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Sentient computing is the proposition that applications can be made more responsive and 
useful by observing and reacting to the physical world.  It is particularly attractive in a 
world of mobile users and computers.  
 
The paper presents a classification and quantification of sensor information together with 
a description of a method for altering the behaviour of arbitrary terminal devices.  It also 
presents a framework for “programming with space” which can associate space-related 
events with actions.  Consideration is given to the applications made possible by such 
systems.  
 
 
 
 
 
 

Sentient computing 
 
Computers have become integral to our lives, but for many the gap between man and 
machine is so large as to be effectively unbridgeable. Central to any good working 
relationship is a degree of mutual understanding between the two parties. The problem 
with conventional human-computer interaction is that responsibility for understanding, or 
the lack of it, lies wholly with the user. 
 The office PC illustrates this. Outwardly it seems different from earlier models of 
computing, such as time-sharing systems or even the mainframe. But, take away the 
mouse-driven user interface and the fundamentals remain unchanged. The burden for 
understanding lies wholly with the user. Not so long ago computers came with a team of 
dedicated operators. In the PC era everyone is his or her own operator. No wonder so 
many PCs are only used to a fraction of their potential. It does not have to be this way. 
 Instead of bringing the user to the computer, let us take into account that people 
live and work in a real physical world, and make this notion – the concept of space – 
integral to the operation of our computer systems. We need to make computer systems 
aware of the physical environment – shifting part of the onus of understanding from user 
to machine. Awareness comes through sensing, and that implies the need for appropriate 
sensor technologies to collect status and location data. Applications can now be aware of 
their physical environment. They know where people and devices are and what devices 
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can do. Crucially, the user interface is no longer based on some abstract metaphor of a 
physical object, but can be based on space itself. So, when I walk into my study at home, 
my PC seamlessly and automatically displays the desktop from my office machine – my 
proximity to my home PC is the prompt to the user interface. I pick up a CD cartridge in 
my office, and as I open it the appropriate sound track immediately starts to play. Again, 
a real, intuitive physical action initiates an appropriate response, made possible by an 
underlying computer system in which location and status data extends throughout the 
physical environment. I call this approach sentient computing. 
 The ultimate justification and test of sentient computing will be its capacity to 
deliver benefits to users, enabling them to interface directly to devices and expressing 
complex configuration requirements in a simple way. Reaching this goal depends on our 
capacity to address a broad spectrum of conceptual and technical challenges. 
 The central requirement in any computer application is the need to achieve the 
right conceptual mapping between the physical and the logical. Applications are about 
physical things – people, PCs, telephones, printers, whatever. A computer program is 
ultimately a logical abstraction, and the art of the system designer lies in bridging the 
conceptual gulf between these two radically different domains. The first challenge in 
sentient computing is to determine the appropriate meeting point between the physical 
notation of space and the logical constructs of our computer system. Do we do it at the ad 
hoc, application-specific level? That would work, but at the expense of programmers 
constantly ‘re-inventing the wheel’. Different sentient computing applications will share 
common features and attributes, suggesting a systems-level approach might be more 
appropriate, with standardised support for programs that have to capture and express the 
concept of space. Alternatively, we could make space an integral part of the 
programming language. But that would necessitate the creation of libraries for 
representing standardised 3D objects. Any library comprehensive enough to be 
universally applicable would, almost certainly, be over specified for the great majority of 
applications. 

Underlying all this, are twin problems of computational efficiency and 
performance. Our logical representation of space has to be appropriate to the application 
in hand. But what do we mean by appropriate? Too exact a representation will make the 
task of maintaining our store of spatial data difficult. We want systems that react to our 
actions with no perceptible delay, necessitating the updating of spatial information in real 
time, or near-real time. So how should we associate spatial properties with things? Do we 
have to use a 3D representation? Under what circumstances would a 2D representation 
suffice? Can we use regions around things? Above all, what are the basic properties of 
things and the logical constructs necessary to our computing models that will turn the 
vision of sentient computing into an everyday reality? 

The sentient computing project at AT&T Laboratories Cambridge and the 
University of Cambridge is an experimental programme designed to provide answers to 
these questions. The work of the programme is structured around three basic themes: 
sensors (that tell us about the spatial properties of objects), devices (the PCs, printers, and 
other output devices used in our applications), and the platforms (that connect sensors 
and devices together). Surrounding these three basic elements we have the appropriate 
architecture that gathers all the elements into a complete functioning system (Fig. 1).  
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Sensors 

 
Sensors tell us about the location or position of things. To reflect the requirements 

of different applications, we take three different approaches to categorising the concept of 
position. First, there is containment, where we say that an object is within this container, 
e.g. a room, so that the application could register the fact that I’m in my office or my 
study at home. Secondly, there is proximity, where we register that we are close to 
something, and finally we use co-ordinate systems, which provide a point location in 
space, subject to some error value. These categories are not hard and fast and can blend 
together. Small containers are very similar to a co-ordinate system, and proximity has 
much in common with the concept of containment. 

Existing systems not primarily designed as sensors can generate a valuable 
amount of spatial information. In the case of containment, a satellite telephony system 
might provide an initial containment within one twentieth of the world, which, depending 
on the number of antennas on the satellite, can then be further partitioned into up to 50 
subsections. That is still very course granularity. With GSM, the digital mobile phone 
system, we can do significantly better, at the expense of worldwide coverage, realising a 
container some 25-km across. Third generation cellular systems, such as UMTS, will 
offer a very similar performance. Indoor wireless LANs give us even finer granularity 
and provide a container about 30m in diameter. 

Our first experience of developing a sensor specifically to provide spatial 
information originated in the early 1990s in the form of the Active Badge (Fig. 2). 
Personnel and equipment can be tagged using the badge, which transmits a unique 
infrared signal every few seconds. The transmissions are diffuse and receivers in a room 
pick up the signal, so the badge gives room-scale containment. It tells us who and what is 
where, and the software system which makes this information available to others, is still 

Fig 1 Components for Programming with Space
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very popular. The Active Badge has been the inspiration that got us started on this whole 
line of enquiry.  

In the case of proximity - allowing, for example, a laptop and a telephone to 
exchange short dialling codes - promising commercial systems are starting to appear. The 
radio-based Bluetooth system offers a range of round 10 m, while for the infra-red based 
IrDA the range is more like 3 m. We have built our own wireless-based proximity 
system, which we call PICOnet. 

PICOnet is envisaged as the minimalist building block of our system – the 
simplest of proximity sensors for the simplest of nodes. It appears to be always on, but 
uses little power, so the batteries may never have to be changed. Our PICOnet radio 
operates at 418 MHz, gives a data rate of approximately 5 kb/s, and has a range of around 
5 meters depending on the antenna design. There are two modes of operation. In the basic 
mode, the PICOnet node operates as a beacon, i.e. transmit only. The node has a very low 
power timing circuit, so it can count time with a minimal expenditure of energy. Then at 
regular intervals, it transmits a very short message, ending the message with an 
announcement of the time of the next transmission. A slightly more complex variant 
combines a transmitter and a receiver. This node also transmits at regular intervals, but 
after every transmission it starts listening for a short period, and then it shuts down. The 
challenge is to exploit the facilities offered by these simple operational modes in order to 
effect the seamless interworking of devices in close proximity. 

There are three issues we have to deal with: discovery, description and 
communication. Consider a situation where there are billions of PICOnet devices all over 
the world. They are mostly inactive, but nevertheless, should by chance two nodes 
happen to pass, then they have to wake up and register each other’s presence. This 
fundamental discovery problem can be addressed in a number of ways. Probably the 
simplest is the bilateral rendezvous, where the node that operates as a receiver/transmitter 

Fig 2 Containment: Active Badge
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switches on its receiver and listens for a possible transmission from an adjacent node. 
Once a transmission is detected, the time for the next transmission will be known, and the 
two nodes can then operate in a deterministic manner. Another possibility is third-party 
rendezvous where a node is held permanently in receiver mode, possibly drawing power 
from a plentiful source. This node acts as a source of information on all local 
transmissions, and can therefore facilitate the discovery process for other node-pairs in its 
neighbourhood.  

All the nodes in a PICOnet system are completely general purpose, with every 
node responsible for describing its services and requirements to the rest of the world. 
This description function is provided by a node’s attribute store. 

For communication between PICOnet nodes we can use an attribute store as a sort 
of bulletin board whereby node A posts messages to node B. There is no support for hop-
by-hop routing which is the simplest way of maintaining the objective of location by 
proximity. If node A receives a message from node B, and node B describes itself as a 
fan, then node A knows it is close to a fan – there is no other way it could have got the 
original message. 

Effecting a consistently reliable rendezvous between nodes, which spend most of 
their time in a deep sleep mode, remains a fundamental problem.  Another challenge is 
how to attach such systems to those that can only operate by placing much stricter timing 
constraints on communicating devices, for example the Internet Protocol.  

We have built a whole series of PICOnet-enabled devices (Fig. 3) to help us 
understand issues like the functioning of a complete system and the interoperation of 
PICOnet with other systems. My CD cartridge demo uses PICOnet. There is a PICOnet 
node in every cartridge. You pick it up, you open it and the right music starts to play from 
nearby speakers. It is simple, easy to grasp, and users understand it immediately.  

Co-ordinate systems provide our final approach to categorising position. Outside 
the Global Positioning System (GPS) can be used, which, when used in combination with 
maps, has given rise to a large number of applications. GPS gives an error value of 
around 30 meters most of the time, although greater precision can be achieved. At the 

Fig 3 Proximity: PICOnet Devices
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Cambridge Laboratories we have been working on a co-ordinate system for indoors. This 
uses a tag, which incorporates ultrasonic transmitters and an array of ceiling-mounted 
detectors. A detector on the far side of the room will register a pulse later than a detector 
directly above an object. Using this differential timing information, we can calculate the 
position of objects to within a few centimetres almost all the time. Bats find their way 
around using much the same principle, so we call our system the Active Bat (Fig. 4). Fix 
two transmitters on a rigid object and you can work out its orientation.  The Active Bat is 
a very versatile system; clearly there will be many sentient computing applications that 
do not require this level of precision and refinement. However, as a research tool, it is 
providing us with valuable information on what can be done when you have very detailed 
in positional data. 

 

 
Devices and platforms 

 
In sentient computing, a device can be anything that takes output from the 

distributed computing environment. Naturally, this includes conventional computing 
devices like workstations, PCs or the various forms of personal digital assistant (PDA), 
but it also embraces consumer products like refrigerators and microwaves, and new 
devices into the future. We need a platform for connecting and displaying on all these 
interesting devices in a ubiquitous way. 
 One way to do this is to tunnel connections to all devices using a simple device-
independent protocol. We have devised one such ubiquitous platform called the Virtual 
Network Computer (VNC). In our approach the viewer, at the receiving end of the 
connection, has no state, it is just something that visually displays information. All the 
processing is centralised on a server at the sending end of the connection. Because the 
viewer has no state, it does not matter if it crashes. The application carries on running, 

Fig 4 Co-ordinate: Active Bat

Mobile
Transmitter

(Bat)

Fixed
Receivers

Ceiling



 7

and the user can simply switch to another display device. The other direction, viewer to 
server, is also stateless – it is just key strokes and clicks - making our viewer a 
particularly simple version of the so-called thin client (Fig. 5.) 

 The absence of state eliminates any requirement for synchronisation. You can 
leave your desk, go to another machine, whether next door or on the other side of the 
world, reconnect to your desktop and finish the sentence you were typing. Even the 
cursor will be in the same place. The appearance is of total mobility, although all we are 
doing is showing a display in different locations. 
 The technology underlying the VNC is a version of the remote frame buffer 
protocol. At the server end of the connection everything we want to display is 
decomposed into a series of rectangles, with every rectangle characterised by its size, 
colour and position on the screen. The rectangle descriptions are sent to the viewer, 
which recreates the original image by redisplaying the individual rectangles. As the 
viewer requests the next set of updates the protocol can cope with servers and clients of 
varying speeds. It is a bit like the old character-based dumb terminal, only now we are 
displaying rectangles rather than characters. 
 The low-level nature of the protocol is the key to device independence, providing 
a platform that supports the connection of any device to anything (Fig. 6). The 
connections can be one-to-one (fixed or mobile), and the streams can be split giving one-
to-many, many-to-one, and many-to-many. 
 There is a potential difficulty associated with this model of stateless viewers in 
which everything is potentially connected to everything else. We have already established 
that timing constraints mean that there is a fundamental problem in effecting a 
rendezvous, or connection, between pairs of PICOnet nodes. Now we are postulating a 
model of computing built on the premise of universal interconnection.  
 
 

Fig 5 VNC - The Platform
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Architecture 

  
We have sensors generating a wealth of location information; we have devices 

and a platform for connecting to any device. Now we need to glue everything together, 
providing our applications with suitable abstractions to support space-aware 
programming.  
 Our sensors provide raw spatial facts about objects. They tell us where an object 
is, and, possibly, the direction in which an object is pointing. Location-aware applications 
need more than raw spatial data, they need to be notified of spatial relationships between 
objects that are significant in terms of advancing the execution of the application. But 
how do we decide whether a spatial relationship is significant? The approach we have 
adopted operates on the basis of zones of containment surrounding objects. In Figure 7 
(image on the left) X represents a person and K a keyboard. Now suppose we have an 
application that needs to be notified when person X is in a position to use keyboard K – 
when X is possibly ‘holding’ K.  If the zone of confinement of K overlaps the zone of 
confinement of X, then the holding condition is held to be true and the application 
receives the appropriate trigger. The situation on the right of Figure 7 indicates how this 
principle could be applied to support a multi-camera video conferencing system, giving 
participants the freedom to look in different directions while talking, or even walk around 
their offices. 
 Note Figure 7 is a 2D representation of what in reality would be a 3D 
environment. This simplification can be made because, in general, people and objects 
tend to remain relatively fixed in the vertical plane. However, the principle can be 
extended to 3D if required. 
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The principle of turning raw spatial data into application-significant events 
through geometric containment and overlapping is reasonably straightforward. You can 
think of it as the mouse/desktop metaphor mapped onto the real world. However, once 
you start thinking about real applications, with a population possibly comprising 
hundreds of thousands of objects, then there is the problem of how to implement this 
principle in a computationally efficient manner. Every time an object moves, a 
calculation must be done to identify possibly significant overlaps and send the 
appropriate application callbacks. In a realistically sized system, there could easily be a 
large number of object moves every second. It is thus necessary to represent the 
containment regions with flexibility of precision together with reference counts of how 
applications have registered interest at a particular level.  

Now we can put our architecture together to see how it supports applications. It 
starts with the sensor events, which are related to the movement of real objects. 
Applications register the set of objects in which they have a particular interest, and are 
fed callbacks indicating the occurrence of significant spatial relationships between 
objects. These callbacks are generated via geometric containment and overlap. When an 
application receives a callback, it executes an appropriate action as specified by the 
application program.  

The operational system that has been built uses a variety of sensors; allows space 
representations to change quickly; provides an appropriate governing event logic; uses 
caches and proxies to handle large volumes of data quickly; and executes in real time to 
satisfy a human in the loop.  
 
 

Applications and the future 
 

Applications are the mechanism through which we can test the principles 
underlying sentient computing. The automatic generation of my office desktop on my 

Fig 7 Evaluating Spatial Facts
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home PC is made possible by a variant of an application we call the ‘follow-me desktop’. 
This uses an Active Bat desktop sensor, with the ability to register significant spatial 
relationships between the desktop and the viewer, i.e. it can determine whether the viewer 
is facing the desktop and vice versa. Once this containment overlap has registered, then 
the application tunnels the user’s desktop onto the new device, be that a workstation, a 
PC, the refrigerator door, or some new device yet to be invented. The platform that makes 
this possible is the VNC technology, with its capacity to re-route whatever desktop, to 
wherever you like and then display it on whatever you like. I do not have the Active Bat 
system in my home, but I do have the Active Badge, and I can use this to register my co-
location with my home PC. Four steps take me across my study to my desk, and in this 
time my desktop is on my screen ready for me to start work.  

Much of the potential attractions of video conferencing can be undermined by the 
need for speakers to address a single camera throughout the duration of the call. It may 
seem unnatural, people want to feel free to look around, maybe even get up and walk 
around their room. A possible solution is to have multiple cameras in a room, combined 
with some technique for determining which camera to use at any instant. Machine vision 
and scene analysis is one of the most difficult and challenging research areas so using 
such technologies is unlikely to provide the same level of robustness as a tagged system. 
The ‘follow-me video phone’ uses a sensor, the Active Bat, and a display device that is 
fast enough to provide a VNC moving video image.  

So where is this entire research theme heading? Initial applications of sentient 
computing will almost certainly be within vertical markets. It is possible PICOnet-based 
guidebooks will enrich our visits to museums and art galleries; while the VNC-based 
follow-me desktop has obvious attractions as a means of distributing personal desktops 
throughout a closed working environment such as the hospital or factory. However, it 
would be surprising, and not a little disappointing, if the long-term role of sentient 
computing was confined to such geographically restricted and application-specific 
domains. 

We live in a world in which computing, and the technology to interconnect 
computers, becomes cheaper year by year. In due course, it is likely that there will be 
hundreds of communicating devices for each one of us. How then will all these devices 
be administered? How will they interoperate? And how will they be personalised to that 
we know how to use them? It may be this will be done automatically, through a process 
in which physical information about the position of objects is likely to be as important as 
logical information about their relationship. In short, programming with space – possibly 
the key to ubiquitous, pervasive, sentient computing and the communications world of 
tomorrow. 
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