Computer Graphics

Volume 16, Number 3

July 1982

Star Graphics:
An Object-Oriented Implementation

Dr. Daniel E. Lipkie

Xerox Corporation, El Segundo, California

Steven R. Evans, John K. Newlin, Robert L. Weissman
Xerox Corporation, Palo Alto, California

Abstract : The XEROX Star 8010 Information
System features an integrated text and graphics
editor. The Star hardware consists of a processor, a
large bit-mapped display, a keyboard and a pointing
device. Star’s basic graphic elements are points, lines,
rectangles, triangles, graphics frames, text frames and
bar charts. The internal representation is in terms of
idealized objects that are displayed or printed at
resolutions determined by the output device. This
paper describes the design and implementation of a
graphics editor using an object-oriented technique
based on a Star-wide subclassing method called the
Trait Mechanism.

CR Categories and Subject Descriptors: D.2.2 [Soft-
ware Engineering]: Tools and Techniques - User
interfaces; H.4.1 [Information Systems Applica-
tions]: Office Automation - Word processing; 1.3.6
[Computer Graphics]: Methodology and Techniques -
Interaction techniques; I1.7.2 [Text Processingl:
Document Preparation

General Terms: Design
Key Words: business graphics, subclassing
I. The Star Workstation

In 1975 Xerox started an effort to transfer research
from the Xerox Palo Alto Research Center (PARC) into
mainline office products. Central to this strategy was
the development of a top-of-the-line professional
workstation, subsequently named Star, that was to

XEROX®, 8010 and Star are trademarks of XEROX CORP.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-076-1/82/007/0115 $00.75

115

provide a major step forward in several different
domains of office automation. A retrospective on the
development of Star is presented in [2].

A unique aspect of Star is its user interface (UI) and
the role it played in the development of Star [5, 6, 7].
About 30 work years of effort were expended in
designing the UI before the functionality of the system
was fully decided and before the computer hardware
was even built.

The hardware that supports this UI (figure 1)

Ethernet 1

<+— Display with
3iconsand
1 open document

Keyboard with
3 function groups

" Mouse with
2 buttons

Processor with
29MB disk drive

Figure 1
Star Workstation Schematic

consists of a microprogrammable 22-bit virtual, 18-bit
real address space processor, an 808 by 1024 pixel (11”7
x 14”) bit-mapped display, a keyboard, a pointing
device called a mouse and a 10 or 29M byte disk. The
workstation may be attached to a 10M bits-per-second
Ethernet for access to remote printing, filing,
communication and electronic mail services.

The mouse has a ball on the bottom that turns as
the mouse slides over a flat surface. Electronics sense
the ball rotation and displaces a cursor on the screen in

Computer Graphics

corresponding motions. There are two buttons on the
mouse, called SELECT and ADJUST, used to make and
adjust a selection as described below.

The keyboard has a conventional central part and
three groups of function keys.

The left function group contains the generic
commands: MOVE, COPY, DELETE, SHOW PROPERTIES, COPY
PROPERTIES, and AGAIN. Their meaning is defined only
in a generic sense; it is up to the currently selected
element to further define them as explained below.

The keys in the upper function group are referred to
as soft keys. Their meanings and use are discussed
below.

The right function group includes the command
KEYBOARD and others that are not of interest in this
paper. When KEYBOARD is pressed, the soft keys allow
the user to assign a new interpretation to the central
keyboard and to display a window that shows the
meaning of each keytop. Keyboards supported are
Japanese, various European keyboards, Dvorak and
keyboards with useful office and mathematical
symbols.

Central concepts to the Star UI are what you see is
what you get, visibility (don’t hide things under
CODE +key combinations) and a physical office
metaphor.

One of the functional areas of the office addressed
by Star is document creation, which encompasses text
editing and formatting, figure editing (graphics),
mathematical formula editing and page layout. These
are all integrated. As an example of what you see is
what you get, the Star user edits on the display both
text and graphic figures, which appear exactly as they
do when the document is printed. This document was
prepared using Star; no special step was needed to
merge the figures and text. Visibility and the office
metaphor are discussed in the next section.

The design of the Star software began in the spring
of 1978 and the first release, containing 255,000 lines
of code, was completed in Oct. 1981. Over the 3.5 years
approximately 93 work years of effort were expended
and in excess of 400,000 lines of code were written.
This effort was aided by the adoption of an object-
oriented style of coding right from the start and by the
use later of a multiple-inheritance subclassing
mechanism, Traits [1], as the basis for defining and
implementing objects. An object-oriented imple-
mentation was chosen because it corresponded closely
to the UI model of interacting screen elements. In this
paper we use the term element to refer to user
perceived entities and reserve the term object for the
corresponding internal implementations.

As explained below, there is no graphics editor per
se, but of the 255,000 lines of code in the release about

Volume 16, Number 3

116

July 1982

28,000 are associated with editing figures in

documents.

In Section II we describe the Star user interface.
The Trait mechanism is presented in Section III. Its
application in the Star implementation is discussed in
Sections IVand V.

II. The Star User Interface

The Star Ul differs from that of other computer
systems through its heavy use of the graphics
capabilities of a bitmap display, its adherence to a
physical office metaphor, and its rigorous application
of a small set of design principles [3]. The graphics
capabilites reduce the amount of typing and
remembering required to operate the system; the office
metaphor makes the system familiar and friendly; the
design principles unify the nearly two dozen functional
areas of Star.

One important principle is to make objects and
actions in the system visible. The system should not
hide things under cbscure CODE + key combinations
or force the user to remember a lot of conventions.
When a choice had to be made between easy novice use
and efficient expert use, Alan Kay’s maxim was
followed: “Simple things should be simple; complex
things should be possible”.

As you make everything visible, the display
becomes reality, and the user model becomes identical
with what is on the screen.

Using the physical office metaphor Star creates
electronic counterparts to the physical elements in an
office: paper, folders, file cabinets, mail boxes and so
on. The Star screen represents a desktop on which are
placed small (~1” x 1”) pictograms or icons that
represent these elements, e.g. the document (paper)
and file drawer (file cabinet) icons in figure 2.

Bar
Old

Memos

Chart
Example

Figure 2
Document and File Drawer Icons

Within a illustration the currently implemented
graphics elements are points, lines, rectangles,
triangles, graphics frames, text frames and bar charts.
Examples are shown in figure 3. A graphics frame is a

Computer Graphics

Il

Triangles

.y

D
3

[Text Frame with |
mSible dashed bordcle_r_l

Text Frame with
invisible border

Figure 3
Examples of Graphic Elements

rectangular area reserved for figures. Text frames
allow the user to put labels in figures.

Iconic, text and graphic elements are selected by
pointing at them with the mouse and clicking (pressing
and releasing) one of the buttons on the mouse.

Icons show that they are selected by highlighting
(video reversing) their image. Character selections
highlight themselves by inverting a rectangular
region around the characters.

The user selects a graphics element by pointing
anywhere along one of its lines or edges. When a
graphic element is selected, it inverts a small square
region around each of its control points. Lines have
control points at each end, rectangles (figure 4) and

—=—:1

u I Guiding Point

u |
||
Figure 4

Rectangle with Inverted Control Points
(Expanded Scale)

frames at each corner and midpoint of each side and

Volume 16, Number 3

July 1982

triangles at each vertex. The inverted region around
the control point closest to the cursor is slightly larger.
This control point is called the guiding point and
becomes attached to the cursor when the element is
moved, copied or stretched.

An element highlights as if selected when the
mouse button is depressed, but it is selected only when
the button is released. The user may change the
candidate selection by moving the mouse with the
button still depressed until the desired element is
highlighted.

After an icon, character or graphics element has
been selected, it may be manipulated by one of the
generic operations. To move a document to a file
drawer, select the document icon, press MOVE, point at
the file drawer icon and click the SELECT button.
Elements may also be manipulated in other ways
described below.

The meaning of the operation is determined by the
selected element. Moving a document icon to a file
drawer icon sends the document over the Ethernet and
stores it on a file server; moving it to an out-basket
icon sends the document via electronic mail; moving it
to a printer icon makes a hardcopy of it.

Copying and deleting have similar straightforward
semantics.

The OPEN command in the left function group may
only be applied to an icon and creates a window
through which the icon’s contents are displayed and
edited. Star has a modeless editing style; there are no
start edit or end edit commands. The user merely
selects a character in a window displaying a document
and begins typing and the text is appended to the
selected character. The page content is reformatted as
the user edits. The generic operations also may be
applied inside a window; e.g. text may be moved,
copied or deleted by merely selecting, pressing the
function key and pointing to the destination.

Before discussing the other editing actions, we will
explain how graphics elements are entered into text.

To enter a figure into a document the user selects a
character in the document and types a character that
represents a graphics frame. (The character is found
on a keyboard accessible through the KEYBOARD key.)
This non-printing, but screen-displayable, character is
inserted after the selected character. It looks like a
boat anchor and represents an anchoring point for the
graphics frame. The frame appears between two lines
of text at the same time the anchor character is typed.
As the textual content of the document is reformatted
during subsequent editing this anchor character is
shifted as any other character and in addition its
associated graphics frame is also repositioned, e.g. the
anchor character acts like a footnote reference mark,

Computer Graphics

and the graphics frame moves from page to page as its
reference mark is moved.

Once the user has a graphics frame in a document,
other graphics elements may be moved or copied into
the frame. Star graphics has only two creation actions,
inserting a graphics frame as described above and
MAKE UINE described below. All other graphics
elements are made by copying. Every desktop has a
directory icon that contains a blank document and a
graphics document that has all the graphics elements.
The directory’s documents can only be copied, not
moved or deleted, so the user always has a source of
documents and graphics elements.

Pressing the SHOW PROPERTIES key opens a small
window in which a property sheet appropriate to the
current selection is displayed. The property sheet
displays the property values for the currently selected
element. The properties are changed by setting them
to the desired values and clicking at the Done
command which applies the new properties and closes
the property sheet window. For each property the
property sheet either displays an enumeratation of all
possible values or provides a box into which the value
is typed. The property sheet for a graphies line is
shown in figure 5.

Line Prd-benrty é.heet

AR AR

Defaults { Reset
—
Structure
Left (Upper) Line End
= [
Right (Lower) Line End
— e
Constraint | FIXED ANGLE
Figure 5
Line Property Sheet

The ? command provides access to online
documentation about the line property sheet; Defaults
sets the properties to system defined values; Apply
applies the properties but does not close the property
sheet; Reset sets the properties to the values they had

Volume 16, Number 3

118

July 1982

when Show Properties was invoked.

There are three kinds of properties: choice, state and
text.

A choice-type property displays a set of mutually
exclusive values for the property which are shown
immediately adjacent to each other; e.g. a line’s width,
structure and line endings are each choice properties.
Exactly one is on at any one time and is video reversed.
To change it the user points at the desired value and
clicks a mouse button.

A state-type property may be either on or off.
Pointing at and clicking a mouse button toggles its
setting. A line may be constrained to be at a fixed
angle so that its length but not its direction may be
changed during the stretching action described below.
An unconstrained line may have its length and/or
direction changed.

A text-type property displays a box into which a
text value is typed. None of the properties on the line
property sheet are text-type. But an example is the
text-type property on the document property sheet
which determines the name of the document.

The properties of a rectangle are the width and
style of its bounding box, its interior shading and a
fixed shape constraint.

The properties of text and graphics frame include
the width and style of the border. Text frames may be
constrained to be fixed or flexible. A flexible text frame
will change shape as its text contents are edited.
Graphics frames may be positioned horizontally within
a column (flush left, centered, flush right) and
vertically within a column (top, centered, bottom or
floating). Graphics frames also have a grid that may
be displayed as dots or plus marks at each grid point or
as ticks around the edge of the frame. Grid spacing is
also variable.

Another way to change a selected element’s
properties is to press COPY PROPERTIES and then point at
an element that is the source of the desired properties.

Associated with every text selection is a multi-click
level: character, word, sentence or paragraph.
Clicking at an unhighlighted character with the SELECT
mouse button selects the character at the character
level; clicking again with the SELECT mouse button at
the same character selects the enclosing word; clicking
at any character in a selected word selects the
enclosing sentence; clicking at any character in a
selected sentence selects the enclosing paragraph;
clicking at a character in a selected paragraph brings
the selection back to the character level and selects
that character. Clicking at a character with the
ADJUST mouse button expands or shrinks the selection
at the current level to minimally span the pre-existing
selection and the character pointed at.

Computer Graphics

There is no selection level associated with a
graphics selection, but the ADJUST button has a
graphics interpretation that is used to extend the
selection to include multiple elements. Clicking the
ADJUST button at a graphics element toggles it in/out of
the current selection. The ADJUST button may also be
used to extend the selection by adding all elements
properly contained in a bounding box. The user
presses the ADJUST button, which fixes one corner of the
bounding box, and moves the mouse with the button
depressed. The current mouse position defines the
opposite corner of the bounding box. As long as the
ADJUST button is depressed, a box is drawn on the
screen from the fixed point to the current mouse
postion and all elements properly contained are
highlighted. When the button is released (at button
up) these elements are added to the selection. An
extended selection may be moved, copied, deleted,
joined, stretched or the elements may have their
properties changed.

The elements of an extended selection may be of
different types, e.g. lines, rectangles and text frames.

Whenever there is a graphics selection the soft keys
at the top of the keyboard take on graphics meanings:
STRETCH, MAGNIFY, GRID, MAKE LINE, JOIN/SPLIT and
Top/BOTTOM. When the current selection is textual the
soft keys take on meanings that allow the appearance
of the charaters to be changed, e.g. bold, italic,
underlined, superscript, subscript, larger font size and
smaller font size.

When STRETCH is pressed the selection is de-
highlighted and the control point furthest from the
guiding point is replaced by an X and is considered
pinned. The guiding point becomes attached to the
mouse when a button is pressed. As the mouse is
moved the selection is horizontally and vertically
scaled to conform to the pinned and guiding points and
redisplayed. On button up the element retains the new
size, the X 1is removed, and the selection is
rehighlighted. MAGNIFY is simlar to STRETCH except
that the same scaling factor is applied in the horizontal
and vertical directions, i.e. aspect is maintained.

The GRID soft key toggles the grid on/off for the
frame containing the selection. If the grid is active, it
controls the placement of the guiding point during
move, copy, stretch and magnify.

MAKE LINE creates a line between two successive
mouse click positions.

JOIN combines an extended selection of graphics
elements into a cluster element. Once joined, all of the
original elements behave as a single element for
purposes of selection and editing. This allows users to
define their own graphics symbols. The SPLIT function
acts on a cluster and reverses the effect of JOIN.

119

Volume 16, Number 3

July 1982

Graphics and text frames are opaque, that is they
obscure elements that are under them. In figure 6a the

Text Frame

Above Rectangle Below Rectangle

(6a) (6b)
Figure 6
Overlapping Elements

text frame is above the rectangle, while in figure 6b it
is below. The soft keys TOP and BOTTOM allow the user
to move the current selection to the top or bottom level
in a frame.

In keeping with Star’s style of modeless editing, the
graphics editor is not invoked in the traditional sense.
In fact, as we shall see later, there is no graphics editor
in the traditional sense. All graphics editing
capabilities are available whenever there is a
document open. The Star user may pause during
document editing and read incoming mail or use the
records processing feature or any of the other Star
functions. The responsibility for making the transition
between these editing environments resides with the
elements on the desktop, not the user. This is a major
difference between Star and other information
systems, including the Alto system [9] where the user
explicitly invokes BRAVO for text editing, SIL or
DRAW for figure editing, and LAUREL for electronic
mail.

The full text editing capabilities are available for
editing the contents of text frames within graphics
frames, e.g. text frames may contain anchor characters
and graphics frames. This means that Star must
support the virtual nested invocation of editors.

[II. Traits - The Star Subclassing Mechanism

Object-orientation is a method for organizing
software such that, at any time, computation is
performed under the aegis of a particular object, not a
centralized program that handles every case from one
place. The nature of the Star UI and the user model it
fosters led to the adoption of an object-oriented method
from the beginning of the software development.

Subclassing is a refinement of the basic object-
oriented methodology that constructs objects out of
more primitive behaviors. Initial Star subclassing
efforts were in the SIMULA-67 and Smalltalk [8] style
where the specialization relations form a tree. We
found it necessary to generalize this concept to allow
specialization relations that are represented by
directed acyclic graphs. A full description of the Trait

Computer Graphics

mechanism and the generalized concept of multiple-
inheritance subclassing is beyond the scope of this
discussion but may be found in [1].

Subclassing as a way of implementing objects was
not used during initial development of Star. This was
partly because the designers had had little experience
with subclassing as a methodology for large production
software systems where performance is a primary
consideration. It was also believed, incorrectly, that
an extensible design based on subclassing would
necessitate a violation of the typing mechansim of the
implementing language, Mesa [4]. But as
implementation progressed, it became clear that
significant code-sharing was possible since we were
dealing with objects that were more similar than
different and we re-examined the subclassng problem.

We first present some of the central concepts of the
trait mechanism and then describe how it has been
applied in graphics. The initial graphics
implementation was about 17,000 lines of code and
space does not permit a full presentation of the
graphics traits and their interaction. During this
description we will refer to trait definitions
summarized in Section VI

A trait is a characterization of a behavior and is the
primitive abstraction used to define objects. A trait
used to define an object is said to be carried by the
object, e.g. the trait TreeElement is carried by objects

Traitdefinition:
trait name
state
component traits
fixed operations
replaceable operations

that live in tree-like data structures. To implement a
behavior, an object carrying a trait remembers
information in a state defined by the trait. For example
objects carrying TreeElement have 3 state variables,
next, parent and eldest, that are pointers to the
corresponding objects or are the special value
objectNil, pointer to no object.

In a departure from SIMULA-67, traits may carry
other component traits where the carry relationship is
represented as an acyclic directed graph. This permits
behaviors to be built on multiple lower-level
abstractions. The basic imaging trait, Schema, carries
TreeElement because all imaging objects are part of an
imaging tree rooted at a Desktop Object that manages
the Star display (see figure 9 below).

A trait defines operations as a means of presenting
information to or extracting information from an
object, e.g. the operations GetParent and SetParent for
TreeElement. Operations also may be invoked for

120

Volume 16, Number 3

July 1982

effect, e.g. the Schema operation Paint is a request to
an object to paint its image on the display.

An operation is invoked on an object by specifying a
trait carried by the object, an operation defined by the
trait and the object. In Mesa, an operation invocation
is implemented as a procedure call with the object
handle as the first parameter and other parameters as
needed, e.g.

Schema.Paint[object, ...]

Operations that extract information
implemented as procedures that return values.

are

A trait operation has a specification (name,
parameters, return type) and a realization (an
implementing piece of code).

Fixed operations are those for which the trait
supplies the realization, e.g. the implementing code for
GetParent in TreeElement is the same for all objects
carrying the trait, it merely accesses the state variable
parent and returnsits value.

Replaceable operations are analogous to SIMULA-
67 VIRTUAL procedures. The trait defines the
specification and each class supplies its own
realization that is used by all objects in the class, e.g.
the Schema trait provides the specification for Paint
but the classes Line and Rectangle each provide their
own realizations that access the object’s state to
display the appropriate image.

A class trait is a trait that provides fixed operations
for creating and destroying objects in the class.
Associated with each class is a replaceable operations
vector that is the composition of its own and its
component trait’s replaceable operations. The
realizations of replaceable operations are assigned to
the vector elements. The vector for the Line class is
shown in figure 7.

Size

Paint
PointedAt
Edit
RellocChild

<+— Schema Operations

Contend <+—— (GSchema Operations

CountCp
LocCp

<+—— HasCp Operations

Figure 7
Replaceable Operations Vector for Line Class

Each object created by a class trait has an object
state vector that is the composition of the class’s state
and the class’s component trait’s states. The vector for

Computer Graphics

a Line object is shown in figure 8.

Line <+—— (ClassId
next 4+—— TreeElement State
parent
eldest
size <+—— GSchema State
locin parent
width <+— Line State
style
line endings
constraint

Figure 8

Object State Vector for a Line Object

IV. Applying the Trait Mechanism to Star

The first release of Star defined 169 traits, 129 of
which were class traits. 99 traits required state
variables and 39 had replaceable operations.

Non-class traits we will discuss are: TreeElement,
Schema, GSchema, ListSchema and HasCp. Class
traits we will discuss are AnchoredFrame, Line and
TextBlock. Traits definitions for these traits are
summarized in Section VI,

The TreeElement trait allows objects to be
organized into tree data structures. The tree structure
corresponding to a 3 page, 3 column document
containing graphics and text is shown in figure 9. This

Desktop
— 1 |
Window Window Window
Document
— F]
Page Page Page
— - |
Heading Body Footing
I i)
Column Column Column
r jL 1
Text Block Anchored Frame Text Block
l
Graphics Frame
| ' r
Graphics Element; cee Graphics Elementy
Figure 9
Desktop Imaging Tree

structure will be explained more fully after we have
introduced the Schema and ListSchema traits.

Volume 16, Number 3

July 1982

The Schema trait forms the basis for imaging,
pointing resolution, selecting and editing within Star,
It defines 22 replaceable operations but for the
purposes of this discussion we are only be concerned
with those shown in Section VI. These operations
allow an object to be asked its size (Size), to honor a
request that it paint its image (Paint), to handle a
pointing action by the mouse (PointedAt), to respond to
an editing action when it is selected (Edit), to return
the location of a child relative to itself (RelLocChild) or
relative to the upper left corner of the screen
(ScreenlLocChild).

GSchema is an extension to Schema to meet the
needs of graphics objects and is the basic trait carried
by all graphics objects. It provides state variables for
its size and location within its parent. Of the 39
replaceable operations it defines we are concerned only
with Contend which is used during pointing.

ListSchema is a trait carried by an object that has
non-overlapping children that are arranged either
vertically with left edges aligned (pages in a
document) or horizontally with top edges aligned
(columns on a page), see figure 10. These two

M 1 — 1

——>| <+— margin —¥»| |4 spacing

Figure 10
Horizontal ListSchema

arrangements are embodied in the ListSchema trait
that is carried by an object that wishes to arrange its
children in this manner. The state defines the inter-
child spacing, the margin between the children and the
parent carrying this trait and the color for the areas
not covered by children. A list with color black and
non-zero spacing and margin values is a common
method for drawing lines around objects.

HasCp is a trait carried by all graphics objects that
have control points. The only graphics object that does
not have control points is the cluster object created and
destroyed by the JOIN and SPLIT functions. For a given
class the number of control points is the same so a
replaceable operation, CountCp, is defined to return
this value, e.g. 2 for line objects, 8 for rectangles. The
replaceable operation LocCp returns the object-relative
location of a control point. The fixed operation
HighlightCp highlights a control point in one of the
styles: default {(small square), guiding (larger square)
or pinned (an X). ClosestCp and FurthestCp are fixed

Computer Graphics

operations that enumerate the control points for an
object and use LocCp to determine the control point
closest and furthest from a particular coordinate. They
are used to determine guiding and pinned control
points. Rectangles, graphics frames and text frames
have the same number and arrangement of control
points and so use the same realizations for CountCp
and LocCp. This increases code sharing so that only 2
realizations for 2 separate replaceable operations are
needed to implement all the control point behaviors for
3 classes of objects. This is typical of the code sharing
benefits of the trait mechanism.

AnchoredFrame is the class trait for the graphics
frame that is associated with the anchor character.
There is no screen-visible element for this object. The
keyboard insert of an graphics frame actually creates
two objects, an anchored frame with a graphics frame
inside it. It is the graphics frame that is the visible
box. Anchored frame objects are also used to anchor
equations in text.

An anchored frame object forms the boundary
between the non-graphics and graphics domains. A
page column is a vertical list of left edge aligned text
blocks and anchored frames. The one and only child of
the anchored frame is a graphics frame that may be
aligned flush left, centered or flush right within the
anchored frame as determined by a property on the
graphics frame property sheet. Within the graphics
frame there are no restrictions on object arrangement.

Line is the class trait for graphics lines. Its state
retains the properties shown in figure 5.

TextBlock is the class trait for objects that have
textual content. Further details about this trait are
beyond the scope of this discussion. Text blocks and
anchored frames are the only objects that exists in a
document column.

Note that the Schema trait defines operations for
asking an object its size and location but does not
define corresponding state variables. Also note that
the replaceable location query is a request to a parent
object for the location within the parent of a child
object, i.e. a parent-relative location. This is done, as
we discuss below, for flexibility and economy of
storage and for performance.

It was felt best not to force all classes to store their
size in the same manner at the Schema level because
the trait is used as a component trait for a large
number of classes each with possibly quite different
behavior, e.g. a horizontal list-like object may
determine its size by summing the widths of its
children and use the height of its tallest child as its
own height while a graphics object may store this
information in its state. This judgement has been
shown correct by the diversity of methods for
determing size that now exist as the Star software has

Volume 16, Number 3

122

July 1982

matured and new features, objects and behaviors have
been implemented. It is quite common for a trait to
define a behavior, such as Schema Size, that requires
the cooperation of all objects that carry it in order to
complete the behavior.

For performance reasons the fundamental location
query is in terms of location within parent. Displaying
an object or changing its location on the sereen should
not require changing its state.

For example, the Star workstation processor has
instructions that support moving bits from one part of
the screen to another. Scrolling a page upward is
merely a matter of moving existing screen bits and
painting new bits into the vacated portion of the
window; none of the scrolled objects needs to be told to
modify any of their state. This processor support also
aids performance because it is not necessary to invoke
the Paint operation for objects that already have their
image on the screen.

Also, changing the size of an object or deleting an
object near the front of a document does not require
changing the state of all following objects in the
document.

When the screen location of an object is needed for
an operation the object is passed its screen location as a
parameter or it invokes the operation ScreenLocChild
on it parent.

V. Two Examples

Star graphics was the first major piece of Star
software designed in terms of traits and that used the
full generality of the mechanism. Pieces of software
designed or implemented prior to graphics have
subsequently been converted to the traits mechanism.
In this section we will describe two interactions
between the traits presented in section III. We first
show how the GSchema trait completes the Schema
size and location behaviors and second show how it
extends the Schema trait for pointing behavior.

The GSchema state records a size and parent-
relative location. Fixed GSchema operations allow
this information to be accessed and changed. All
GSchema objects use the same realization for the
Schema replaceable operation RellLocChild which
invokes the fixed GSchema operation GetRelLocSelf on
the child object. Note that for a graphics object

GSchema.GetRelLocSelf[object]
returns the same value as

Schema.RelLocChild|
TreeElement.GetParent[object], object]

Objects that carry the Schema trait are responsible
for a rectangular patch of the screen. Among sibling
objects this may be sole responsibility, as is the case
between page objects, or may be a shared

Computer Graphics

responsibility, as is the case between overlapping
graphics objects.

Sole vs shared responsibility has interesting
implications for the implementation of imaging
behaviors., We will look at the pointing and selecting
behavior of objects.

The document object carries the ListSchema trait
and is the parent of page objects. It is quite easy for a
document to determine which page contains the cursor
and then pass the buck for processing the pointing
action to that page. As long as the cursor remains
within the bounds of the window displaying the
document and within the bounds of the page, the page
object has sole responsibility for tracking the
movement of the cursor, for providing user feedback in
the form of highlighting and for making a selection
when the user releases the mouse button. If the cursor
leaves these bounds with the button still depressed the
page passes responsibility back to the document object
for continued processing. A page satisfies its
obligation by passing the buck to the column
containing the cursor, etc.

When the user releases the button, the currently
pointed-at object registers itself as the current
selection with a central mechanism. Subsequent user
editing actions are sent to it via the Schema Edit
operation. It is up to the object to decide how to
respond to the editing action, e.g. graphics lines ignore
typing.

This method for button processing is embodied in
the Schema replaceable operation PointedAt.
Parameters for the operations are the object being
asked to process the pointing action, its screen
location, a tracking region, the current cursor location
and the state of the mouse buttons. The return value
for the operation is an updated cursor location and an
updated mouse button state. The object must track the
cursor as long as it is in the tracking region and must
return control when the cursor leaves the region.

The semantics of PointedAt were designed for the
non-graphics domain where nested list-like
arrangements predominate, e.g. pages in documents,
columns in pages. List-like arrangements also
predominate outside windows but a description of their
uses there is beyond the scope of this discussion.

The ListSchema trait provides a buck-passing
realization for PointedAt that is used by almost all
objects carrying the ListSchema trait.

Sibling graphics objects must share responsibility
for pointing, eg. pointing inside the boundary of a
rectangle may really lead to the selection of some other
object. If the user points at the letter “x” in “Text” in
figure 6a the text frame does not allow the user to point

through to the rectangle under it. If the user points at

Volume 16, Number 3

123

July 1982

the upper left corner of the text frame in figure 6b the
user is pointing through the rectangle. This sharing
behavior is implemented by the GSchema operation
Contend described below.

If the cursor is positioned inside a graphics frame
and a mouse button is pushed, the list-like PointedAt
realization behavior described above resolves the
cursor to the window containing the cursor, the
document within the window, the proper page, the
proper column and finally to the anchored frame
within the column.

The anchored frame’s realization for PointedAtis to
enumerate it descendants and ask each how much
interest it has in the current cursor position. The child
with the greatest interest is passed the buck for
processing the pointing action by invoking its
PointedAt realization. The tracking region it is passed
is very small, a box about 1/8” square. This allows the
anchored frame to regain control and re-poll its
descendants if the user moves the cursor any
significant amount. The GSchema operation Contend
is the operation used to ask a graphics object how much
interest it has in the current cursor position. The
descendants are enumerated top-down and
enumeration stops when all have been enumerated or
one of the descendants says stop, e.g. the text frame in
figure 6a when the cursor is pointing at the letter “x”.

Rather than change the semantics of PointedAt for
graphics objects, or replacing it completely with a new
set of operations to do pointing resolution, we merely
added a pre-processing phase by adding Contend. The
extending of behaviors by addition, not replacement, of
operations is a capability offered by the traits
mechanism and used widely throughout Star.

Note also that the user is allowed to button down
near a graphics element and see it highlight, move the
mouse with the button still down out of the graphics
frame and point to a letter in the main document text
and see the graphics element de-highlight and the
letter highlight, continue dragging the mouse out of
the document window and point to an icon and see the
letter de-highlight and see the icon highlight and then
select the icon by releasing the button.

All this is possible as a single user action. In the
traditional sense this may be thought of as
automatically invoking three editors in succession, the
graphics editor, the text editor and the desktop editor,
and passing control between them when in reality we
are traversing a tree of objects and asking each to
exhibit its own behavior. The implementation
corresponds to this model and for this reason there is
no graphics editor per se that is invoked by the Star
user, there are only graphics behaviors that are
exhibited in response to user actions and these
behaviors are available at all times.

Computer Graphics

VL

The following trait summary is in the order they
were introduced above. Additional state variables and
operations beyond the scope of this discussion are
represented as *...”.

Trait Summary

trait name: TreeElement

state: next, parent, eldest

component traits: none

fixed operations: GetNext, SetNext, GetParent,
SetParent, GetEldest, SetEldest, ...

replaceable operations: none

trait name: Schema

state: none

component traits: TreeElement

fixed operations: ScreenlLocChild, ...

replaceable operations: Size, Paint, PointedAt, Edit,
RelLocChild, ...

trait name: GSchema

state: size, location in parent, ...

component traits: Schema

fixed operations: GetSize, SetSize, GetRelLocSelf,
SetRelLocSelf, ...

replaceable operations: Contend, ...

trait name: ListSchema
state: margin, spacing, color
component traits: Schema
fixed operations: ...
replaceable operations: ...

trait name: HasCp

state: none

component traits: none

fixed operations: HighlightCp, ClosestCp, FurthestCp, ...
replaceable operations: CountCp, LocCp, ...

trait name: Line

state: width, style, line endings, constraint
component traits: GSchema, HasCp

fixed operations: none

replaceable operations: none

trait name: TextBlock
state: text contents, ...
component traits: Schema, ...
fixed operations: ...
replaceable operations: ...

VIIL.

Adopting an object-oriented implementation and
the traits mechanism has been a success.

Conclusions

The initial graphics design and implementation
(without bar charts and text frames) was done in one
work year by a new hire who knew nothing about the
Mesa language or the Star object-oriented
methodology or the traits mechansim. This was in
large part due to the building block nature of the
methodology. Also the graphics functional

Volume 16, Number 3

124

. July 1982

specification had already been written, and one of the
authors had validated the graphics user interface by
prototyping on the Xerox Alto using a different
implementation technique.

Subsequent to graphics, most of Star has been
converted to this methodology, and three other major
pieces of software have been undertaken: an equations
editing capability, a 3720 emulations window, and a
table editing capability. All are having equally good
results.

The trait mechanism has allowed a rather
straightforward mapping of Star UI elements to
internal implementing objects.

REFERENCES

1. G. Curry, L. Baer, D. Lipkie and B. Lee, “Traits -
An Approach to Multiple-Inheritance Subclassing,”
Conference on Office Automation Systems,
Philadelphia, Penn.,June 1982.

2. E. Harslem and L.E. Nelson, "A Retrospective on
the Development of Star,” submitted to 6th
International Conference on Software Engineering;
Tokyo, Japan, Sept, 1982.

3. C.Irby, L. Berginsteinsson, T. Moran, W. Newman
and L. Tesler, “A Methodology for User Interface
Design”, Systems Development Division, Xerox
Corporation, January 1977.

4. J. Mitchell, W. Maybury and R. Sweet, “Mesa
Language manual,” Technical Report CSL-79-3, Xerox
Corp., Palo Alto Research Center, Palo Alto, CA, April
1979.

5. J. Seybold, “Xerox’s ‘Star’” in The Seybold Report,
Media, Pennsylvania: Seybold Publications, v. 10, no.
16,1981..

6. D.Smith, C. Irby, R. Kimball and E. Harslem, “The
7tar User Interface: An Overview,” NCC ’82.

7. D.Smith, C. Irby, R. Kimball, B. Verplank, and E.
Harslem, “Designing the Star User Interface,” Byte, v.
7,no.4,1982.

8. L. Tesler, “The Smalltalk Environment”, Byte, V. 6,
no. 8,1981.

9. C. Thacker, E. McCreight, B. Lampson, R. Sproull
and D. Boggs, “Alto: A Personal Computer,” Computer
Structures: Principles and Examples, D. Siewiorek, C.
Bell and A. Newell, editors, McGraw-Hill, 1982,

