempt to recognise them.

Finding

Each black `blob' in the thresholded image is found and analysed. We are not interested in blobs
consisting of only a few pixels. With the camera zoom setting chosen to include a reasonable
amount of a whiteboard, the symbols we wish to recognise will generally contain between a
hundred and a thousand pixels. We need not, therefore, examine every pixel in the image, but can
look at every third or fourth pixel in each direction with fair confidence that we will still strike any
areas of interest. This has the added benefit of `missing' much of the noise in the image which
appears as blobs of one or two pixels.

Once a black pixel is found, a flood-fill algorithm is used to find all the black pixels directly
connected to that one. As the fill proceeds, statistics about the pixels in the blob are gathered which
will be used later in the recognition process; for example, the bounding box of the blob, the
distribution of the pixels in each axis, the number of pixels which have white above them and the
number with white to the right of them. For the sake of speed, an `upper limit' on the number of
pixels is passed to the filling routine. Beyond this limit the blob is unlikely to be anything we wish
to recognise, so the flood fill continues, marking the pixels as `seen', but the statistics are not
gathered. When the fill completes, if the number of pixels is less than this upper limit but more than
a specified lower limit, the blob's statistics are added to a list of items for further analysis.

Recognising

In the current system, no further processing of the image is carried out. The problem of off-line
handwriting recognition is the subject of a large and active research field, and for a good overview
the reader is referred to A.W.Senior [13]. Many things could be done by analysing the topology of
each blob, for example, but this would involve a significant amount of pixel processing, which we
have so far managed to avoid. In addition, topological analysis can cause problems with such a
potentially noisy image. After the thresholding, the majority of white pixels have been ignored and
each black one will have been examined maybe twice or three times. Yet, for the limited range of
symbols we wish to recognise, the statistics gathered are sufficient. From these we can calculate a
feature vector - a set of real numbers representing various characteristics of the blob, which can be
thought of as coordinates positioning the blob in an n-dimensional space. At the time of writing, 12
dimensions are in use, and the values calculated are chosen to be reasonably independent of the
scale of the blob or the thickness of the pen used. For example, one value is the ratio of the number
of black pixels with white above them to the number of black pixels with white to the right of them.
This gives a rough measure of the ratio of horizontal to vertical lines in the symbol. Another set of
characteristics are based on moments about the centroid of the blob. Moments have been found to
be very useful in this type of pattern recognition [2,7], and a hardware implementation is possible
allowing substantial speed improvements [6].

Page 7 of 13BrightBoard: A Video-Augmented Environment

04/08/2009http://www.sigchi.org/chi96/proceedings/papers/Stafford-Fraser/qsf_txt.htm

The recognition is done by comparing the feature vector of each blob found to those of prototype
copies of the symbols we wish to match. These are all calculated off-line in advance from a training
set of board images. The simplest recogniser might just find the closest prototype in the n-
dimensional space to the candidate blob, and identify the blob as being of the same type. This has
several limitations, however:

The scales of the dimensions are not in any way related, and a distance of 0.1 in one
dimension may be far more significant than a distance of 1.0 in another. We therefore use the
Mahalanobis distance instead of the Euclidean distance, which simply means that each
dimension is scaled by dividing it by the standard deviation of the values found in this
dimension amongst the prototypes.
The second limitation is the absence of a rejection condition. We assume that all blobs can be
recognised, which is most unlikely. Using the Mahalanobis distance, however, it makes more
sense to reject blobs which are more than a certain distance from even the closest prototype.
If this distance is more than , where n is the number of dimensions, it means that the
candidate blob is on average more than D standard deviations from the prototype in each
dimension. By adjusting the value of D the selectiveness of our recogniser can be controlled.

Figure 6: If circles are B prototypes and squares

are R prototypes, what is X?

The third is that, in many of the dimensions, the groups formed by different symbols may
overlap to a considerable degree. The capital letters B and R, for example, are similar in many
ways, and it is quite possible that the statistics calculated for a candidate R may place it
closest to a prototype B (see Figure 6). To help avoid this, we use a k-nearest-neighbours

Figure 4: A sample image captured...

Figure 5: ...and processed by BrightBoard

Page 8 of 13BrightBoard: A Video-Augmented Environment

04/08/2009http://www.sigchi.org/chi96/proceedings/papers/Stafford-Fraser/qsf_txt.htm

algorithm which states that X can be classified as being a symbol Y if at least a certain
number of its k nearest prototypes are symbol Y. For BrightBoard, we classify X as being an
R if at least 3 of its 5 nearest neighbours are Rs. The cost of finding the k nearest neighbours
is approximately proportional to the number of prototypes examined, if k is small.

Lastly, the values used for some dimensions are less reliable than others at distinguishing
between symbols. We therefore have a set of dimension weightings which are adjusted by
hand on a trial and error basis. All distances in a given dimension are multiplied by the
appropriate weighting before being used. A number of methods for selecting weights
automatically are described in [2].

Several methods are available to improve the partitioning of the n-space. The Karhunen-Loève
transform can be used to choose alternative axes which highlight the distribution of the prototypes.
Simard et al describe an alternative distance metric which is invariant to small transformations of
the input image [14].

Neural Alternatives

This recognition phase is an obvious candidate for neural network-based solutions, and these are
being investigated. The use of a neural net could mean improved reliability and constant recognition
time, at the expense of less predictability and more time-consuming analysis of the training set. At
present the training data consists of about 20 copies of each of the 17 symbols we recognise, and
this is really far too small for neural net training. To combat this we are experimenting with the use
of `fake' training data, created by applying to the captured images the sort of variations that might
be found in normal handwriting: small amounts of shear and rotation, and variations in scale and
aspect ratio. This is less time-consuming than the capture of new training data, and early
experiments show an encouraging improvement in both neural- and non-neural-based recognition
rates.

The limitations of a very crude recogniser can be overcome to a substantial degree by the choice of
command patterns. In practice we find that the current recogniser is capable of distinguishing well
between the symbols in its known alphabet, but it has a tendency to be over-generous, and recognise
as valid symbols some things which are not. The chances of these `false' symbols occurring in such
relationships as to constitute a valid command are, however, very small.

Analysing

We now have a system which waits for an opportune moment, captures an image of the board, and
finds and recognises the symbols in the image. The next problem is how to describe the commands
we wish to have executed in terms of these symbols. We do not wish to hard-code such descriptions
into the program, so we need a grammar with which to specify the combination of symbols which
constitute, say, a `print' command.

Fortunately, there are languages available which specialise in the description and analysis of
relationships: those designed for Logic Programming, of which Prolog is the most common. If the
information from the recogniser is passed to a Prolog engine as a set of facts, we can then write
Prolog rules to analyse the contents of the board. For each blob found, BrightBoard assigns a unique
number x and adds a rule to a Prolog database an assertion of the form:

bounds(itemx, w, e, n, s)

which specifies that blob x has a bounding box delimited by the north-west corner (w, n) and the
south-east corner (e , s). Simple rules can then be written to determine, for example, whether blob A
is inside blob B, or to the right of it, or of a similar size, from these entries. In addition, if the blob

Page 9 of 13BrightBoard: A Video-Augmented Environment

04/08/2009http://www.sigchi.org/chi96/proceedings/papers/Stafford-Fraser/qsf_txt.htm

has been recognised, a second assertion will be made, of the form:

issym(itemx, y)

which indicates that item x has been recognised as being symbol y. A `Print' command might then
be defined as follows:

doprint :-
 issym(X, p),
 issym(Y, checkbox),
 inside(X, Y),
 /+ (inside(Z, Y), Z \= X)

This can be roughly translated as "there is a print command if we can find blobs X and Y such that
X is a `P' and Y is a `checkbox' and X is inside Y, and nothing else is inside Y 2".

Both current and previous states can be passed to Prolog, so that the rules can also specify that
printing should only occur if either X or Y or both were not present in the previous analysis. This
prevents a command from being accidentally repeated.

On a SPARCstation 2, BrightBoard took 4.5 seconds to capture, threshold, display, analyse and
recognise the `Fax to Bob' command in the 740 x 570 image shown in Figure 4, from the time at
which movement was no longer detected. There is much room for optimisation; speed was not a
primary issue during BrightBoard's initial development.

Executing

The final stage is to take action based on the analysis. A `command file' relates Prolog predicates
such as `doprint' to UNIX commands that will actually do the printing. Each line in this file has the
form:

<predicate> <filetype> <command>

where <predicate> is, for example, `doprint', <command> is any valid UNIX shell command, and
<filetype> is either `none' or the name of an image format3. If it is not `none' then a temporary file
of the specified format is created and its filename can be passed to the UNIX command by using `%
s' in the command file. A print command might then be:

doprint pgm pgmtops %s | lpr

though more complicated actions would generally be implemented by a specially written script or
another program. The commands currently employed also provide audio feedback to the user
through the use of pre-recorded or synthesised speech. The user is informed not only when a print
command has been seen, but also when the printing has been completed.

One predicate is given special treatment in the current version of BrightBoard. It is named
`inc_area' and checks for the presence of symbols which mark the bounds of the area to be included
in the image file. This allows small areas of the board to be printed, saved, sent as messages etc.

The next version of BrightBoard (currently under development) uses an extended protocol for the
interaction between Prolog and the UNIX commands. The number of parameters of the predicate
may be specified in the command file, and, if greater than zero, the values of the variables returned
by the evaluation are passed to the UNIX command as environment variables. The UNIX command
is executed once for each match found in a given image, with a special variableset on the last match.

Page 10 of 13BrightBoard: A Video-Augmented Environment

04/08/2009http://www.sigchi.org/chi96/proceedings/papers/Stafford-Fraser/qsf_txt.htm

This allows the function of `inc_area' and similar predicates to be implemented by external
programs, giving rise to much greater flexibility. As an example, a print command can consist of a
P followed by a digit, where the digit represents the number of copies to be printed. The doprint
predicate can then have a parameter in which it returns the digit found, and this information is
passed to the executed command.

Until now, all use of BrightBoard has been by the author and two colleagues for a substantial
number of demonstrations, but under fairly controlled lab conditions. The system has almost
reached the stage where user testing is possible in a real office environment, and this is the obvious
next step in its development.

Future Possibilities
There are a few aspects of BrightBoard which are worth highlighting, especially in the context of
possible future developments.

The first is that there is minimal configuration required to set it up. All that is needed is a camera
with a fairly unobstructed and `straight-on' view of the board, zoomed to a reasonable scale. It
would be straightforward, therefore, to make a portable version of BrightBoard. A briefcase
containing a laptop computer and a camera with a small tripod could be carried into any meeting
room, the camera pointed at a board and the program started, and the whiteboard in the meeting
room is immediately endowed with faxing, printing, and recording capabilities.

Secondly, the system is not limited to whiteboards - any white surface will suffice. Thus
noticeboards, refrigerator doors, flipcharts, notebooks and papers on a desk can all be used as a
simple user interface. The current version of BrightBoard has been switched from monitoring a
whiteboard to providing a `desktop photocopying' device without even stopping and restarting the
program. A camera clipped to a bookshelf above the desk and plugged into a PC (which will often
be on the desk anyway) enables any document on the desk to be copied, saved, faxed without the
user moving from the desk or touching a machine. If the user does not wish to write on the
documents themselves, then Post-it notes or cardboard cut-outs with the appropriate symbols drawn
on them can be used. Parts of the paper documents can be selected using the area delimiting
symbols, and pasted into electronic documents. Resolution is a slight problem here, as a typical
frame-grabber capturing half a page will only provide about 100 dots-per-inch; the same resolution
as a poor-quality fax. It does, however, capture a grey-scale image, and the anti-aliasing effects
make the resolution appear much higher than would be the case with a purely black & white image.
In situations where a binary image is definitely needed, the greyscale information can be used to
enhance the resolution artificially. We have found the appearance of thresholded images to be
greatly improved by inserting extra pixels between the original grey pixels and giving them values
based on linear interpolation between the neighbouring originals. A double-resolution image is
formed which is then passed to the thresholding module. Since this increases the time required for
thresholding by a factor of four, the process is only used in the output of images, and not in
BrightBoard's internal processing.

A richer interaction model would be possible by monitoring the position and gestures of a user's
hands. The system, before acting on a command, for example, could request confirmation from the
user which might be given with a `thumbs-up' gesture. Conventional hand-tracking systems have
generally required the user to wear special gloves and position-sensing devices [1], but systems
have been built using video alone. Jakub Segen describes a system which allows the user to control
a mouse-style pointer on the screen, or to `fly' through a Virtual Reality-like environment, using
hand movements and gestures watched by a camera [12]. Myron Krueger's VideoPlace combines

Page 11 of 13BrightBoard: A Video-Augmented Environment

04/08/2009http://www.sigchi.org/chi96/proceedings/papers/Stafford-Fraser/qsf_txt.htm

projected graphics with the silhouette of the user to create an artistic medium which responds to
full-body gestures [9]. Such a system would be easier to include in a portable BrightBoard, as
described above, than one involving extra hardware.

An interesting challenge would be the creation of a friendlier user interface to the Prolog rules. One
of the aims of BrightBoard is that it should be accepted in a normal office environment, but the
inhabitants of such an environment will not generally be Prolog programmers. A programming
language allows us great flexibilty, however, which can be difficult to duplicate in other ways.
Consider the following specification:

`A P in a box, possibly followed by another symbol representing a digit which is also
inside the box, constitutes a print command, where the number of copies is given by the
digit, or is one if no digit exists. There must be no other symbol inside the box.'

It is difficult to imagine an easy way of representing this graphically. Indeed, even the concept
represented by the words `followed by' must be explicitly defined. A textual front-end to the Prolog
could possibly be created which would more closely resemble natural language, or a programming
language with which users were more likely to be familiar. This is only an issue if the users are
expected to customise the set of commands provided by BrightBoard.

Conclusions
The dramatic reduction in cost of video cameras and of the computing power needed to process
their output opens up a wide variety of opportunities for novel human-computer interaction
methods, especially by augmenting the capabilities of everyday objects and environments. This can
be less intrusive than more conventional methods of interaction because of the large amount of data
that can be gathered from a camera with only a small amount of wiring, and because the camera is a
remote sensor and so does not in any way interfere with the user's normal use of the augmented
objects.

BrightBoard is an example of this genre which illustrates some of the problems that will be issues to
many video-augmented environments and shows what can be accomplished by combining relatively
unsophisticated image processing and pattern recognition techniques with logic-based analysis of
their results.

Acknowledgements
This work has been sponsored by Rank Xerox Research Centre, Cambridge, England (better known
as `EuroPARC'). We are grateful for their support and to Dr Pierre Wellner, Mik Lamming, Mike
Flynn and Dr Richard Bentley for advice and assistance.

All product names are acknowledged as the trademarks of their respective owners.

References
1. Baudel, T. and Beaudouin-Lafon, M. "Charade: Remote Control of Objects using Free-Hand

Page 12 of 13BrightBoard: A Video-Augmented Environment

04/08/2009http://www.sigchi.org/chi96/proceedings/papers/Stafford-Fraser/qsf_txt.htm

Gestures", Comm. ACM, Vol. 36 Number 7, July 1993, pp 28-37.

2. Cash, G.L. and Hatamian, M., "Optical Character Recognition by the Method of Moments",
Computer Vision, Graphics, and Image Processing, Vol. 39, pp. 291-310 (1987)

3. Castleman, K., Digital Image Processing, Prentice-Hall Signal Processing Series, 1979. The
tile-based thresholding algorithm was developed originally by R.J.Hall.

4. Elrod, S., Bruce,R., Gold, R., Goldberg, D., Halasz, F., Janssen, W., Lee, D., McCall, K.,
Pedersen, E., Pier, K., Tang, J., and Welch, B., "Liveboard: A Large Interactive Display
Supporting Group Meetings, Presentations and Remote Collaboration", Proceedings of CHI,
ACM, 1992, pp. 599-602.

5. Gonzalez, R.C., and Woods, R.E., Digital Image Processing, Addison-Wesley 1992

6. Hatamian, M., "A Real-Time Two-Dimensional Moment Generating Algorithm and Its
Single Chip Implementation", IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol
ASSP-34, No. 3, June 1986, pp. 546-553

7. Hu, Ming-Kuei, "Visual Pattern Recognition by Moment Invariants", IRE Trans. on
Information Theory, Vol. IT-8, 1962, pp. 179-187.

8. Ishii, H., Kobayashi, M., and Grudin, J., "Integration of Inter-Personal Space and Shared
Workspace: ClearBoard Design and Experiments", Proceedings of CHI, ACM, 1992, pp. 33-
42.

9. Krueger, M.W., Artificial Reality II, Addison Wesley, 1991

10. Newman, W. and Wellner, P., "A Desk Supporting Computer-based Interaction with Paper
Documents", Proceedings of CHI, ACM, May 1992, pp. 587-592.

11. Pedersen, E., McCall, K., Moran, T.P. and Halasz, F.G., "Tivoli: An Electronic Whiteboard
for Informal Workgroup Meetings", Proceedings of INTERCHI, ACM, 1993, pp. 391-398.

12. Segen, J., "Controlling Computers with Gloveless Gestures", Proceedings of Virtual Reality
Systems'93 conference, NYC, March 15, 1993.

13. Senior, A.W, "Off-line Handwriting Recognition: A Review and Experiments". University of
Cambridge Engineering Department technical report CUED/F-INFENG/TR105, December
1992. Available by FTP.

14. Simard, P.Y, Le Cun, Y., Denker, J.S, "Memory-Based Character Recognition Using a
Transformation Invariant Metric" in Proc. 12th IAPR International Conference on Pattern
Recognition, Jerusalem, 1994, Vol. II pp. 262-267.

15. Tang, J.C., and Minneman, S.L., "VideoWhiteboard: Video Shadows to Support Remote
Collaboration", Proceedings of CHI, ACM, 1991, pp. 315-322.

16. Wellner, P., Interacting with Paper on the DigitalDesk. University of Cambridge Computer
Laboratory Ph.D. Thesis, October 1993. Computer Lab Technical Report 330

Page 13 of 13BrightBoard: A Video-Augmented Environment

04/08/2009http://www.sigchi.org/chi96/proceedings/papers/Stafford-Fraser/qsf_txt.htm

