
Towards Ubiquitous End-User Programming

Rob Hague Peter Robinson Alan Blackwell
University of Cambridge Computer Laboratory

William Gates Building
15 JJ Thomson Avenue

Cambridge CB3 0FD UK
{Rob.Hague, Peter.Robinson, Alan.Blackwell }@cl.cam.ac.uk

INTRODUCTION
We believe that end-user programming capabilities are an
essential part of any flexible ubiquitous computing system.
When these are well designed, and tightly integrated with
the system as a whole, they allow users to add functionality
that was not, and in many cases, could not have been, antic-
ipated by the system’s designers. This enables users to ben-
efit fully from the possibilities ubiquitous computing offers.
However, End-User Programming in a ubiquitous comput-
ing context faces several novel issues, in particular the com-
munication channels available and the diversity of the user
population.

We have taken as the domain for our research the domes-
tic environment. There are already a range of programmable
microprocessor controlled devices that are routinely found in
the home, ranging from alarm clocks, security systems and
boiler controls to VCRs and personal video recorders such as
TiVoTM. Several of these devices already pose a notorious us-
ability problem for large segments of the population [1]. As
home appliances start to interact with each other, the com-
plexities of end user programming and customisation will
become far more severe. Home networking systems are al-
ready becoming a widespread site of ubiquitous computing,
both in research prototypes [2], and (in more limited form)
in existing systems such as X10.

Is it possible that home-owners will ever be able to config-
ure and customise interaction between the appliances in their
homes? This is a critical question for the acceptance of ubiq-
uitous computing. If the combined functionality of many
appliances is no more powerful than that of the individual
appliances purchased separately, then ubiquitous computing
will not have any significant impact on regular lifestyles.

We have applied recent theoretical approaches in end-user
programming [3] to the problem of domestic automation.
Unlike end-user programming in the business context, where
programming is done by “power-users” with respectable (if
incomplete) technical knowledge, programming in the home
can be done by people with a very wide range of abilities.
The end user programming languages in products such as
Excel already present a serious design challenge in support-
ing both casual users and serious developers [5]. In the do-
mestic environment, we recommend an approach in which
a range of programming paradigms are made available via a
common programming architecture to support different modes
of interaction with the underlying ubiquitous computing ar-
chitecture. Not only will this support a range of user abil-

ities, but also different programming tasks, as psychology
of programming research has demonstrated that no language
can be best for all applications - different notations give bet-
ter support for different programmer activities (for example,
creating a new program, modifying an existing program [4]).
Hence, the system should allow a single program to be rep-
resented in a variety of notations for different users and dif-
ferent tasks.

LINGUA FRANCA - SCRIPTING IN MANY LANGUAGES
In order to create a system in which a user may manipulate
a single program via multiple notations, we have designed
Lingua Franca, a common XML-based intermediate form
for scripting languages. Using this intermediate form has
several advantages. For example, automated enforcement of
policies that limit the action of scripts is of particular im-
portance for end-user programming in domestic ubiquitous
computing. Both home owners and authorities are likely
to be concerned that end-user programs should not inadver-
tently or maliciously bypass fire alarms, security systems,
or payment mechanisms. In order to achieve these safety
provisions, the system must be able to reason about the be-
haviour of new programs as they are created, in order to as-
sess whether they conflict with existing policies. The com-
mon representation allows a common enforcement mecha-
nism across languages.

Lingua Francagoes beyond conventional multiple-language
systems in it’s support for translationsbetweensource lan-
guages (as opposed to simply translating multiple source
languages into the same form of object code). Various source
languages inLingua Francaare supported via “language en-
vironments” that translate between the source language and
Lingua Franca. Note that not all environments allow trans-
lation in both directions; some language environments only
translate from the source notation toLingua Franca(and
may only be used to create script), whereas other only trans-
late fromLingua Francato some other notation (and may
only be used to display script). The most general class of lan-
guage environments perform translation in both directions;
these may be used to edit a script, by first translating from
Lingua Francato a “source” notation, modifying that repre-
sentation, then finally translating it back toLingua Franca.
To allow this bidirectional transformation, language environ-
ments must conserve all information in theLingua Franca
representation, regardless of whether it is meaningful in the
present language or not. (Contrast this to traditional com-
pilers, where information and structure not relevant to the

result is usually discarded.)

The two types of information that are most commonly dis-
carded when translating a script from one form to another
aresecondary notation, such as comments, andhigher level
structure, such as loops. Both of these may vary greatly
from language to language.Lingua Francaallows multi-
ple secondary notation elements to be associated with a part
of a script; each such element is tagged with a notation type,
to allow language environments to determine which (if any)
to display. Higher level structure is represented by group-
ing; again, each group is tagged with a type (such as ”while
loop”), which may imply a particular structure, and language
environments may use this to determine how to display the
group’s members. Unlike secondary notation, any environ-
ment that can displayLingua Francacan display any group,
as in the worst case it can simply display it as a grouped
collection of primitive operations.

We have implemented a interpreter that stores the “corpus”
of scripts that have been entered into the system. Language
environments communicate with this interpreter via HTTP,
allowing them to read, add to and update theLingua Franca
code (represented as XML) that makes up the corpus. In
addition, the interpreter is responsible for executingLingua
Franca code, and interfacing theLingua Francaenviron-
ment with the rest of the ubiquitous computing system.

A MENAGERIE OF PROGRAMMING LANGUAGES
A wide variety of scripting languages are being developed
in order to demonstrate the flexibility and range of theLin-
gua Francaarchitecture. These languages are designed to
complement each other, in that they may be used to perform
different manipulations on the same script with ease. Each
language is embodied in alanguage environmentthat pro-
vides an interface via which the user can view and/or ma-
nipulate a particular notation, translates between the nota-
tion andLingua Franca, and communicates with theLingua
Franca interpreter via HTTP.

A textual languageprovides an interface familiar to those
with experience of conventional scripting languages. It is en-
visioned that this will be primarily used for editing substan-
tial scripts, a task most likely to be undertaken by someone
with at least some programming background. (It is of course
possible to manipulateLingua Francadirectly in XML form,
but this is needlessly difficult and carries the risk of intro-
ducing malformed code into the database, or accidentally re-
moving or modifying data associated with another language
environment.)

Two forms ofvisual languageare in development, serving
slightly different needs. The first is a purelypresentational
diagram that cannot be used to create or edit scripts, but
only to display them. This allows it to be specialized in or-
der to facilitate searching, navigation and comprehension of
scripts. The second, amutablediagram, allows scripts to
be edited, and is likely to be the main environment for the
manipulation of mid-sized scripts.

Perhaps the most unusual of the language environments be-
ing developed for use withLingua Francais theMedia Cubes
language. This is a “tactile” programming language, in other
words, a language where programs are constructed by ma-
nipulating physical objects—in this case, cubes augmented
such that they can determine when they are close to one an-
other. The faces of the cube signify a variety of concepts,
and the user creates a script by placing appropriate faces to-
gether; for example, to construct a simple radio alarm clock,
the “Do” face of a cube representing a conditional expres-
sion would be placed against a representation of the act of
switching on a radio, and the “When” face against a rep-
resentation of the desired time. In an appropriately instru-
mented house, the representation can often be an existing,
familiar item, or even the object itself. In the above exam-
ple, a time could be represented using an instrumented clock
face, and turning the radio on could be represented by the
radio or its on switch.

TheMedia Cubeslanguage is intended to be easy for those
unfamiliar to programming, and as such would provide a
low-impact path from direct manipulation to programming.
However, the language as it stands is unusual in one very sig-
nificant respect—scripts do not have any external represen-
tation. This means that it is only feasible to construct small
scripts, and that, once created, scripts may not be viewed,
and hence may not be modified. However, as the language
exists within theLingua Francaframework, we do not need
to abandon the language, with its substantial advantages.
Lingua Francamakes it feasible to include niche languages
such as the Media Cubes in a system without sacrificing
functionality.

REFERENCES
1. Blackwell, A.F., Hewson, R.L. and Green, T.R.G. (2003)

Product design to support user abstractions.Handbook
of Cognitive Task Design, E. Hollnagel (Ed.), Lawrence
Erlbaum Associates.

2. Blackwell, A.F. and Hague, R. (2001). AutoHAN: An
Architecture for Programming the Home.Proceedings of
the IEEE Symposia on Human-Centric Computing Lan-
guages and Environments, pp. 150-157.

3. Blackwell, A.F., Robinson, P., Roast, C, and Green, T.R.G.
(2002). Cognitive models of programming-like activity.
Proceedings of CHI’02, 910-911.

4. Green, T.R.G, Petre, M. and Bellamy, R.K.E, Compre-
hensibility of visual and textual programs: A test of su-
perlativism against the ‘match-mismatch’ conjecture,Em-
pirical Studies of Programmers: Fourth Workshop,
J. Koenemann-Belliveau, T.G. Moher, S.P. Robertson (Eds):
Norwood, NJ: Ablex, 1991

5. Peyton Jones, S., Blackwell, A and Burnett, M. (in press)
A user-centred approach to functions in Excel. To appear
in proceedingsInternational Conference on Functional
Programming.

Towards Ubiquitous End-User Programming
Rob Hague, Peter Robinson & Alan Blackwell

William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD

http://www.cl.cam.ac.uk/

[Shops]
?GoShopping ->
 {!Order/Milk}
[/Shops]

Lingua Franca
<group name=”Shops”>
 <receive>
 <nt>GoShopping</nt>
 <dispatch>
 <nt>Order</nt>
 <nt>Milk</nt>
 </dispatch>
 </receive>
</group>

Lingua Franca is an XML-based
intermediate representation of scripts
that permits translation both to and
from source notations. Scripts are
stored in a central database with
which language environment
communicate over the network.

• Allows a single program to be
manipulated via multiple notations.
• Transformations preserve structure
and secondary notation.
• Facilitates automatic processing,
e.g. for policy enforcement.

A traditional textual language
will be provided for use by those
familiar with conventional
programming languages. This is
likely to be used by “power
users” for complex scripting
tasks. (It is possible to edit
Lingua Franca XML directly,
but doing so is not advisable as
it bypasses integrity and policy
checks.)

A visual language will provide a
means for users with a variety of
levels of experience to both view
and edit scripts in a
straightforward manner.
A second visual language will be
provided for presentation; this
notation does not need to support
editing, and hence can be
optimised for navigation and
searching.

The Media Cubes are a
“tactile” language in which
programs are constructed by
manipulating physical objects.
The notation can only be used
to create programs, not to view
or edit them.
Lingua Franca allows other
notations to be used for these
tasks, making specialised
languages such as this feasible.

We believe that end-user programming capabilities are an essential part of any flexible ubiquitous
computing system, allowing users to add functionality that was not, and in many cases, could not have
been, anticipated by the system’s designers, and thus enabling them to benefit fully from the possibilities
ubiquitous computing offers. The Lingua Franca system is designed to allow end-user programming in
multiple notations, in order to adapt to the large variation in users, tasks and communication channels
present in a ubiquitous computing environment (specifically, the networked home).

