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Abstract. In this paper we present a novel framework for analysing
non-stylised motion in order to detect implicitly communicated affect.
Our approach makes use of a segmentation technique which can divide
complex motions into a set of automatically derived motion primitives.
The parsed motion is then analysed in terms of dynamic features which
are shown to encode affective information. In order to adapt our algo-
rithm to personal movement idiosyncrasies we developed a new approach
for deriving unbiased motion features. We have evaluated our approach
using a comprehensive database of affectively performed motions. The
results show that removing personal movement bias can have a signif-
icant benefit for automated affect recognition from body motion. The
resulting recognition rate is similar to that of humans who took part in
a comparable psychological experiment.

1 Introduction

The human body has evolved not only to perform sophisticated tasks, but also to
communicate affect and inter-personal attitudes. One possible distinction can be
made between affect communicated through non-stylised and stylised motions.
In a stylised motion the entirety of the movement encodes a particular emotion.
Stylised motions normally originate from laboratory settings, where subjects are
asked to freely act an emotion without any constraints. They also arise from
stylised dance. This paper, however, concerns itself with the more subtle aspects
of non-stylised motions. We will examine how affect is communicated by the
manner, in which every-day actions, such as knocking or walking, are performed.

After reviewing relevant related work in the next section, we discuss the
segmentation of a complex motion into a sequence of meaningful motion primi-
tives in Sect. 3. Sect. 4 then describes a set of dynamic features which captures
the segments’ affective information. In order to disambiguate affective cues from
personal movement idiosyncrasies we make use of a statistical normalisation pro-
cedure. Sect. 5 introduces the experimental validation results which are based on
an existing motion database of acted every-day motions. A concluding discussion
is given in Sect. 6.

2 Background

What makes a walk happy? How does an angry knock differ from a sad one?
Indeed, are the visual cues from the body alone sufficient to judge a person’s



affect? Early research by Ekman suggested that people make greater use of
the face than the body for judgements of emotion in others [1]. More recent
results from psychology suggest, however, that emotional body language does
constitute a significant source of affective information. In an experimental study
Bull established that body positions and movements are consistently displayed
and recognised during phases of interest/boredom and agreement/disagreement
[2]. In a more recent study Pollick et al. examined the accuracy with which human
observers could distinguish basic emotions from point-light arm movements [3].
They found that despite the impoverished nature of the displays, the recognition
rates were significantly above chance level.

It is surprising that despite the apparent interest of psychologists in natural,
non-stylised motions, research in affective computing has for a long time focused
on stylised body movements. Only very recently, Kapoor et al. investigated nat-

ural behaviour in a computer-based tutoring environment. They demonstrated a
correlation between frustration and various non-verbal cues including body pos-
ture [4]. Earlier, Camurri et al. had developed a vision-based library to analyse
expressive body gestures based on both shape and dynamic cues. In recently re-
ported results, they show correlations between affect expressed through stylised
dance and dynamic measures such as quantity of motion and body contraction
[5]. In a different study Kapur et al. showed how very simple statistical measures
of stylised motions’ dynamics can be used to distinguish between four basic emo-
tions [6]. Our work builds on these latter dynamic approaches, gaining its main
affective information from quantities such as limb velocity and acceleration.

However, the nature of non-stylised movements means that we will need
to look more deeply into the structure of the motions involved. We need to
understand which elements are governed by affect and which are confounded
by other factors such as idiosyncrasies in personal movement (movement bias),
gender or activity. This is a problem which animators have faced for a long time
in order to create compelling and realistic motion sequences. As John Lasseter
put it [7]:

One character would not do a particular action the same way in two
different emotional states. [. . . ] No two characters would do the same
action in the same way.

There has been a large body of recent work on the subject, which normally
aims to provide better means for animators to control the expressions of their
characters. Many of the approaches work on the notion of affective transforms
applied to an underlying basic or neutral animation. In many cases these trans-
forms change the spatial amplitude and speed of motions [8–10]. An interesting
concept, as suggested by Rose et al., is the notion of motions being composed of
a verb (a basic motion concept, such as walking) and an adverb which modifies
the basic motion in various ways (e.g. happily, sadly, uphill or downhill) [11].

The idea of viewing body language as analogous to natural language is not a
new one. Ray Birdwhistell argued that complex motions can be broken down into
an ordered system of isolable elements which he called kinemes [12]. The notion
of a universal set of kinemes or motion primitives is a compelling one as it gives



structure to the otherwise vast complexity of human motion — a goal which
the Facial Action Coding System [13] has achieved so successfully for the face.
It is this segmentation into motion primitives which will help us to discard the
structural information of non-stylised motions, leaving the essentially dynamic
cues which we will use to distinguish different affects.

3 Motion Analysis

For this work we used a motion-captured database recorded at the Psychology
Department, University of Glasgow [14]. It gave us access to a collection of
knocking, throwing, lifting and walking motions performed by 30 individuals (15
male and 15 female) in neutral, happy, angry and sad affective styles. Most of
our quoted results are based on the approximately 1200 knocking motions from
the database.

The skeletal structure of the recorded bodies is represented by 15 joints, posi-
tioned relative to a world frame. In order to obtain a rotation- and scale-invariant
representation, we transform the joint positions into a body-local coordinate sys-
tem and normalise them with respect to body size. Let f stand for the dimension
of time, measured in frames. We denote the time-varying signal of normalised
joint positions as the matrix Ψ . We can also represent the motion in terms of
the joint rotations over time, Θ. A particular body configuration at frame f
can be represented as a row vector, denoted as ψf or θf . The gth positional or
rotational degree of freedom at frame f is written as ψf,g or θf,g respectively.

We will also make use of the dot notation (e.g. θ̇f,g) to denote derivatives with
respect to time. Finally, projecting a body configuration vector onto a subspace
is written as the linear operator P (·), e.g. Prh(ψf ) denotes the position of the
right hand relative to the body-centred coordinate system at time frame f .

3.1 Motion Segmentation

The goal of motion segmentation is to parse high-dimensional body movements
into a sequence of more basic primitives. In general, this is a hard problem
which is of interest to researchers from many different areas, including gesture
recognition and robotics. Our approach is based on the work by Fod et al. [15].
It makes use of an objective function E(f) which is a measure for the overall
motion energy (activation) at time frame f . In many ways this concept of energy
is analogous to that employed in the segmentation of speech into phonemes or
words [16]. Let θ̇f,g denote the angular speed of the gth rotational degree of
freedom at time frame f . Then we can define the body’s motion energy as a
weighted sum of the rotational limb speeds.

E(f) =

n∑

k=1

wkθ̇
2

f,k (1)

In essence, E will be large for periods of energetic motion and will remain
small during periods of low motion energy. Fig. 1 shows E for repeated knocking.



Fig. 2 illustrates how the observed energy peaks coincide with actions such as
arm raises or individual forward and backward movements during the knock.
Local minima in E can be observed whenever the trajectory of the right arm
changes direction. We can use these insights to segment a complex motion as
follows.

1. Compute E for the whole motion sequence.
2. Threshold the signal at a threshold t. Mark all frames f for which E(f) > t.
3. Find all connected regions of marked frames and regard them as individual

motion segments.
4. Extend the segments to the preceding and succeeding local minima of E.
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Fig. 1. Objective function E(f) (top) with automatically calculated optimal segmenta-
tion threshold topt = 0.029 for part of a repeated knocking motion. The bottom shows
the parse of the above motion sequence into four motion primitives and periods of no
motion.

Obviously, our choice of t has a major impact on the nature of the segments.
Fod et al. use empirically derived thresholds. If this method is to be used in a
general framework, however, we need an automatic way of finding an optimal t.
We propose the following solution. For every pair (E, tn) we obtain a number of
segments by thresholding E at tn. Let numsegE(tn) = sn be the function which
computes the number of segments sn for any such pair. Fig. 3 shows numseg
for the motion in Fig. 1 and sampled at various thresholds. Our goal is to find
a threshold which will exhibit all major motion segments (energy peaks) while
filtering out small scale motions due to low-level signal noise. We note that noise
is mainly registered during periods of low energy (e.g. between frames 250–300
and 450–500 in Fig. 1). Let t0 be an empirical noise threshold. Then the optimal
threshold topt is defined as the threshold which maximises the number of major



motion segments.

topt = argmax
t

{numsegE(t)} subject to topt > t0. (2)

Fig. 2. Four phases of a knocking motion exhibiting distinct peaks of motion energy.
Our algorithm detects each of the phases as a separate motion segment. Each segment
is labelled with one of four automatically derived motion primitives. The primitives
coincide with the semantically meaningful basic actions “Raise arm”, “Knock”, “Re-
tract”, “Lower arm”.
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Fig. 3. numsegE(t) for a repeated knocking motion sampled for thresholds between
0.001 and 0.08. The diagram also shows topt (dashed) and t0 (dotted).

3.2 Motion Primitives

Ideally, we would like to group the extracted segments into semantically mean-
ingful clusters representing primitive motions. One approach to define such prim-



itives would be to use a comprehensive list as devised by Bull or Birdwhistell to
transcribe their psychological or anthropological observations [2, 12]. Due to their
generality, however, these sets are large. Many of the listed primitives are irrel-
evant for any particular context. Indeed, context often governs the affective and

social meaning of movements [12]. We therefore adopt a more context-dependent
approach to the definition of motion primitives. It is based on the clustering of
a set of example motions which are representative for a certain context. For our
current scenario the context is very specific (knocking) and therefore the number
of motion primitives is rather small. In more complex scenarios such as “every-
day activities” or “interpersonal conversations” we would expect to require a
larger set of primitives to represent all observed movements well.

Consider the database of affective knocking motions described above. After
segmenting the movements, we need to find a representation for the segments
which allows us to compare and cluster them. We therefore consider the joint

angles of the motions and time-normalise them. This is done by resampling
each segment at 25 equally spaced intervals. We also subtract the segments’
means in order to capture the relative motion rather than the absolute body
configurations. Next, we wish to group the segments into semantically distinct
categories. We hypothesised that the knocking motions can be divided into four
basic phases: lift arm, repeatedly knock and retract, lower arm. We therefore used
a simple k-means clustering algorithm with k = 4. In a completely unsupervised
scenario without any prior knowledge of the number of motion primitives, we
would choose a clustering technique which automatically determines an optimal
number of clusters such as hierarchical or Markov clustering. The following steps
summarise our algorithm to compute a set of motion primitives from a set of
example motions:

1. Segment the set of motions as described in Sect. 3.1.

2. Time-normalise all segments. Subtract sample means.

3. Cluster the normalised segments.

4. The clusters (or cluster centroids) represent the motion primitives.

The four derived motion primitives for the set of knocking motions are visu-
alised in Fig. 4. The four degrees of freedom of the right arm are represented as
four separate curves.

Having defined our primitives, we can now parse a new motion by following
steps 1 and 2 as outlined above and replacing steps 3 and 4 by an assignment
to the closest cluster centroid (most similar primitive). Fig. 1 illustrates how a
repeated knocking motion (energy curve shown on top) has been parsed into a
sequence of primitives (bottom). The motion is parsed in a semantically mean-
ingful fashion. Fig. 2 shows that primitives 1 and 4 correspond to the larger
scale motions of raising and lowering the right arm while primitives 2 and 3
capture the smaller scale knocking motions. We will now turn to the analysis of
the dynamic and affective parameters of the segmented motions.



0 5 10 15 20 25
−1

0

1

normalised time
re

la
tiv

e 
an

gl
e

Primitive 4

0 5 10 15 20 25

−0.1

0

0.1

re
la

tiv
e 

an
gl

e

Primitive 3

normalised time

0 5 10 15 20 25
−1

0

1

normalised time

re
la

tiv
e 

an
gl

e

Primitive 1

0 5 10 15 20 25

−0.1

0

0.1

normalised time

re
la

tiv
e 

an
gl

e

Primitive 2

Fig. 4. Four motion primitives derived by k-means clustering. Dashed/dotted curves
visualise rotations in the right shoulder, solid line visualises rotation in the right elbow.
All other degrees of freedom are omitted as they exhibit no significant motion.

4 Affect Recognition

Angry movements in the analysed database tend to look energetic and force-
ful while sad knocks appear relatively slow and slack. Similar observations are
true for the other classes of motions such as throwing and walking. This role of
dynamic movement qualities such as velocity and acceleration in affect recog-
nition has been stressed by several authors [3, 5, 6]. Never before, however, has
the analysis of dynamics been attempted at the level of motion primitives. We
propose this solution as a more flexible and well-founded alternative to the use
of fixed or sliding windows as used in other recent works [5, 6].

We are using four statistical measures as features for affect recognition. They
are computed over a whole motion segment such as an arm raise. For the analysed
knocking motions only the right arm exhibits significant movement. Therefore
all dynamic features are currently based on the right arm. Consider a motion
segment Ψ of length n. Remembering that Prh(ψf ) denotes the position of the
right hand, we can define the features as follows.

1. Maximum distance of hand from body dh = maxn
f=1

||Prh(ψf )||

2. Average hand speed s̄h = 1

n

∑n

f=1
||Prh(ψ̇f )||

3. Average hand acceleration āh = 1

n

∑n

f=1
||Prh(ψ̈f )||

4. Average hand jerk j̄h = 1

n

∑n

f=1
||Prh(

...
ψf )||



We can also compute analogous features de, s̄e, āe, j̄e based on the elbow
motion. For any person p and motion segment m this gives us the feature vector
φp,m = (dh, s̄h, āh, j̄h, de, s̄e, āe, j̄e).

4.1 The problem of individual movement bias

According to Lasseter’s view quoted in Sect. 2, the two major factors affecting
observable motion qualities are emotion and individual style. In Sect. 5 we shall
show that our data does indeed reveal some global correlation between the above
features φp,m and the different emotion classes. Fig. 5(a), however, shows that
the between-class variability of the two very different emotion classes sad and
angry is smaller than we would hope. The hand speed distribution for sad knocks
(black) overlaps heavily with that of angry knocks (white). In order to be sepa-
rable through a pattern recognition approach, the two distributions should show
a large between-class variability while exhibiting a small within-class variability.
This exemplifies the problem of individual movement bias. Different people tend
to display the same emotion in very different ways, thus impeding classification.
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Fig. 5. Biased and unbiased feature distributions for sad knocks (black) and angry
knocks (white).

Our approach to this problem is a normalisation procedure based on the
following intuition. It seems a reasonable assumption that a person’s motion
idiosyncrasies influence his or her movements in a consistent fashion — after all
we expect them to be governed by gender, physical build and other constant
factors. Even dynamic factors such as mood might be changing slowly enough
to be assumed temporarily constant. We therefore propose to model individual
motion bias as an additive constant signature φ̄p which influences the motion
features introduced above. We obtain an estimate of the unbiased motion features
φ̂p,m by subtracting the personal bias.

φ̂p,m = φp,m − φ̄p for any motion m (3)

An important problem is how to estimate φ̄p. If we do not “know” a person,
i.e. have no history of his or her movements, we may need to take an a priori



guess, maybe conditioned on gender or other cues. However, if we have a history,
we can compute φ̄p from all the observed motions. In our case, we take an
average over all the knocking motions in the database in order to learn about a
person’s motion bias. Note that this operation does not tell us anything about
affect-specific factors as all motions are treated equally and different affects are
represented at equal frequencies in the database. Fig. 5(b) illustrates how this
normalisation improves the between-class variability for the two shown classes
considerably. Sect. 5 gives a more rigorous account of the improvements achieved
when taking movement bias into consideration.

4.2 Machine Learning

We can use the biased or unbiased motion features to train a classifier which
distinguishes the four emotions neutral, happy, angry and sad. We decided to
use support vector machines (SVMs) with a polynomial kernel as they tend to
exhibit good generalisation performance. The suitability of SVMs for this domain
was demonstrated by Kapur et al. [6]. In order to solve the general problem of
recognising the affect of a motion sequence, we train a family of binary SVMs
Mz

x,y. The classifierMz
x,y aims to find the maximum margin between affect classes

x and y for motion primitives of type z. Once these binary classifiers have been
trained, we can classify a new motion as follows:

1. Segment motion into a list of primitives as described in Sect. 3.
2. Let the first segment in the list be of primitive type z. Apply all pairwise

SVMs Mz
x,y. Classify the segment according to a majority vote.

3. Remove segment from the list and repeat from step 2 until list is empty.
4. Classify whole motion by majority vote of individual segment classifications.

5 Experimental Results

With the conducted experiments we aimed to answer three questions:

1. What recognition rate can be achieved with our approach?
2. How does movement bias (see Sect. 4.1) affect the recognition performance?
3. How do our results compare to related results found in the literature?

We used the knocking motions from our database to run Leave-One-Subject-
Out cross-validation (LOSO-CV) tests. Overall, we used approximately 1200
motion samples with an equal proportion for each of the considered emotions
neutral, happy, angry and sad. For each iteration of the cross-validation the
system was therefore trained on around 1160 samples and validated on 40 sam-
ples. In different tests we found that the system does considerably better if we
add some of the remaining 40 samples to the training set or perform a subject-
independent cross-validation. In contrast to those tests, the figures we quote
here are representative for the generalisation performance of our system for an
unknown person.



The confusion matrices for LOSO-CV using biased and unbiased features are
shown in Table 1. Note that angry and sad knocks are classified more reliably
than neutral and happy ones. The most significant factor which negatively affects
recognition rates (sensitivity) is the confusion between neutral and happy knocks.
In answer to question 2 above, we find that using unbiased features improves the
overall recognition rate considerably from 50% to 81%. Our informal observations
from Sect. 4.1 have hence been confirmed.

Table 1. Confusion matrices for LOSO-CV using biased features (left) and unbiased
features (right). The classification procedure distinguished between four emotions: neu-
tral (neu), happy (hap), angry (ang) and sad. All average and affect-specific sensitivities
are above chance level (0.25).

Truth
classified as classified as

neu hap ang sad neu hap ang sad
neu 0.379 0.229 0.127 0.265 0.742 0.199 0.007 0.052
hap 0.281 0.411 0.179 0.129 0.278 0.653 0.056 0.013
ang 0.176 0.203 0.591 0.030 0.013 0.063 0.924 0.000
sad 0.214 0.139 0.023 0.624 0.066 0.010 0.000 0.924

average sensitivity: 0.501 average sensitivity: 0.811

We can obtain a measure for the more objective recognition efficiency η

if we normalise the achieved sensitivity by the sensitivity expected by chance
(sometimes referred to as generality [17]).

η =
achieved sensitivity

sensitivity expected by chance
(4)

In our case we would expect a classifier which assigns one of the four affect
classes at random to achieve a sensitivity of 25%. Therefore the efficiencies of
our classifiers for biased and unbiased features are ηb = 2.0 and ηub = 3.24
respectively. We can use these measures to compare our results to those of related
experiments in the next section.

6 Discussion and Future Work

For our discussion we consider the results of two other related experiments. We
were using part of a database which was created by Pollick et al. for psychological
work. In one particular study they examined how accurately human subjects

could classify affect from knocking motions displayed as point-light or full video
stimuli [3]. The only major difference from our experimental setup was their
forced choice between five rather than our four emotional states (afraid being
the additional class). They report that humans achieved a recognition rate of
59% for point-light and 71% for full video stimuli. These figures illustrate that
even humans are far from perfect at classifying affect from non-stylised body



motions. We can calculate the efficiency η̂ achieved by humans as defined in
Eq. 4. For point-light and video displays humans exhibit efficiencies of η̂pl = 2.95
and η̂v = 3.55 respectively.

One of the major contributions of our work derives from the fact that classi-
fying affect from non-stylised motions is harder than from stylised ones. This is
demonstrated by the experiments performed by Kapur et al. [6]. They recorded
stylised emotions and compared the accuracy of various machine learning tech-
niques as well as human performance. For the task of distinguishing four basic
emotions from point-light displays, humans achieved a recognition rate of 93%
(η = 3.72). This is considerably higher than human performance reported by
Pollick et al. for non-stylised movements (η̂pl = 2.95). For SVMs the recognition
rate was lower at 83.6% (η = 3.34). These results are summarised in Table 2.

We have shown that using unbiased dynamic features based on motion prim-
itives boosts the recognition rate considerably. Our computational approach
exhibits a better efficiency than humans for classifying affect in non-stylised
movements from point-light displays. The performance of our approach is also
comparable to that of Kapur et al. This is significant since their stylised motion
data contained solely affective information. For our non-stylised motions, on the
other hand, only certain subtle aspects communicate affect while most of the
motion signal is governed by the independent semantic meaning of the motion.

Table 2. Comparison of results from our and related experiments.

experiment Kapur et al. [6] Pollick et al. [3] Our results (Sect. 5)

motions stylised non-stylised non-stylised

classifier human SVM human SVM

features biased pt.-light video biased unbiased

# emotions 4 4 5 5 4 4
sensitivity 93% 84% 59% 71% 50% 81%
efficiency 3.72 3.34 2.95 3.55 2.0 3.24

We are currently working on overcoming various limitations of our approach.
In the version presented here, the algorithm only considers the right arm for ex-
tracting affect-related dynamic features. Incorporating features from other body
parts will help us to analyse motions such as walking, which are not primarily
based on arm movements. Furthermore, the torso and head can be expected to
hold valuable cues even for heavily arm-based actions [9]. One challenge which
needs to be addressed in this direction is the generalisation of motion segments
to multiple body parts. One could either compute segments for each body part
individually or attempt to capture more subtle relationships between limbs by
defining segments in terms of the simultaneous motion of multiple body parts.

Another limitation which might have to be addressed in the future is the
assumption that motion primitives are clearly separable by local motion energy
minima. For very smooth and cyclic motions, for example, it might be possible to
exhibit the basic cycle periods of a motion as segments. Furthermore, it might



not be sufficient to employ a single segmentation threshold topt if we analyse
a series of movements which are very different in terms of exhibited motion
energy. This problem might be solved by recomputing topt either regularly or,
alternatively, whenever we detect a significant change in motion energy.

Finally, we are investigating better ways to estimate the personal movement
signature φ̄p. Ultimately, we would like to be able to predict φ̄p from as few and
unconstrained example motions as possible.
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