
Star Graphics:
An Object-Oriented Implementation

Dr. D a n i e l E. L ipk ie
Xerox Corporation, El Segundo, California

S t e v e n R. E v a n s , J o h n K. N e w l i n , R o b e r t L. W e i s s m a n
Xerox Corporation, Palo Alto, California

A b s t r a c t : The XEROX S ta r 8010 Informat ion
Sys tem fea tures an i n t eg ra t ed tex t and graphics
editor. The S t a r h a r d w a r e consists of a processor, a
large b i t -mapped display, a keyboa rd and a po in t ing
device. S ta r ' s basic graphic e l ements are points, l ines,
rectangles , t r iangles , graphics frames, text f rames and
ba r charts . The i n t e rna l r ep resen ta t ion is in terms of
ideal ized objects t ha t are d i sp layed or p r in ted a t
resolut ions de te rmined by the ou tpu t device. This
paper describes the design and imp lemen ta t i on of a
graphics edi tor us ing an object-or iented technique
based on a Star -wide subc lass ing method cal led the
Tra i t Mechanism.

CR Categor ies and Subject Descriptors: D.2.2 [Soft-
w a r e E n g i n e e r i n g] : Tools and Techniques - User
interfaces; H.4.1 [I n f o r m a t i o n S y s t e m s A p p l i c a -
t ions] : Office Au toma t ion - Word processing; 1.3.6
[C o m p u t e r G r a p h i c s] : Methodology and Techniques -
In te rac t ion techniques; 1.7.2 [Tex t P r o c e s s i n g] :
Document P repa ra t i on

Genera l Terms: Design

Key Words: bus iness graphics , subc lass ing

I. T h e S t a r W o r k s t a t i o n

In 1975 Xerox s ta r t ed an effort to t rans fe r research
from the Xerox Palo Alto Research Center (PARC) into
ma in l ine office products. Cen t ra l to th is s t r a t egy was
the deve lopment of a top-of-the-l ine professional
works ta t ion , subsequen t ly named Star , t ha t was to

XEROX ® , 8010 and Star are trademarks of XEROX CORP.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-076-1/82/007/0115 $00.75

provide a major step forward in severa l different
domains of office au tomat ion . A re t rospect ive on the
deve lopment of S t a r is p resented in [2].

A unique aspect of S t a r is i t s user interface (UI) and
the role i t p layed in the deve lopment of S ta r [5, 6, 7].
Abou t 30 work yea r s of effort were expended in
des ign ing the UI before the func t iona l i ty of the sys tem
was ful ly decided and before the computer ha rdware
was even bui l t .

The ha rdware t ha t suppor ts th is UI (figure 1)

E t h e r n e t

i[ii ... ii~iil '1 Disp lay with
y 3 icons and I! 1 open document

~ . : . : ~ . . : ~ . . 1 ~ Keyboard with
3 function groups

Mouse with
!!!!!!]~] 2 bu t tons

~- Processor wi th
29MB disk dr ive

F igure 1
S ta r Works t a t i on Schemat ic

consists of a mic rop rog rammable 22-bi t v i r tua l , 18-bit
rea l address space processor, an 808 by 1024 pixel (11"
x 14") b i t -mapped display, a keyboard , a po in t ing
device cal led a mouse and a 10 or 29M byte disk. The
works ta t ion m a y be a t t ached to a 10M bits-per-second
E t h e r n e t for access to remote pr in t ing , f i l ing,
communica t ion and electronic ma i l services.

The mouse has a bal l on the bot tom tha t t u rns as
the mouse sl ides over a f la t surface. Electronics sense
the ba l l ro ta t ion and displaces a cursor on the screen in

115

corresponding motions. There are two but tons on the
mouse, cal led SELECT and ADJUST, used to m a k e and
ad jus t a select ion as descr ibed below.

The keyboa rd has a convent iona l cent ra l pa r t and
three groups of function keys.

The left funct ion group conta ins the generic
commands: MOVE, COPY, DELETE, SHOW PROPERTIES, COPY
PROPERTIES, and AGAIN. The i r m e a n i n g is defined only
in a gener ic sense; i t is up to the cu r ren t ly selected
e l emen t to fu r the r define t hem as exp la ined below.

The keys in the upper funct ion group are referred to
as soft keys. The i r m e a n i n g s and use are discussed
below.

The r igh t funct ion group inc ludes the command
KEYBOARD and others t ha t a re not of in te res t in th is
paper , W h e n KEYBOARD is pressed, the soft keys al low
the user to ass ign a new in t e rp re t a t i on to the cent ra l
keyboa rd and to d i sp lay a window tha t shows the
m e a n i n g of each keytop. Keyboa rds suppor ted are
J apanese , va r ious European keyboards , Dvorak and
keyboards wi th useful office and m a t h e m a t i c a l
symbols.

Cen t ra l concepts to the S t a r UI are what you see is
what you get, visibility (don' t hide th ings under
C O D E + k e y combinat ions) and a physical office
metaphor.

One of the funct ional a r ea s of the office addressed
by S t a r is document creat ion, which encompasses text
ed i t ing and format t ing , f igure ed i t ing (graphics),
m a t h e m a t i c a l fo rmula ed i t ing and page layout . These
are al l in tegra ted . As an example of what you see is
what you get, the S ta r user edi ts on the d i sp lay both
tex t and graphic f igures, which appea r exact ly as they
do when the document is pr in ted . This document was
p repared us ing Star ; no special step was needed to
merge the f igures and text . Vis ib i l i ty and the office
me taphor are discussed in the next section.

The des ign of the S t a r sof tware began in the spr ing
of 1978 and the f i rs t re lease , con ta in ing 255,000 l ines
of code, was completed in Oct. 1981. Over the 3.5 yea r s
app rox ima te ly 93 work y e a r s of effort were expended
and in excess of 400,000 l ines of code were wri t ten.
This effort was a ided by the adopt ion of an object-
o r ien ted s ty le of coding r igh t from the s t a r t and by the
use l a t e r of a multiple-inheritance subclassing
mechanism, Tra i t s [1], as the bas is for de f in ing and
i m p l e m e n t i n g objects. A n object-or iented imple-
m e n t a t i o n was chosen because i t corresponded closely
to the UI model of i n t e r ac t i ng screen e lements . In th is
paper we use the t e rm element to refer to user
perceived en t i t i e s and reserve the t e rm object for the
cor responding in t e rna l imp lemen ta t ions .

As exp la ined below, there is no graphics edi tor per
Be, but of the 255,000 l ines of code in the re lease about

28,000 are associa ted wi th ed i t ing f igures in
documents.

In Section II we descr ibe the S t a r use r interface.
The Tra i t mechan i sm is p resen ted in Section HI. I t s
appl ica t ion in the S ta r i m p l e m e n t a t i o n is discussed in
Sections IV and V.

II . T h e S t a r U s e r I n t e r f a c e

The S t a r UI differs from t h a t of o ther computer
sys tems th rough i ts h e a v y use of the graphics
capab i l i t i e s of a b i tmap d isp lay , i ts adherence to a
phys ica l office me taphor , and i ts r igorous appl ica t ion
of a smal l set of des ign pr inc ip les [3]. The graph ics
capabi l i t es reduce the a m o u n t of t yp ing and
r e m e m b e r i n g requ i red to opera te the system; the office
me taphor m a k e s the sys tem f a m i l i a r and fr iendly; the
des ign pr incip les unify the n e a r l y two dozen funct ional
are as of Star .

One impor t an t pr inc ip le is to m a k e objects and
act ions in the sys tem vis ible . The sys tem should not
h ide th ings under obscure CODE + key combina t ions
or force the user to r e m e m b e r a lot of conventions.
W h e n a choice had to be made be tween easy novice use
and efficient exper t use, A l a n K a y ' s m a x i m was
followed: "Simple th ings should be s imple; complex
th ings should be possible".

As you make e v e r y t h i n g vis ible , the d i sp lay
becomes rea l i ty , and the use r model becomes ident ica l
wi th w h a t is on the screen.

Us ing the phys ica l office m e t a p h o r S t a r creates
electronic coun te rpa r t s to the phys ica l e lements in an
office: paper , folders, file cabinets , ma i l boxes and so
on. The S ta r screen rep resen t s a desktop on which are
placed smal l (- 1 " x 1") p ic tograms or ~cons t h a t
r ep resen t these e lements , e.g. the document (paper)
and file d r awer (file cabinet) icons in f igure 2.

Bar
Chart
Example

| |
I !

Old
Memos

F i g u r e 2
Document and Fi le D r a w e r Icons

W i t h i n a i l l u s t r a t i on the c u r r e n t l y imp lemen ted
graphics e l ements a re points , l ines, rec tangles ,
t r i ang les , g raphics f rames, t ex t f rames and bar charts .
Examples are shown in f igure 3. A graph ics f rame is a

116

Computer Graphics Volume 16, Number 3 July 1982

Poin ts • ° °

Lines
)

o . . . ooo .~
B u n g ~ ~ i

N i i J ~

n In m m m n o m m i

Rectangles

® N
Tr iang les

.NJ
Text F r a m e with | Text F r a m e with J
invis ib le border I v is ible dashed border I

F igure 3
Examples of Graph ic E lemen t s

r ec t angu la r a rea reserved for figures. Text f rames
al low the user to put labels in f igures.

Iconic, tex t and graphic e l ements are selected by
po in t ing at them with the mouse and c l icking (pressing
and re leas ing) one of the but tons on the mouse.

Icons show tha t they are selected by highlighting
(video revers ing) the i r image. Charac te r selections
h i g h l i g h t themse lves by i n v e r t i n g a r ec t angu la r
region a round the characters .

The user selects a g raphics e l emen t by poin t ing
anywhere a long one of i ts l ines or edges. When a
graphic e l emen t is selected, i t inver t s a smal l square
region a round each of i ts control points. Lines have
control points a t each end, rec tangles (figure 4) and

L Guid ing Poin t

F igure 4
Rectangle wi th Inve r t ed Control Poin ts

(Expanded Scale)

f rames a t each corner and m i d p o i n t of each side and

t r i ang les a t each vertex. The inver ted region a round
the control poin t closest to the cursor is s l igh t ly larger .
This control poin t is cal led the guiding point and
becomes a t t ached to the cursor when the e l emen t is
moved, copied or s t re tched.

An e l emen t h igh l igh t s as i f selected when the
mouse but ton is depressed, bu t i t is selected only when
the but ton is re leased. The user m a y change the
candida te select ion by moving the mouse with the
but ton s t i l l depressed un t i l the des i red e lement is
h ighl igh ted .

Af ter an icon, charac te r or graphics e l emen t has
been selected, i t m a y be m a n i p u l a t e d by one of the
generic operat ions . To move a document to a file
drawer , select the document icon, press MOVE, point a t
the file d r awer icon and click the SELECT button.
E lements m a y also be m a n i p u l a t e d in other ways
described below.

The m e a n i n g of the opera t ion is de te rmined by the
selected e lement . Moving a document icon to a file
d rawer icon sends the document over the E t h e r n e t and
stores i t on a file server; moving i t to an ou t -baske t
icon sends the document v ia electronic mai l ; moving i t
to a p r in te r icon m a k e s a hardcopy of it.

Copying and de le t ing have s imi la r s t r a igh t fo rward
semant ics .

The OPEN command in the left funct ion group m a y
only be appl ied to an icon and crea tes a window
th rough which the icon's contents a re d i sp layed and
edited. S t a r has a modeless edi t ing style; there are no
start edit or end edit commands. The user mere ly
selects a charac te r in a window d i sp l ay ing a document
and begins typ ing and the text is appended to the
selected character . The page content is re format ted as
the user edits. The gener ic opera t ions also may be
appl ied inside a window; e.g. text m a y be moved,
copied or dele ted by mere ly select ing, press ing the
function key and po in t ing to the des t ina t ion .

Before d iscuss ing the other ed i t ing actions, we will
expla in how graphics e lements are en te red into text.

To en te r a f igure into a document the user selects a
charac te r in the document and types a charac te r t ha t
represen ts a g raphics f rame. (The cha rac te r is found
on a keyboa rd accessible th rough the KEYSOAR0 key.)
This non-pr in t ing , bu t screen-d isp layable , cha rac te r is
inser ted af ter the selected character . I t looks l ike a
boat anchor and represen ts an anchor ing poin t for the
graphics frame. The f rame appears be tween two l ines
of text a t the same t ime the anchor cha rac t e r is typed.
As the t ex tua l content of the document is re format ted
du r ing subsequen t ed i t ing this anchor charac te r is
shif ted as any o ther charac te r and in addi t ion its
associa ted graphics f rame is also reposi t ioned, e.g. the
anchor cha rac te r acts l ike a footnote reference mark ,

117

and the graphics frame moves from page to page as its
reference mark is moved.

Once the user has a graphics frame in a document,
other graphics elements may be moved or copied into
the frame. Star graphics has only two creation actions,
insert ing a graphics frame as described above and
MAKE LINE described below. All other graphics
elements are made by copying. Every desktop has a
directory icon tha t contains a b lank document and a
graphics document tha t has all the graphics elements.
The directory's documents can only be copied, not
moved or deleted, so the user always has a source of
documents and graphics elements.

Pressing the SHOW PROPERTIES key opens a small
window in which a property sheet appropriate to the
current selection is displayed. The property sheet
displays the property values for the currently selected
element. The properties are changed by setting them
to the desired values and clicking at the Done
command which applies the new properties and closes
the property sheet window. For each property the
property sheet ei ther displays an enumeratat ion of all
possible values or provides a box into which the value
is typed. The property sheet for a graphics line is
shown in figure 5.

.5": ~ : : "~ : ' : ' : , ' - i : - : " i~9~:~:* : : : '~ .. ::~:ii:=':" ~~=-~y ~ ~ - - ~ . ~

Line Property Sheet

~ % e f a u l t s .~.Apply ~

Width

Structure

n r o l l •

m - m I

Left (Upper) Line End

, I
Right (Lower) Line End

Constraint I FIXED ANGLE I

Figure 5
Line Property Sheet

The ? command provides access to online
documentation about the llne property sheet; Defaults
sets the properties to system defined values; Apply
applies the properties but does not close the property
sheet; Reset sets the properties to the values they had

when Show Properties was invoked.

There are three kinds of properties: choice, state and
text.

A choice-type property displays a set of mutual ly
exclusive values for the property which are shown
immediately adjacent to each other; e.g. a line's width,
structure and line endings are each choice properties.
Exactly one is on at any one time and is video reversed.
To change it the user points at the desired value and
clicks a mouse button.

A state-type property may be ei ther on or off.
Pointing at and clicking a mouse button toggles its
setting. A line may be constrained to be at a fixed
angle so tha t its length but not its direction may be
changed during the stretching action described below.
An unconstrained line may have its length and/or
direction changed.

A text-type property displays a box into which a
text value is typed. None of the properties on the line
property sheet are text-type. But an example is the
text-type property on the document property sheet
which determines the name of the document.

The properties of a rectangle are the width and
style of its bounding box, its interior shading and a
fixed shape constraint.

The properties of text and graphics frame include
the width and style of the border. Text frames may be
constrained to be fixed or flexible. A flexible text frame
will change shape as its text contents are edited.
Graphics frames may be positioned horizontally within
a column (flush left, centered, flush right) and
vertically within a column (top, centered, bottom or
floating). Graphics frames also have a grid that may
be displayed as dots or plus marks at each grid point or
as ticks around the edge of the frame. Grid spacing is
also variable.

Another way to change a selected element's
properties is to press COPY PROPERTIES and then point at
an element tha t is the source of the desired properties.

Associated with every text selection is a multi-click
level: character, word, sentence or paragraph.
Clicking at an unhighl ighted character with the SELECT
mouse button selects the character at the character
level; clicking again with the SELECT mouse button at
the same character selects the enclosing word; clicking
at any character in a selected word selects the
enclosing sentence; clicking at any character in a
selected sentence selects the enclosing paragraph;
clicking at a character in a selected paragraph brings
the selection back to the character level and selects
that character. Clicking at a character with the
ADJUST mouse button expands or shrinks the selection
at the current level to min imal ly span the pre-existing
selection and the character pointed at.

118

There is no select ion level associa ted with a
g raph ics selection, bu t the ADJUST but ton has a
g raph ics i n t e rp re t a t ion t ha t is used to extend the
select ion to include mu l t i p l e e lements . Cl icking the
ADJUST but ton a t a g raph ics e l emen t toggles i t in /out of
the cu r r en t selection. The ADJUST but ton m a y also be
used to extend the select ion by add ing al l e lements
p roper ly conta ined in a bounding box. The user
presses the ADJUST but ton, which fixes one corner of the
bound ing box, and moves the mouse with the bu t ton
depressed. The cu r r en t mouse posi t ion defines the
opposite corner of the bound ing box. As long as the
ADJUST but ton is depressed, a box is d rawn on the
screen from the f ixed point to the cu r ren t mouse
post ion and al l e l ements p roper ly conta ined are
h igh l igh ted . When the bu t ton is re leased (at button
up) these e lements a re added to the selection. A n
ex tended selection m a y be moved, copied, deleted,
jo ined, s t re tched or the e lements m a y have the i r
p roper t ies changed.

The e lements of an ex tended select ion may be of
d i f ferent types, e.g. l ines, rec tangles and text frames.

W h e n e v e r there is a graphics selection the soft keys
a t the top of the keyboa rd t ake on graphics meanings :
STRETCH, MAGNIFY, GRID, MAKE LINE, JOIN/SPLIT and
ToP/BOTTOM. When the cu r ren t select ion is t ex tua l the
soft keys t ake on m e a n i n g s t ha t a l low the appea rance
of the cha ra t e r s to be changed, e.g. bold, i ta l ic ,
under l ined , superscr ipt , subscript , l a rge r font size and
sma l l e r font size.

W h e n STRETCH is pressed the selection is de-
h igh l igh ted and the control poin t fu r thes t from the
gu id ing point is rep laced by an X and is considered
p inned. The gu id ing point becomes a t t ached to the
mouse when a but ton is pressed. As the mouse is
moved the select ion is hor izon ta l ly and ve r t i ca l ly
scaled to conform to the p inned and gu id ing points and
red isp layed . On but ton up the e l emen t r e t a ins the new
size, the X is removed, and the selection is
r eh igh l igh ted . MAGNIFY is s im la r to STRETCH except
t ha t the same sca l ing factor is appl ied in the hor izonta l
and ver t ica l direct ions, i.e. aspect is ma in t a ined .

The GRID soft key toggles the gr id on/off for the
f rame con ta in ing the selection. I f the gr id is active, i t
controls the p lacement of the gu id ing point du r ing
move, copy, s t re tch and magni fy .

MAKE LINE creates a l ine be tween two successive
mouse click posit ions.

JOIN combines an ex tended select ion of g raphics
e l emen t s into a cluster element . Once joined, al l of the
o r ig ina l e lements behave as a s ingle e lement for
purposes of selection and edi t ing. This al lows users to
define the i r own graphics symbols. The SPUT function
acts on a c luster and reverses the effect of JOIN.

Graphics and tex t f rames are opaque, t ha t is they
obscure e l ements t ha t are under them. In f igure 6a the

!Above Rec,a.=,e / I =o,ow oc,a°=lo I
(6a) (6b)

F igure 6
Overlappm" g E lemen t s

tex t f rame is above the rec tangle , while in f igure 6b i t
is below. The soft keys TOP and BOTTOM al low the user
to move the cu r ren t select ion to the top or bot tom level
in a frame.

In keep ing wi th S ta r ' s s ty le of modeless edi t ing, the
graphics edi tor is not invoked in the t r ad i t iona l sense.
In fact, as we sha l l see la te r , the re is no graphics edi tor
in the t r ad i t i ona l sense. Al l graphics ed i t ing
capab i l i t i e s a re ava i l ab le whenever there is a
document open. The S t a r use r m a y pause du r ing
document ed i t ing and read incoming mai l or use the
records process ing fea ture or any of the o ther S ta r
functions. The respons ib i l i ty for m a k i n g the t rans i t ion
between these editing environments resides wi th the
e lements on the desktop, not the user. This is a major
difference be tween S t a r and o ther informat ion
systems, inc lud ing the Al to sys tem [9] where the user
expl ic i t ly invokes BRAVO for tex t edi t ing, SIL or
DRAW for f igure edi t ing, and LAUREL for electronic
mai l .

The full tex t ed i t ing capab i l i t i e s a re ava i l ab le for
ed i t ing the contents of t ex t f rames wi th in graphics
frames, e.g. tex t f rames m a y conta in anchor charac te rs
and graph ics frames. This means t ha t S t a r mus t
suppor t the virtual nested invocation of editors.

[II . T r a i t s - T h e S t a r S u b c l a s s i n g M e c h a n i s m

Object-orientation is a method for o rgan iz ing
software such that , a t any t ime, computa t ion is
performed unde r the aegis of a pa r t i cu l a r object, not a
cent ra l ized p rogram tha t ha nd l e s every case from one
place. The n a t u r e of the S t a r UI and tl~e user model i t
fosters led to the adopt ion of an object-oriented method
from the beg inn ing of the sof tware development .

Subclassing is a r e f i nemen t of the basic object-
o r ien ted methodology t h a t const ructs objects out of
more p r imi t ive behaviors . In i t i a l S t a r subclass ing
efforts were in the SIMULA-67 and S m a l l t a l k [8] s tyle
where the specia l iza t ion re la t ions form a tree. We
found i t necessary to genera l ize th is concept to allow
specia l iza t ion re la t ions t h a t are represen ted by
di rec ted acyclic graphs. A full descr ipt ion of the Tra i t

119

mechanism and the generalized concept of multiple-
inheritance subclassing is beyond the scope of this
discussion but may be found in [1].

Subclassing as a way of implementing objects was
not used during initial development of Star. This was
partly because the designers had had little experience
with subclassing as a methodology for large production
software systems where performance is a primary
consideration. It was also believed, incorrectly, that
an extensible design based on subclassing would
necessitate a violation of the typing mechansim of the
implementing language, Mesa [4]. But as
implementation progressed, it became clear that
signil~cant code-sharing was possible since we were
dealing with objects that were more similar than
different and we re-examined the subclassng problem.

We first present some of the central concepts of the
trait mechanism and then describe how it has been
applied in graphics. The initial graphics
implementation was about 17,000 lines of code and
space does not permit a full presentation of the
graphics traits and their interaction. During this
description we will refer to trait definitions
summarized in Section VI.

A trait is a characterization of a behavior and is the
primitive abstraction used to define objects. A trait
used to define an object is said to be carried by the
object, e.g. the trait TreeElement is carried by objects

Trait definition:
trait name
state
component traits
fixed operations
replaceable operations

that live in tree-like data structures. To implement a
behavior, an object carrying a trait remembers
information in a state defined by the trait. For example
objects carrying TreeElement have 3 state variables,
next, parent and eldest, that are pointers to the
corresponding objects or are the special value
objectNil, pointer to no object.

In a departure from SIMULA-67, traits may carry
other component traits where the carry relationship is
represented as an acyclic directed graph. This permits
behaviors to be built on multiple lower-level
abstractions. The basic imaging trait, Schema, carries
TreeElement because all imaging objects are part of an
imaging tree rooted at a Desktop Object that manages
the Star display (see figure 9 below).

A trait defines operations as a means of presenting
information to or extracting information from an
object, e.g. the operations GetParent and SetParent fo~
TreeElement. Operations also may be invoked for

effect, e.g. the Schema operation Paint is a request to
an object to paint its image on the display.

An operation is invoked on an object by specifying a
trait carried by the object, an operation defined by the
trait and the object. In Mesa, an operation invocation
is implemented as a procedure call with the object
handle as the first parameter and other parameters as
needed, e.g.

Schema.Paint[object]

Operations that extract information are
implemented as procedures that return values.

A trait operation has a specification (name,
parameters, return type) and a realization (an
implementing piece of code).

Fixed operations are those for which the trait
supplies the realization, e.g. the implementing code for
GetParent in TreeElement is the same for all objects
carrying the trait, it merely accesses the state variable
parent and returns its value.

Replaceable operations are analogous to SIMULA-
67 VIRTUAL procedures. The trait defines the
specification and each class supplies its own
realization that is used by all objects in the class, e.g.
the Schema trait provides the specification for Paint
but the classes Line and Rectangle each provide their
own realizations that access the object's state to
display the appropriate image.

A class trait is a trait that provides fixed operations
for creating and destroying objects in the class.
Associated with each class is a replaceable operations
vector that is the composition of its own and its
component trait's replaceable operations. The
realizations of replaceable operations are assigned to
the vector elements. The vector for the Line class is
shown in figure 7.

Size
Paint
PointedAt
Edit
RelLocChild

Contend

CountCp
LocCp

Schema Operations

~- GSchema Operations

HasCp Operations

Figure 7
Replaceable Operations Vector for Line Class

Each object created by a class trait has an object
state vector that is the composition of the class's state
and the class's component trait's states. The vector for

120

a Line object is shown in figure 8.

Line

next
parent
eldest

size
Ioc in parent

width
style
line endings
constraint

Class Id

TreeElement State

GSchema State

Line State

Figure 8
Object State Vector for a Line Object

IV. Apply ing the Trai t Mechanism to Star

The first release of Star defined 169 traits, 129 of
which were class traits. 99 traits required state
variables and 39 had replaceable operations.

Non-class traits we will discuss are: TreeElement,
Schema, GSchema, ListSchema and HasCp. Class
traits we will discuss are AnchoredFrame, Line and
TextBlock. Traits definitions for these traits are
summarized in Section VI.

The TreeElement trait allows objects to be
organized into tree data structures. The tree structure
corresponding to a 3 page, 3 column document
containing graphics and text is shown in figure 9. This

Desktop

I I
Window Window Window

Document

I I
Page Page Page

I I
Heading

I
Column

I
Text Block

I
Graphics Element1

Body Footing

I
Column Column

1
Anchored Frame

Graphics Frame
I

Text Block

I
Graphics ElementN

Figure 9
Desktop Imaging Tree

structure will be explained more fully after we have
introduced the Schema and ListSchema traits.

The Schema trait forms the basis for imaging,
pointing resolution, selecting and editing within Star.
It defines 22 replaceable operations but for the
purposes of this discussion we are only be concerned
with those shown in Section VI. These operations
allow an object to be asked its size (Size), to honor a
request that it paint its image (Paint), to handle a
pointing action by the mouse (PointedAt), to respond to
an editing action when it is selected (Edit), to return
the location of a child relative to itself (Rel kocChild) or
relative to the upper left corner of the screen
(Screen kocChild).

GSehema is an extension to Schema to meet the
needs of graphics objects and is the basic trait carried
by all graphics objects. It provides state variables for
its size and location within its parent. Of the 39
replaceable operations it defines we are concerned only
with Contend which is used during pointing.

Lis tSchema is a trait carried by an object that has
non-overlapping children that are arranged either
vertically with left edges aligned (pages in a
document) or horizontally with top edges aligned
(columns on a page), see figure 10.

I
I
I
I
I

L
margin

I'
These two

Figure 10
Horizontal ListSchema

arrangements are embodied in the ListSchema trait
that is carried by an object that wishes to arrange its
children in this manner. The state defines the inter-
child spacing, the margin between the children and the
parent carrying this trait and the color for the areas
not covered by children. A list with color black and
non-zero spacing and margin values is a common
method for drawing lines around objects.

HasCp is a trait carried by all graphics objects that
have control points. The only graphics object that does
not have control points is the cluster object created and
destroyed by the JOIN and SPUr functions. For a given
class the number of control points is the same so a
replaceable operation, CountCp, is defined to return
this value, e.g. 2 for line objects, 8 for rectangles. The
replaceable operation LocCp returns the object-relative
location of a control point. The fixed operation
HighlightCp highlights a control point in one of the
styles: default (small square), guiding (larger square)
or pinned (an X). ClosestCp and FurthestCp are fixed

121

opera t ions t h a t enumera t e the control points for an
object and use LocCp to de te rmine the control poin t
closest and fu r thes t from a pa r t i cu l a r coordinate. They
are used to de te rmine g~.iding and p inned control
points. Rectangles , graphics f rames and text f rames
have the same number and a r r a n g e m e n t of control
poin ts and so use the same rea l iza t ions for CountCp
and LocCp. This increases code sha r i ng so t ha t only 2
rea l i za t ions for 2 sepa ra te rep laceable opera t ions are
needed to i m p l e m e n t a l l the control point behav iors for
3 classes of objects. This is typical of the code sha r i ng
benef i ts of the t r a i t mechanism.

A n c h o r e d F r a m e is the class t r a i t for the graphics
f rame t h a t is associa ted with the anchor character .
There is no screen-vis ib le e l emen t for th is object. The
keyboard inse r t of an graphics frame ac tua l ly creates
two objects, an anchored frame with a g raphics frame
inside it. I t is the graphics frame tha t is the vis ible
box. Anchored f rame objects are also used to anchor
equat ions in text .

An anchored f rame object forms the bounda ry
be tween the non-graphics and graphics domains . A
page column is a ver t ica l l i s t of left edge a l igned text
blocks and anchored frames. The one and only child of
the anchored f rame is a graphics frame tha t m a y be
a l igned f lush left, centered or flush r i gh t wi th in the
anchored f rame as de t e rmined by a proper ty on the
graphics f rame proper ty sheet. Wi th in the graphics
f rame there a re no res t r ic t ions on object a r r angemen t .

L ine is the class t r a i t for graphics l ines. Its s ta te
r e t a ins the proper t ies shown in f igure 5.

T e x t B l o c k is the class t r a i t for objects t h a t have
t ex tua l content . F u r t h e r de ta i l s about th is t r a i t are
beyond the scope of th is discussion. Text blocks and
anchored f rames are the only objects t ha t exis ts in a
document column.

Note t h a t the Schema t r a i t def ines opera t ions for
a sk ing an object i ts size and l o c a t i o n bu t does not
define cor responding s ta te var iab les . Also note t ha t
the rep laceab le locat ion query is a reques t to a pa r en t
object for the locat ion within the parent of a child
object, i.e. a pa r en t - r e l a t i ve location. This is done, as
we discuss below, for f lexibi l i ty and economy of
s torage and for performance.

I t was fel t bes t not to force al l classes to store the i r
size in the same m a n n e r a t the Schema level because
the t r a i t is used as a component t r a i t for a la rge
n u m b e r of c lasses each wi th possibly qui te di f ferent
behavior , e.g. a hor izonta l l i s t - l ike object m a y
de te rmine i ts size by s u m m i n g the widths of i ts
ch i ld ren and use the he igh t of i ts t a l les t child as i ts
own h e i g h t whi le a g raphics object m a y store th is
in format ion in i ts s ta te . This j u d g e m e n t has been
shown correct by the d ivers i ty of methods for
de t e rming size t ha t now exis t as the S t a r software has

m a t u r e d and new features , objects and behav iors have
been implemented . I t is qui te common for a t r a i t to
define a behavior , such as Schema Size, t ha t requ i res
the cooperat ion of a l l objects t h a t ca r ry i t in order to
complete the behavior .

For per formance reasons the f u n d a m e n t a l locat ion
query is in t e rms of locat ion wi th in parent . D i sp lay ing
an object or c h a n g i n g i ts locat ion on the screen should
not requi re c h a n g i n g i ts s ta te .

For example , the S t a r works ta t ion processor has
ins t ruc t ions t ha t suppor t moving b i t s from one pa r t of
the screen to another . Scro l l ing a page upward is
mere ly a m a t t e r of moving ex is t ing screen b i t s and
p a i n t i n g new bi t s into the vaca ted port ion of the
window; none of the scrolled objects needs to be told to
modify any of the i r s tate . This processor suppor t also
aids performance because i t is not necessary to invoke
the Paint opera t ion for objects t ha t a l r eady have the i r
image on the screen.

Also, c h a n g i n g the size of an object or de le t ing an
object nea r the front of a document does not requi re
chang ing the s ta te of al l fol lowing objects in the
document .

W h e n the screen locat ion of an object is needed for
an opera t ion the object is passed i ts screen locat ion as a
p a r a m e t e r or i t invokes the opera t ion ScreenLocChild
on i t parent .

V. T w o E x a m p l e s

S t a r g raphics was the f irst major piece of S t a r
software des igned in te rms of t r a i t s and t ha t used the
full gene ra l i t y of the mechan i sm. Pieces of software
des igned or imp lemen ted pr ior to graphics have
subsequen t ly been conver ted to the t ra i t s mechanism.
In th is section we will descr ibe two in te rac t ions
be tween the tr-aits p resented in section III. We first
show how the GSchema t r a i t completes the Schema
size and locat ion behaviors and second show how i t
extends the Schema t r a i t for po in t ing behavior .

The GSchema s ta te records a size and parent -
r e l a t ive location. F ixed GSchema opera t ions al low
this in format ion to be accessed and changed. Al l
GSchema objects use the same rea l iza t ion for the
Schema rep laceab le opera t ion RelLocChild which
invokes the fixed GSchema opera t ion GetRel LocSelf on
the chi ld object. Note t ha t for a g raphics object

GSchema.GetRel LocSelf[object]

r e t u rn s the same va lue as

Schema.RelLocChild[
T reeE lemen t .Ge tPa ren t [object], object]

Objects t ha t ca r ry the Schema t r a i t are responsible
for a r e c t a n g u l a r pa tch of the screen. Among s ib l ing
objects th is m a y be sole respons ib i l i ty , as is the case
be tween page objects, or m a y be a shared

122

responsibi l i ty , as is the case between over lapp ing
graphics objects.

Sole vs sha red respons ib i l i ty has i n t e r e s t i ng
impl ica t ions for the imp lemen ta t ion of ima g ing
behaviors . We will look a t the po in t ing and select ing
behav ior of objects.

The document object carr ies the Lis tSchema t r a i t
and is the p a r e n t of page objects. I t is qui te easy for a
document to de te rmine which page conta ins the cursor
and then pass the buck for processing the po in t ing
act ion to t ha t page. As long as the cursor r ema ins
wi th in the bounds of the window d i sp l ay ing the
document and wi th in the bounds of the page, the page
object has sole respons ib i l i ty for t r ack ing the
movement of the cursor, for provid ing user feedback in
the form of h igh l i gh t i ng and for m a k i n g a selection
when the user re leases the mouse but ton. I f the cursor
leaves these bounds with the but ton st i l l depressed the
page passes respons ib i l i ty back to the document object
for cont inued processing. A page sat isf ies i ts
obl iga t ion by pass ing the buck to the column
con ta in ing the cursor, etc.

When the user re leases the button, the cur ren t ly
po in ted-a t object reg is te rs i t se l f as the cur ren t
selection with a centra l mechanism. Subsequen t user
ed i t ing act ions are sent to i t v ia the Schema Edit
operat ion. I t is up to the object to decide how to
respond to the ed i t ing action, e.g. graphics l ines ignore
typing.

This method for but ton processing is embodied in
the Schema rep laceable operat ion PointedAt.
P a r a m e t e r s for the opera t ions are the object being
asked to process the po in t ing action, i ts screen
location, a t r ack ing region, the cur ren t cursor location
and the s ta te of the mouse but tons. The r e tu rn va lue
for the opera t ion is an upda ted cursor locat ion and an
upda ted mouse but ton s ta te . The object mus t t rack the
cursor as long as i t is in the t r ack ing region and mus t
r e tu rn control when the cursor leaves the region.

The semant ics of Po in tedAt were des igned for the
non-graphics domain where nes ted l is t - l ike
a r r a n g e m e n t s p redomina te , e.g. pages in documents,
columns in pages. L is t - l ike a r r a n g e m e n t s also
predomina te outside windows but a descr ipt ion of the i r
uses there is beyond the scope of this discussion.

The Lis tSchema t r a i t provides a buck-pass ing
rea l i za t ion for Po in tedAt t h a t is used by a lmost al l
objects ca r ry ing the L i s tSchema t ra i t .

S ib l ing graphics objects m u s t share respons ib i l i ty
for point ing , eg. po in t ing inside the b o u n d a r y of a
rec tangle m a y rea l ly lead to the selection of some other
object. I f the user points a t the le t te r "x" in "Text" in
f igure 6a the text f rame does not al low the user to point
th rough to the rec tangle unde r it. I f the user points a t

the upper left corner of the tex t f rame in f igure 6b the
user is po in t ing through the rectangle. This s h a r i n g
behav io r is imp lemen ted by the GSchema operation
Contend descr ibed below.

If the cursor is posi t ioned inside a graphics f rame
and a mouse bu t ton is pushed, the l i s t - l ike Po in tedAt
rea l i za t ion behav ior descr ibed above resolves the
cursor to the window con ta in ing the cursor, the
document wi th in the window, the proper page, the
proper column and f ina l ly to the anchored f rame
wi th in the column.

The anchored f rame 's rea l iza t ion for Po in tedAt is to
e n u m e r a t e i t descendants and ask each how much
in t e re s t i t has in the cu r ren t cursor position. The chi ld
wi th the g rea tes t in t e res t is passed the buck for
processing the po in t ing action by invoking i ts
Po in tedAt rea l iza t ion . The t r ack ing region i t is passed
is very smal l , a box about 1/8" square. This al lows the
anchored frame to rega in control and re-poll i ts
descendan ts i f the user moves the cursor any
s ign i f ican t amount . The GSchema opera t ion Contend
is the opera t ion used to ask a graphics object how much
in t e re s t i t has in the cur ren t cursor position. The
descendan ts are e nume ra t e d top-down and
enumera t i on stops when al l have been enumera t ed or
one of the descendants says stop, e.g. the text f rame in
f igure 6a when the cursor is po in t ing at the l e t t e r"x" .

Ra the r than change the semant ics of Poin tedAt for
g raphics objects, or rep lac ing i t completely wi th a new
set of opera t ions to do po in t ing resolution, we mere ly
added a pre-process ing phase by adding Contend. The
ex t end ing of behav iors by addi t ion, not rep lacement , of
opera t ions is a capab i l i ty offered by the t r a i t s
mechan i sm and used widely th roughout Star .

Note also t ha t the user is a l lowed to but ton down
nea r a graphics e l emen t and see i t h ighl igh t , move the
mouse with the bu t ton st i l l down out of the graphics
f rame and poin t to a le t te r in the ma in document text
and see the graphics e l emen t de -h igh l igh t and the
le t te r h igh l igh t , cont inue d ragg ing the mouse out of
the document window and point to an icon and see the
le t te r de -h igh l igh t and see the icon h igh l i gh t and then
select the icon by r e l eas ing the but ton.

Al l this is possible as a single user action. In the
t r ad i t i ona l sense th is m a y be thought of as
a u toma t i c a l l y i nvok ing three edi tors in succession, the
graphics editor, the text editor and the desktop editor,
and pass ing control be tween them when in r ea l i t y we
are t r a v e r s i n g a t ree of objects and a sk ing each to
exh ib i t i ts own behavior . The implemen ta t ion
corresponds to th is model and for this reason there is
no graphics editor per se tha t is invoked by the S t a r
user, there are only graphics behaviors t ha t are
exh ib i t ed in response to user act ions and these
behav io rs a re ava i l ab le a t al l t imes.

123

Computer Graphics Volume 16, Number 3 July 1982

VI. Trait S u m m a r y

The following trait summary is in the order they
were introduced above. Additional state variables and
operations beyond the scope of this discussion are
represented as "...".

trait name: T r e e E l e m e n t
state: next, parent, eldest
component traits: none
f ixed operations: GetNext, SetNext, GetParent,
SetParent, GetEIdest, SetEIdest
replaceable operations: none

trait name: Schema
state: none
component traits: TreeElement
f ixed operations: ScreenLocChild
replaceable operations: Size, Paint, PointedAt, Edit,
RelLocChild, ...

trait name: GSchema
state: size, location in parent, ...
component traits: Schema
f ixed operations: GetSize, SetSize, GetRelLocSelf,
SetRelLocSelf
replaceable operations: Contend

trait name: Lis tSchema
state: margin, spacing, color
component traits: Schema
f ixed operations: ...
replaceable operations: ...

trait name: HasCp
state: none
component traits: none
fixed operations: HighlightCp, ClosestCp, FurthestCp
replaceable operations: CountCp, LocCp

trait name: Line
state: width, style, line endings, constraint
component traits: GSchema, HasCp
f ixed operations: none
replaceable operations: none

trait name: TextBlock
state: text contents, ...
component traits: Schema
f ixed operations: ...
replaceable operations: ...

VII. C o n c l u s i o n s

Adopting an object-oriented implementation and
the traits mechanism has been a success.

The initial graphics design and implementation
(without bar charts and text frames) was done in one
work year by a new hire who knew nothing about the
Mesa language or the Star object-oriented
methodology or the traits mechansim. This was in
large part due to the building block nature of the
methodology. Also the graphics functional

specification had already been written, and one of the
authors had validated the graphics user interface by
prototyping on the Xerox Alto using a different
implementation technique.

Subsequent to graphics, most of Star has been
converted to this methodology, and three other major
pieces of software have been undertaken: an equations
editing capability, a 3720 emulations window, and a
table editing capability. All are having equally good
results.

The trait mechanism has allowed a rather
straightforward mapping of Star UI elements to
internal implementing objects.

R E F E R E N C E S

1. G. Curry, L. Baer, D. Lipkie and B. Lee, "Traits -
An Approach to Multiple-Inheritance Subclassing,"
Conference on Office Automat ion Systems,
Philadelphia, Penn., June 1982.

2. E. Harslem and L.E. Nelson, "A Retrospective on
the Development of Star," submitted to 6th
International Conference on Software Engineering;
Tokyo, Japan, Sept, 1982.

3. C. Irby, L. Berginsteinsson, T. Moran, W. Newman
and L. Tesler, "A Methodology for User Interface
Design", Systems Development Division, Xerox
Corporation, January 1977.

4. J. Mitchell, W. Maybury and R. Sweet, "Mesa
Language manual," Technical Report CSL-79-3, Xerox
Corp., Palo Alto Research Center, Palo Alto, CA, April
1979.

5. J. Seybold, "Xerox's 'Star'" in The Seybold Report,
Media, Pennsylvania: Seybold Publications, v. 10, no.
16, 1981..

6. D. Smith, C. Irby, R. Kimball and E. Harslem, "The
7tar User Interface: An Overview," N C C '82.

7. D. Smith, C. Irby, R. Kimball, B. Verplank, and E.
Harslem, "Designing the Star User Interface," Byte, v.
7, no. 4, 1982.

8. L. Tesler, "The Smalltalk Environment", Byte, V. 6,
no. 8, 1981.

9. C. Thacker, E. McCreight, B. Lampson, R. Sproull
and D. Boggs, "Alto: A Personal Computer," Computer
Structures: Principles and Examples , D. Siewiorek, C.
Bell and A. Newell, editors, McGraw-Hill, 1982.

124

