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Abstract. Scientists from many different disciplines (including physiology, 

psychology, and engineering) have worked on modelling visual perception. 

However this field has been less extensively studied in the context of computer 

science, as most existing perception models work only for very specific domains 

such as menu searching or icon searching tasks. We are developing a perception 

model that works for any application. It takes a list of mouse events, a sequence of 

bitmap images of an interface and locations of different objects in the interface as 

input, and produces a sequence of eye-movements as output. We have identified a 

set of features to differentiate among different screen objects and using those 

features, our model has reproduced the results of previous experiments on visual 

perception in the context of HCI. It can also simulate the effects of different visual 

impairments on interaction. In this paper we discuss the design, implementation 

and two pilot studies to demonstrate the model.  

1   Introduction 

Usability evaluation is an important step for successful design of any product. However 

user trials are often expensive and time consuming. Additionally for users with special 

needs, it is particularly difficult to get a representative population for a user trial. These 

difficulties with user trials led us to design a simulator that can model human computer 

interactions for people with a wide range of physical abilities and skills. In this paper we 

describe a particular component of this simulator - the visual perception model.  

Computer Scientists have studied theories of perception extensively for graphics and, 

more recently, for Human-Computer Interaction (HCI). A good interface should contain 

unambiguous control objects (like buttons, menus, icons etc.) that are easily 

distinguishable from each other and reduce visual search time. In this work, we have 

identified a set of features to differentiate among different screen objects and we have 

used this set of features to reproduce the results of previous experiments on visual 

perception in the context of HCI. We have developed a prototype model of human visual 

perception for interaction with computer. It can also simulate the effects of different 

visual impairments on interaction. Unlike previous works, our model not only shows how 

a computer interface is perceived to a visually impaired person, but also it can simulate 

the dynamics of interactions with a computer. 



2   Related Work 

How do we see? This question has been addressed in many ways over the years. The 

Gestalt psychologists in early 19th century pioneered an interpretation of the processing 

mechanisms for sensory information [8]. Later the Gestalt principle gave birth to the top-

down or constructivist theories of visual perception. According to this theory, the 

processing of sensory information is governed by our existing knowledge and 

expectations. On the other hand, bottom-up theorists suggest that perception occurs by 

automatic and direct processing of stimuli [8]. Considering both approaches, recent 

models of visual perception incorporate both top-down and bottom-up mechanisms [14]. 

This is also reflected in recent experimental results in neurophysiology [12, 17].  

Knowledge about theories of perception has helped researchers to develop 

computational models of visual perception. Marr’s model of perception is the pioneer in 

this field [14] and most of the other models follow its organization. However it was never 

been implemented in a practical system [18]. In recent years, a plethora of models have 

been developed (e.g. ACRONYM, PARVO, CAMERA etc. [18]), which have also been 

implemented in computer systems. The working principles of these models are based on 

the general framework proposed in the analysis-by-synthesis model of Neisser [14] and 

mainly consist of the following three steps: 

 

1. Feature extraction: As the name suggests, in this step the image is analysed to 

extract different features such as colour, edge, shape, curvature etc. This step 

mimics neural processing at the V1 region of brain. 

2. Perceptual grouping: The extracted features are grouped together mainly 

based on different heuristics or rules (e.g. the proximity and containment rule in 

the CAMERA system, rules of collinearity, parallelism and terminations in the 

ACRONYM system [18]). Similar type of perceptual grouping occurs in V2 and 

V3 regions of the brain. 

3. Object recognition: The grouped features are compared to known objects and 

the closest match is chosen as the output. 

 

In these three steps, the first step models the bottom-up theory of attention while the last 

two steps are guided by top-down theories. All of these models aim to recognize objects 

from a background picture and some of them have proved successful at recognizing 

simple objects (like mechanical instruments). However they have not demonstrated such 

good performance at recognizing arbitrary objects [18]. These early models do not 

operate at a detailed neurological level. Itti and Koch [10] present a review of some 

computational models, which try to explain vision at the neurological level. Itti’s pure 

bottom-up model [10] even worked in some natural environments, but most of these 

models are used to explain the underlying phenomena of vision (mainly the bottom-up 

theories) rather than prediction.  

In the field of Human Computer Interaction, the EPIC [11] and ACT-R [1] cognitive 

architectures have been used to develop perception models for menu searching and icon 

searching tasks. Both the EPIC and ACT-R models [4, 9] are used to explain the results 



of Nielsen’s experiment on searching menu items [15] and found that users search 

through a menu list in both systematic and random ways. The ACT-R model has also 

been used to find out the characteristics of a good icon in the context of an icon-

searching task [6, 7]. However the cognitive architectures emphasize modeling human 

cognition and so the perception and motor modules in these systems are not as well 

developed as the reminder of the system. The working principles of the perception 

models in EPIC and ACT-R/PM are simpler than the earlier general-purpose 

computational models of vision. These models do not use any image processing 

algorithms. The features of the target objects are manually fed into the system and they 

are manipulated by handcrafted rules in a rule-based system. As a result, these models do 

not scale well to general-purpose interaction tasks. Modelling of visual impairment is 

particularly difficult using these models. An object seems blurred in a continuous scale 

for different degrees of visual acuity loss and this continuous scale is hard to model using 

propositional clauses in ACT-R or EPIC. Shah et. al. [20] have proposed the use of 

image processing algorithms in a cognitive model, but they have not published any 

results about the predictive power of their model yet. 

3.   Design 

We have developed a perception model as part of a simulator for HCI. The simulator 

takes a task definition and locations of different objects in an interface as input and then 

predicts the cursor trace, probable eye movements across the screen and task completion 

time, for different input device configurations (e.g. mouse or single switch scanning 

systems) and undertaken by persons with different levels of skill and physical disabilities. 

The architecture of the simulator is shown in Figure 1. It consists of the following three 

components: 

The Application model represents the task currently undertaken by the user by breaking 

it up into a set of simple atomic tasks using the KLM model [5]. 

The Interface Model decides the type of input and output devices to be used by a 

particular user and sets parameters for an interface. 

The User Model simulates the interaction patterns of users for undertaking a task 

analysed by the task model under the configuration set by the interface model. It uses the 

sequence of phases defined by the Model Human Processor [5]. The perception model 

simulates the visual perception of interface objects. The cognitive model determines an 

action to accomplish the current task. The motor-behaviour model predicts the 

completion time and possible interaction patterns for performing an action. The details of 

the simulator and the cognitive and motor-behaviour models can be found in two 

separate papers [2, 3]. In the following sections we present the perception model in 

detail. 

 



 

Figure 1. Architecture of the Simulator 

Modelling perception 

Our perception model takes a list of mouse events, a sequence of bitmap images of an 

interface and locations of different objects in the interface as input, and produces a 

sequence of eye-movements as output. The model is controlled by four free parameters: 

distance of the user from the screen, foveal angle, parafoveal angle and periphery angle 

(Figure 2). The default values of these parameters are set according to the EPIC 

architecture [11]. The model can also be used to simulate the effect of different visual 

impairments. 

 

 
Figure 2. Foveal, parafoveal and peripheral vision 

 

We perceive something on a computer screen by focusing attention at a portion of the 

screen and then searching for the desired object within that area. If the target object is not 

found we look at other portions of the screen until the object is found or the whole screen 

is scanned. Our model simulates this process in three steps (Figure 3).  

 

o Scanning the screen and decomposing it into primitive features 

o Finding the probable points of attention fixation 

o Deducing a trajectory of eye movement 

 
The perception model represents a user’s area of attention by defining a focus rectangle 
within a certain portion of the screen. The area of the focus rectangle is calculated from 
the distance of the user from the screen and the periphery angle (Figure 2). However it 
has already been found that we can see objects even which are out of attention (obviously 
with less accuracy [10]) and so the size of the focus rectangle varies with the number of 



probable targets in its vicinity. If the focus rectangle contains more than one probable 
target (whose locations are input to the system) then it shrinks in size to investigate each 
individual item. Similarly in a sparse area of the screen, the focus rectangle increases in 
size to reduce the number of attention shifts. 

The model scans the whole screen by dividing it into several focus rectangles, one of 
which should contain the actual target. The probable points of attention fixation are 
calculated by evaluating the similarity of other focus rectangles to the one containing the 
target. We know which focus rectangle contains the target from the list of mouse events 
that was input to the system. The similarity is measured by decomposing each focus 
rectangle into a set of features (colour, edge, shape etc.) and then comparing the values 
of these features. The focus rectangles are aligned with respect to the objects within 
them.   

Finally, the model shifts attention by combining three different strategies, 
Nearest strategy [6,7]:  At each instant, the model shifts attention to the nearest 
probable point of attention fixation from the current position. 
Random Strategy: Attention randomly shifts to any probable point of fixation. 
Cluster Strategy: The probable points of attention fixation are clustered according to 
their position and attention shifts to the cluster centre of one of these clusters. 

We choose any one of these strategies probabilistically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Simulating visual perception 

Pilot Studies 

Study 1- Comparing performances for colour and shape recognition 

In a computer screen, any target can be characterised by two properties – its colour and 
shape. In this study, we have investigated which of the features is easier to detect for 
impaired vision. We compared the reaction times people take to recognize a target from 
distractors of same colour and different shape and vice versa (Figure 4). Prior to each 
session, the participants were told about the target (e.g. a red circle) and then instructed 

Feature Extraction 

Probable points of attention 

fixation 

Trajectory of eye 

movement 



to point to the target as soon as they could find it. We measured the reaction time 
between target display and recognition. We used nine types of targets of different colours 
and shapes. We recruited 10 participants (6 male, 4 female and average age 25.4), who 
did not have any colour-blindness and had no visual impairment that could impede their 
vision after correction. We simulated visual impairment by using translucent filters from 
the Inclusive Design Toolkit [22] and considered four conditions (normal vision, mild 
acuity loss, severe acuity loss and central vision loss). The reaction times are shown in 
Figures 5.  As can be seen from the Figures 5, shape recognition takes more time in 
general and especially for severe acuity loss and central vision loss. With the filters 
(simulating vision loss), participants took more time to differentiate between target and 
distractors of same colour and different shapes than the other case and some of them 
even reported that they could not detect the corners of the shapes. 

 

Figure 4. a. Screen to test colour recognition   b.  Screen to test shape recognition 
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Figure 5. Variations of reaction time (in msec) for different impairments 

Guided by this study, we developed algorithms to simulate the process of colour and 
shape recognition. We used the colour histogram matching algorithm [16] to measure 
and compare the colours, the Sobel operator [16] for edge detection and the shape 
context algorithm [21] for shape measurement. We simulated severe acuity loss by a low 
pass Gaussian filter. We found that the colour histogram matching algorithm can work 
well even for a blurred screen; however the shape context matching algorithm does not. 
In particular, the edge detection algorithm, which is runs as a precursor to the shape 
context algorithm, fails to detect edges in a blurred screen. This is also consistent with 
the result we found in the study: with blurred vision people take more time to detect 
edges and thus to differentiate shapes from one another. However the colour information 
is not lost by blurring (as long as the colours contrast with background) and the colour-
histogram matching algorithm finds it easier to recognize colour in the same way as the 
human participants. These results can be extended in future to predict reaction time from 



the colour histogram and shape context matching coefficients. 

Study 2- Defining the best set of features to predict the probable points of fixation 

The second study considered the best set of features to predict the probable points of 

fixation. For the pilot study, we assumed that, users’ attention would fix on icons which 

were same as the target icons in a screen instead of other types of icons. For example, if 

the target was a PDF file then attention would mostly be fixed on most of the PDF icons 

in the screen. We considered seven different types of icons (Figure 6) and looked for the 

best classification performance for different feature subsets. We used a backpropagation 

neural network as classifier. Figure 7 shows the classification performance for 15 

different subsets of the Colour in RGB, Colour in YUV, shape and edge features. The 

error bars show the standard deviation for 30 runs for the best classifier parameters. As 

can be seen from Figure 7 the best results are obtained for the Colour (YUV), shape and 

edge features.  

 

 

Figure 6. Icons used in pilot study 

 

 
Figure 7. Classifier performance for different feature sets 

Validation 

We do not yet have eye-tracking data of our own, so we compared the performance of 

our result to some previous eye-tracking data [6,7]. Figure 8 shows the actual eye-



tracking data of a previous experiment (Figure 8a), prediction of the previous model 

(Figure 8b) and the prediction by our model (Figure 8c). It can be seen that our model 

successfully identified all the probable points of fixation. 

 

 
a. Eye tracking data [from 6, 7] 

 
b. Eye movement prediction from previous model [6, 7] 

 
c. Eye movement prediction from our model  

Figure 8. Validating the model 



Modelling visual impairment 

Our model can also simulate the effects of different visual impairments on interaction. To 

cover a wide range of visual impairments, we have modelled it in three different levels - 

in the first level the system simulates different diseases (currently Maccular 

Degeneration, Diabetic Retinopathy, Tunnel vision and Colour-Blindness). In the next 

level it simulates the effect of change in different visual functions (e.g. Visual acuity, 

Contrast sensitivity, Visual field loss etc.). In the last level, it allows different image 

processing algorithms to be run (e.g. Filtering, Smoothing etc.) on input images to 

manually simulate the effect of a particular impairment. This approach also makes it 

easier to model the progress of impairment. The previous simulations on visual 

impairments model the progress of impairment by a single parameter [22, 23] or using a 

large number of parameters [24]. In our system, the progress of any impairment can be 

modelled either by a single parameter or by changing the values of different visual 

functions. For example, the extent of a particular case of Maccular Degeneration can be 

modeled either by a single scale or by using different scales for visual acuity and central 

visual field loss. Additionally, most previous work (like the Visual Simulator Project 

[23] or the Inclusive Toolkit [22]) simulates visual impairment on still images for a fixed 

position of eyes. Unlike those works, our model not only shows how a computer interface 

is perceived by a visually impaired person, but also it can simulate the dynamics of 

interactions with a computer. Figure 9 shows a few demonstrations of our simulator. In 

all these figures, the desired target is marked with the text ‘Target’. The black line 

indicates the trajectory of eye movements through a series of intermediate points of 

attention fixation marked with rings. 

 

 
a. Eye movement prediction for Maccular Degeneration 

 
b. Eye movement prediction for Diabetic Retinopathy 



 
c. Eye movement prediction for Tunnel Vision 

 

Figure 9. Eye movement prediction for different visual impairments 

 
Figure 9a shows a sequence of eye movements for Maccular Degeneration. As can been 
seen from the figure, the whole screen becomes blurred since the patient is using 
peripheral vision and black spots appear in the centre of point of fixation due to central 
field loss. In case of Diabetic Retinopathy (Figure 9b), some random black spots appear 
at the region of attention fixation due to blockage of blood vessels inside the eyes. In 
both of these cases the number of points of fixation is greater than in normal vision 
(Figure 8) since patients need to investigate all blue targets due to blurring of the screen. 
For tunnel vision (Figure 9c), the patient cannot use any peripheral vision, so he can 
never see the screen as a whole and can only see a small portion of it. So all the targets 
need to be examined and eyes have to move systematically from left to right and top to 
bottom until it reaches the target.   

Discussion  

The first study proves (at least qualitatively) the credibility of colour histogram and 

shape context algorithms to model colour and shape recognition processes for both 

normal and impaired vision. The second study shows that they can also be used to 

identify icons besides primitive shapes (with more than 90% accuracy). Table 1 presents 

a comparative analysis of our model with the ACT-R/PM and EPIC models. Our model 

seems to be more accurate, scalable and easier to use than the existing models. However, 

in real life situations the model also produces some false positives because it fails to take 

account of the domain knowledge of users. This knowledge can be either application 

specific or application independent. There is no way to simulate application specific 

domain knowledge without knowing the application beforehand. However there are 

certain types of domain knowledge that are application independent that is they are true 

for almost all applications. For example, the appearance of a pop-up window 

immediately shifts attention in real life, however the model still looks for probable 

targets in the other parts of the screen. Similarly, when the target is a text box, users 

focus attention to the corresponding labels rather than other text boxes, which we do not 

yet model. There is also scope to model perceptual learning. Currently our neural 



network (used as a classifier) trains itself after each execution, but there is no way to 

remember a particular location, which would be used for the same purpose as before. For 

that purpose, we could consider some high level features like the caption of a widget, 

handle of the application etc. to remember the utility of a location for a certain 

application. These issues did not arise in previous works since they modelled very 

specific and simple domains [4, 6, 7, 9].  

We are still undertaking further comparisons of our model with previous models. 

Currently we are working on an experiment to track users’ gaze while they try to 

recognize a target from a real life application, rather than primitive shapes. We will 

simulate impairment using filters as our first study. Then we will try to predict the points 

of attention fixation and eye movements using our model. We are also working to predict 

the visual search time using the EMMA model [19], which will also help to evaluate the 

model. 

Table 1.  Comparative analysis of our model 

 ACT-R/PM or 

EPIC models 

Our Model Advantages of our 

model 

Storing 

Stimuli 

Propositional 

Clauses  

Spatial Array 

Extracting 

Features 

Manually Automatically using Image 

Processing algorithms 

 

Easy to use and 

Scalable 

Matching 

Features 

Rules with binary 

outcome 

Image processing algorithms 

that give the minimum 

squared error 

More accurate 

Modelling 

top down 

knowledge 

Not relevant as 

applied to very 

specific domain. 

Considers the type of target 

(e.g. button, icon, combo box 

etc.). 

More detailed and 

practical 

Shifting 

Attention 

Systematic/ 

Random and 

Nearest strategy 

Clustering/ Nearest /Random 

strategy 

Not worse than 

previous, probably 

more accurate 

Conclusions 

In this paper we have presented a perception model that can be used to evaluate and 
compare the visual feedback provided by different computer interfaces. The model is 
part of a larger system that is used to evaluate interfaces with respect to a wide range of 
skills and physical abilities [2, 3]. Our perception model takes a list of mouse events, a 
sequence of bitmap images of an interface and locations of different objects in the 
interface as input, and produces a sequence of eye-movements as output. The model 
supports existing theories on visual perception and it can also explain the results of most 
of the experiments done on visual perception in the field of Human-Computer 
Interaction. The model can also simulate the effect of different visual impairments on 
interactions. Unlike previous work, our model not only shows how a computer interface 
is perceived to a visually impaired person, but it can also simulate the dynamics of 
interactions with a computer. Currently we are in the process of calibrating the model 
using an eye-tracker.  
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