
 1

The Royal Society Clifford Paterson Lecture, 1999
Sentient Computing

By Andy Hopper

University of Cambridge
and

AT&T Laboratories Cambridge

Sentient computing is the proposition that applications can be made more responsive and
useful by observing and reacting to the physical world. It is particularly attractive in a
world of mobile users and computers.

The paper presents a classification and quantification of sensor information together with
a description of a method for altering the behaviour of arbitrary terminal devices. It also
presents a framework for “programming with space” which can associate space-related
events with actions. Consideration is given to the applications made possible by such
systems.

Sentient computing

Computers have become integral to our lives, but for many the gap between man and
machine is so large as to be effectively unbridgeable. Central to any good working
relationship is a degree of mutual understanding between the two parties. The problem
with conventional human-computer interaction is that responsibility for understanding, or
the lack of it, lies wholly with the user.
 The office PC illustrates this. Outwardly it seems different from earlier models of
computing, such as time-sharing systems or even the mainframe. But, take away the
mouse-driven user interface and the fundamentals remain unchanged. The burden for
understanding lies wholly with the user. Not so long ago computers came with a team of
dedicated operators. In the PC era everyone is his or her own operator. No wonder so
many PCs are only used to a fraction of their potential. It does not have to be this way.
 Instead of bringing the user to the computer, let us take into account that people
live and work in a real physical world, and make this notion – the concept of space –
integral to the operation of our computer systems. We need to make computer systems
aware of the physical environment – shifting part of the onus of understanding from user
to machine. Awareness comes through sensing, and that implies the need for appropriate
sensor technologies to collect status and location data. Applications can now be aware of
their physical environment. They know where people and devices are and what devices

 2

can do. Crucially, the user interface is no longer based on some abstract metaphor of a
physical object, but can be based on space itself. So, when I walk into my study at home,
my PC seamlessly and automatically displays the desktop from my office machine – my
proximity to my home PC is the prompt to the user interface. I pick up a CD cartridge in
my office, and as I open it the appropriate sound track immediately starts to play. Again,
a real, intuitive physical action initiates an appropriate response, made possible by an
underlying computer system in which location and status data extends throughout the
physical environment. I call this approach sentient computing.
 The ultimate justification and test of sentient computing will be its capacity to
deliver benefits to users, enabling them to interface directly to devices and expressing
complex configuration requirements in a simple way. Reaching this goal depends on our
capacity to address a broad spectrum of conceptual and technical challenges.
 The central requirement in any computer application is the need to achieve the
right conceptual mapping between the physical and the logical. Applications are about
physical things – people, PCs, telephones, printers, whatever. A computer program is
ultimately a logical abstraction, and the art of the system designer lies in bridging the
conceptual gulf between these two radically different domains. The first challenge in
sentient computing is to determine the appropriate meeting point between the physical
notation of space and the logical constructs of our computer system. Do we do it at the ad
hoc, application-specific level? That would work, but at the expense of programmers
constantly ‘re-inventing the wheel’. Different sentient computing applications will share
common features and attributes, suggesting a systems-level approach might be more
appropriate, with standardised support for programs that have to capture and express the
concept of space. Alternatively, we could make space an integral part of the
programming language. But that would necessitate the creation of libraries for
representing standardised 3D objects. Any library comprehensive enough to be
universally applicable would, almost certainly, be over specified for the great majority of
applications.

Underlying all this, are twin problems of computational efficiency and
performance. Our logical representation of space has to be appropriate to the application
in hand. But what do we mean by appropriate? Too exact a representation will make the
task of maintaining our store of spatial data difficult. We want systems that react to our
actions with no perceptible delay, necessitating the updating of spatial information in real
time, or near-real time. So how should we associate spatial properties with things? Do we
have to use a 3D representation? Under what circumstances would a 2D representation
suffice? Can we use regions around things? Above all, what are the basic properties of
things and the logical constructs necessary to our computing models that will turn the
vision of sentient computing into an everyday reality?

The sentient computing project at AT&T Laboratories Cambridge and the
University of Cambridge is an experimental programme designed to provide answers to
these questions. The work of the programme is structured around three basic themes:
sensors (that tell us about the spatial properties of objects), devices (the PCs, printers, and
other output devices used in our applications), and the platforms (that connect sensors
and devices together). Surrounding these three basic elements we have the appropriate
architecture that gathers all the elements into a complete functioning system (Fig. 1).

 3

Sensors

Sensors tell us about the location or position of things. To reflect the requirements

of different applications, we take three different approaches to categorising the concept of
position. First, there is containment, where we say that an object is within this container,
e.g. a room, so that the application could register the fact that I’m in my office or my
study at home. Secondly, there is proximity, where we register that we are close to
something, and finally we use co-ordinate systems, which provide a point location in
space, subject to some error value. These categories are not hard and fast and can blend
together. Small containers are very similar to a co-ordinate system, and proximity has
much in common with the concept of containment.

Existing systems not primarily designed as sensors can generate a valuable
amount of spatial information. In the case of containment, a satellite telephony system
might provide an initial containment within one twentieth of the world, which, depending
on the number of antennas on the satellite, can then be further partitioned into up to 50
subsections. That is still very course granularity. With GSM, the digital mobile phone
system, we can do significantly better, at the expense of worldwide coverage, realising a
container some 25-km across. Third generation cellular systems, such as UMTS, will
offer a very similar performance. Indoor wireless LANs give us even finer granularity
and provide a container about 30m in diameter.

Our first experience of developing a sensor specifically to provide spatial
information originated in the early 1990s in the form of the Active Badge (Fig. 2).
Personnel and equipment can be tagged using the badge, which transmits a unique
infrared signal every few seconds. The transmissions are diffuse and receivers in a room
pick up the signal, so the badge gives room-scale containment. It tells us who and what is
where, and the software system which makes this information available to others, is still

Fig 1 Components for Programming with Space

Devices

Platforms

Sensors

Networks

+Architecture
Connections

 4

very popular. The Active Badge has been the inspiration that got us started on this whole
line of enquiry.

In the case of proximity - allowing, for example, a laptop and a telephone to
exchange short dialling codes - promising commercial systems are starting to appear. The
radio-based Bluetooth system offers a range of round 10 m, while for the infra-red based
IrDA the range is more like 3 m. We have built our own wireless-based proximity
system, which we call PICOnet.

PICOnet is envisaged as the minimalist building block of our system – the
simplest of proximity sensors for the simplest of nodes. It appears to be always on, but
uses little power, so the batteries may never have to be changed. Our PICOnet radio
operates at 418 MHz, gives a data rate of approximately 5 kb/s, and has a range of around
5 meters depending on the antenna design. There are two modes of operation. In the basic
mode, the PICOnet node operates as a beacon, i.e. transmit only. The node has a very low
power timing circuit, so it can count time with a minimal expenditure of energy. Then at
regular intervals, it transmits a very short message, ending the message with an
announcement of the time of the next transmission. A slightly more complex variant
combines a transmitter and a receiver. This node also transmits at regular intervals, but
after every transmission it starts listening for a short period, and then it shuts down. The
challenge is to exploit the facilities offered by these simple operational modes in order to
effect the seamless interworking of devices in close proximity.

There are three issues we have to deal with: discovery, description and
communication. Consider a situation where there are billions of PICOnet devices all over
the world. They are mostly inactive, but nevertheless, should by chance two nodes
happen to pass, then they have to wake up and register each other’s presence. This
fundamental discovery problem can be addressed in a number of ways. Probably the
simplest is the bilateral rendezvous, where the node that operates as a receiver/transmitter

Fig 2 Containment: Active Badge

Infra-Red Network
10 meter range
diffuse
room-scale location

 5

switches on its receiver and listens for a possible transmission from an adjacent node.
Once a transmission is detected, the time for the next transmission will be known, and the
two nodes can then operate in a deterministic manner. Another possibility is third-party
rendezvous where a node is held permanently in receiver mode, possibly drawing power
from a plentiful source. This node acts as a source of information on all local
transmissions, and can therefore facilitate the discovery process for other node-pairs in its
neighbourhood.

All the nodes in a PICOnet system are completely general purpose, with every
node responsible for describing its services and requirements to the rest of the world.
This description function is provided by a node’s attribute store.

For communication between PICOnet nodes we can use an attribute store as a sort
of bulletin board whereby node A posts messages to node B. There is no support for hop-
by-hop routing which is the simplest way of maintaining the objective of location by
proximity. If node A receives a message from node B, and node B describes itself as a
fan, then node A knows it is close to a fan – there is no other way it could have got the
original message.

Effecting a consistently reliable rendezvous between nodes, which spend most of
their time in a deep sleep mode, remains a fundamental problem. Another challenge is
how to attach such systems to those that can only operate by placing much stricter timing
constraints on communicating devices, for example the Internet Protocol.

We have built a whole series of PICOnet-enabled devices (Fig. 3) to help us
understand issues like the functioning of a complete system and the interoperation of
PICOnet with other systems. My CD cartridge demo uses PICOnet. There is a PICOnet
node in every cartridge. You pick it up, you open it and the right music starts to play from
nearby speakers. It is simple, easy to grasp, and users understand it immediately.

Co-ordinate systems provide our final approach to categorising position. Outside
the Global Positioning System (GPS) can be used, which, when used in combination with
maps, has given rise to a large number of applications. GPS gives an error value of
around 30 meters most of the time, although greater precision can be achieved. At the

Fig 3 Proximity: PICOnet Devices

 6

Cambridge Laboratories we have been working on a co-ordinate system for indoors. This
uses a tag, which incorporates ultrasonic transmitters and an array of ceiling-mounted
detectors. A detector on the far side of the room will register a pulse later than a detector
directly above an object. Using this differential timing information, we can calculate the
position of objects to within a few centimetres almost all the time. Bats find their way
around using much the same principle, so we call our system the Active Bat (Fig. 4). Fix
two transmitters on a rigid object and you can work out its orientation. The Active Bat is
a very versatile system; clearly there will be many sentient computing applications that
do not require this level of precision and refinement. However, as a research tool, it is
providing us with valuable information on what can be done when you have very detailed
in positional data.

Devices and platforms

In sentient computing, a device can be anything that takes output from the

distributed computing environment. Naturally, this includes conventional computing
devices like workstations, PCs or the various forms of personal digital assistant (PDA),
but it also embraces consumer products like refrigerators and microwaves, and new
devices into the future. We need a platform for connecting and displaying on all these
interesting devices in a ubiquitous way.
 One way to do this is to tunnel connections to all devices using a simple device-
independent protocol. We have devised one such ubiquitous platform called the Virtual
Network Computer (VNC). In our approach the viewer, at the receiving end of the
connection, has no state, it is just something that visually displays information. All the
processing is centralised on a server at the sending end of the connection. Because the
viewer has no state, it does not matter if it crashes. The application carries on running,

Fig 4 Co-ordinate: Active Bat

Mobile
Transmitter

(Bat)

Fixed
Receivers

Ceiling

 7

and the user can simply switch to another display device. The other direction, viewer to
server, is also stateless – it is just key strokes and clicks - making our viewer a
particularly simple version of the so-called thin client (Fig. 5.)

 The absence of state eliminates any requirement for synchronisation. You can
leave your desk, go to another machine, whether next door or on the other side of the
world, reconnect to your desktop and finish the sentence you were typing. Even the
cursor will be in the same place. The appearance is of total mobility, although all we are
doing is showing a display in different locations.
 The technology underlying the VNC is a version of the remote frame buffer
protocol. At the server end of the connection everything we want to display is
decomposed into a series of rectangles, with every rectangle characterised by its size,
colour and position on the screen. The rectangle descriptions are sent to the viewer,
which recreates the original image by redisplaying the individual rectangles. As the
viewer requests the next set of updates the protocol can cope with servers and clients of
varying speeds. It is a bit like the old character-based dumb terminal, only now we are
displaying rectangles rather than characters.
 The low-level nature of the protocol is the key to device independence, providing
a platform that supports the connection of any device to anything (Fig. 6). The
connections can be one-to-one (fixed or mobile), and the streams can be split giving one-
to-many, many-to-one, and many-to-many.
 There is a potential difficulty associated with this model of stateless viewers in
which everything is potentially connected to everything else. We have already established
that timing constraints mean that there is a fundamental problem in effecting a
rendezvous, or connection, between pairs of PICOnet nodes. Now we are postulating a
model of computing built on the premise of universal interconnection.

Fig 5 VNC - The Platform

Rectangle
descriptions

Keyboard / click
events

Server Viewer

 8

Architecture

We have sensors generating a wealth of location information; we have devices

and a platform for connecting to any device. Now we need to glue everything together,
providing our applications with suitable abstractions to support space-aware
programming.
 Our sensors provide raw spatial facts about objects. They tell us where an object
is, and, possibly, the direction in which an object is pointing. Location-aware applications
need more than raw spatial data, they need to be notified of spatial relationships between
objects that are significant in terms of advancing the execution of the application. But
how do we decide whether a spatial relationship is significant? The approach we have
adopted operates on the basis of zones of containment surrounding objects. In Figure 7
(image on the left) X represents a person and K a keyboard. Now suppose we have an
application that needs to be notified when person X is in a position to use keyboard K –
when X is possibly ‘holding’ K. If the zone of confinement of K overlaps the zone of
confinement of X, then the holding condition is held to be true and the application
receives the appropriate trigger. The situation on the right of Figure 7 indicates how this
principle could be applied to support a multi-camera video conferencing system, giving
participants the freedom to look in different directions while talking, or even walk around
their offices.
 Note Figure 7 is a 2D representation of what in reality would be a 3D
environment. This simplification can be made because, in general, people and objects
tend to remain relatively fixed in the vertical plane. However, the principle can be
extended to 3D if required.

Configurations

1 to 1 (fixed)
1 to 1 (mobile)

1 to N
N to 1

N to M (Any-to-any)

Fig 6 VNC - Configurations

Servers

Unix
PC
MAC
.
.
New appliance

Viewers

Unix
PC

Mac
.

WinCE
Pilot

.
Java

.
New appliance

 9

The principle of turning raw spatial data into application-significant events
through geometric containment and overlapping is reasonably straightforward. You can
think of it as the mouse/desktop metaphor mapped onto the real world. However, once
you start thinking about real applications, with a population possibly comprising
hundreds of thousands of objects, then there is the problem of how to implement this
principle in a computationally efficient manner. Every time an object moves, a
calculation must be done to identify possibly significant overlaps and send the
appropriate application callbacks. In a realistically sized system, there could easily be a
large number of object moves every second. It is thus necessary to represent the
containment regions with flexibility of precision together with reference counts of how
applications have registered interest at a particular level.

Now we can put our architecture together to see how it supports applications. It
starts with the sensor events, which are related to the movement of real objects.
Applications register the set of objects in which they have a particular interest, and are
fed callbacks indicating the occurrence of significant spatial relationships between
objects. These callbacks are generated via geometric containment and overlap. When an
application receives a callback, it executes an appropriate action as specified by the
application program.

The operational system that has been built uses a variety of sensors; allows space
representations to change quickly; provides an appropriate governing event logic; uses
caches and proxies to handle large volumes of data quickly; and executes in real time to
satisfy a human in the loop.

Applications and the future

Applications are the mechanism through which we can test the principles
underlying sentient computing. The automatic generation of my office desktop on my

Fig 7 Evaluating Spatial Facts

Person X is “holding”
keyboard K

X
K

Person X can be “seen” by camera B but
not by camera A

X

B

A

 10

home PC is made possible by a variant of an application we call the ‘follow-me desktop’.
This uses an Active Bat desktop sensor, with the ability to register significant spatial
relationships between the desktop and the viewer, i.e. it can determine whether the viewer
is facing the desktop and vice versa. Once this containment overlap has registered, then
the application tunnels the user’s desktop onto the new device, be that a workstation, a
PC, the refrigerator door, or some new device yet to be invented. The platform that makes
this possible is the VNC technology, with its capacity to re-route whatever desktop, to
wherever you like and then display it on whatever you like. I do not have the Active Bat
system in my home, but I do have the Active Badge, and I can use this to register my co-
location with my home PC. Four steps take me across my study to my desk, and in this
time my desktop is on my screen ready for me to start work.

Much of the potential attractions of video conferencing can be undermined by the
need for speakers to address a single camera throughout the duration of the call. It may
seem unnatural, people want to feel free to look around, maybe even get up and walk
around their room. A possible solution is to have multiple cameras in a room, combined
with some technique for determining which camera to use at any instant. Machine vision
and scene analysis is one of the most difficult and challenging research areas so using
such technologies is unlikely to provide the same level of robustness as a tagged system.
The ‘follow-me video phone’ uses a sensor, the Active Bat, and a display device that is
fast enough to provide a VNC moving video image.

So where is this entire research theme heading? Initial applications of sentient
computing will almost certainly be within vertical markets. It is possible PICOnet-based
guidebooks will enrich our visits to museums and art galleries; while the VNC-based
follow-me desktop has obvious attractions as a means of distributing personal desktops
throughout a closed working environment such as the hospital or factory. However, it
would be surprising, and not a little disappointing, if the long-term role of sentient
computing was confined to such geographically restricted and application-specific
domains.

We live in a world in which computing, and the technology to interconnect
computers, becomes cheaper year by year. In due course, it is likely that there will be
hundreds of communicating devices for each one of us. How then will all these devices
be administered? How will they interoperate? And how will they be personalised to that
we know how to use them? It may be this will be done automatically, through a process
in which physical information about the position of objects is likely to be as important as
logical information about their relationship. In short, programming with space – possibly
the key to ubiquitous, pervasive, sentient computing and the communications world of
tomorrow.

I thank the following who have been in involved in the sentient computing project
or have otherwise helped me with this lecture: MD Addlesee, F Bennett, DJ Clarke, R
Dettmer, AC Harter, SE Hodges, AH Jones, TJ Richardson, Q Stafford-Fraser, PJ
Steggles, AMR Ward, MV Wilkes, KR Wood.

References can be found at: www.uk.research.att.com/~hopper/publications.html

