
Universal Access in the Information Society manuscript No.
(will be inserted by the editor)

Transformation frameworks and their relevance in universal design

Silas S. Brown and Peter Robinson

University of Cambridge Computer Laboratory
15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
e-mail: {Silas.Brown,Peter.Robinson}@cl.cam.ac.uk

Received: date / Revised version: date

Category: Long Paper

Key words notations, transformation, conversion, ed-
ucation, tools, 4DML
Abstract Music, engineering, mathematics, and many
other disciplines have established notations for writing
their documents. Adjusting these notations can con-
tribute to universal access by helping to address access
difficulties such as disabilities, cultural backgrounds, or
restrictive hardware. Tools that support the program-
ming of such transformations can also assist by allowing
the creation of new notations on demand, which is an
under-explored option in the relief of educational diffi-
culties.

This paper reviews some programming tools that can
be used to effect such transformations. It also introduces
a tool, called “4DML”, that allows the programmer to
create a “model” of the desired result, from which the
transformation is derived.

1 Introduction

The transformation of data from one structure to an-
other is a recurring theme in computer science and soft-
ware engineering:

– Compilers and other software development tools are
based on transforming the programmer’s input into
an executable form (or, in the case of generative pro-
gramming, transforming it into lower-level code that
is to be compiled).

– Different programs (and in some cases items of hard-
ware) use different data formats to represent the
same thing, so conversion is often needed when ex-
changing data between them. For example, there
are many converters between different document for-
mats, different sound and image file formats, musical
score formats, etc. Object request brokers (ORBs)
and middleware frequently employ conversion.

– Some algorithms can be simplified if the data is first
transformed into a convenient structure. Many algo-
rithms can be regarded as transformations in their
own right.

– Transformation can be important when presenting
data to the user and when accepting user input.

This last point, namely the importance of transfor-
mation in user interaction, is relevant to universal design
and will be elaborated here.

1.1 Transformation in universal design

Universal design aims to develop “technologies which
are accessible and usable by all citizens. . . thus avoid-
ing the need for a posteriori adaptations or specialised
design” [37]. In his closing plenary address at ACM CHI
2001, Vanderheiden pointed out that this does not mean
designing one homogeneous user interface to fit every-
body, since people have conflicting requirements and a
“lowest-common denominator” interface would be lim-
ited indeed:

“It can’t have a visual interface [because some
people can’t see]; it can’t have an audio interface
[because some can’t hear];. . . you could design a
brick . . . ”

Hence, a technology that fulfils (or partly fulfils) the
aims of universal design is likely to include transforma-
tion functionality. This is not specialised design if it is
customisable and extensible, and it is not a posteriori
adaptation if the transformation needs are foreseen a
priori in the original design.

1.2 Diversity and the need for general solutions

A popular misconception is that individual needs and re-
quirements are nearly identical, and are adequately ad-
dressed by existing systems and hence there is no need
of further research. This section aims to show otherwise.

2 Silas S. Brown and Peter Robinson

Individual needs and requirements are diverse and
can be difficult to anticipate. A person’s ability to use
data in printed form may be hampered by a print disabil-
ity, such as blindness, low vision, or dyslexia. It may also
be hampered by educational and cultural differences. For
example, the person may have learned a notation that
is different from the one being used in the presentation.
Motor disabilities may limit data entry and interactive
navigation with notations.

Diversity of print disabilities. The diversity of print
disabilities is frequently glossed over in the literature.
Many papers use the phrase “blind and visually im-
paired” when discussing designs for blind people, imply-
ing that blind people and people with low vision have
similar interaction requirements; in fact, many with low
vision use their residual sight as much as they can [25].
Other papers (e.g. Hermsdorf et al. [16]) assume that the
needs of all partially-sighted people are much the same.
Jacko et al. [17, 18] show that this is not the case, and
suggest that individual users’ needs can be determined
by clinical assessment. Even this can be difficult in the
case of some eye conditions, such as nystagmus, which
can vary over time and can produce different perceptual
results for different people [39]. Some users need to be
given control over the presentation themselves, as Gre-
gor and Newell explain for some cases of dyslexia [14].

Many industry-standard applications already allow
the customisation of fonts, sizes and colours, but it can
be difficult and is not always reliable. In the first author’s
personal experience as a person with low vision, the cus-
tomisation of applications frequently exposes bugs in the
display code; these can render the application unusable
and are rarely fixed in a timely manner. Further, few of
these applications allow the layout of structured data to
be changed to compensate for the reduced viewing area
to text size ratio (see Section 2.2). Different layout algo-
rithms can sometimes make the data easier to navigate
around by people who have difficulty fixing their gaze,
and this requires additional customisation.

Disabling circumstances. A document may have to be
used in unusual circumstances that are effectively dis-
abling. This includes the use of restrictive hardware,
such as small displays on mobile telephones, which
present a problem similar to that of large print on nor-
mal displays, as the ratio between the viewing area and
the text size is reduced, and therefore layout and naviga-
tion need careful consideration. Adjusting the notation
can help in this case also.

Specialist notations. Educational background can con-
tribute to the requirement for an alternative presenta-
tion. A good example of this is in music. Besides West-
ern staff notation, musicians use various tablature and
instrument-specific notations, as well as sol-fa, Chinese
Jianpu notation, and others, and it is often possible to

transcribe a piece of music from one notation into an-
other in order to make it accessible to a greater number
of musicians. Braille music also has numerous different
versions across the world.

Notations can be customised for different tasks, such
as sequential reading, rapid overview, or detailed analy-
sis. Often it is desirable to omit or include certain details
depending on how the document will be used, because
people with print disabilities are frequently unable to
skip over unwanted information at speed. Additionally,
educational establishments can customise notations for
pedagogical purposes.

Data entry is another task that can call for alter-
native notations, since optimising for input and editing
is different from optimising for reading. Even direct-
manipulation interfaces sometimes use a hidden input
notation in their controls. For the sake of usability, there
is usually some compromise so that the input and out-
put notations are conceptually similar, but this can be
overshadowed by a disabled user’s accessibility needs (for
example, someone with extreme typing difficulties might
prefer a terser input notation even if it means more train-
ing).

Multiple and unforeseen needs. Although it is common
practice to focus on one need at a time, it is possible to
envisage individuals who have a combination of several
of the above-mentioned requirements, as well as addi-
tional ones that have not been anticipated by research.
Hence, the need arises for general solutions, i.e., systems
that truly include as many people as possible by being
adaptable to new situations that were not explicitly con-
sidered at design time.

2 Special-case transformation systems

This section discusses some illustrative examples of sys-
tems that use transformations to assist people with dis-
abilities. The systems are “special case”, not because
their primary purpose is to support disabled users, but
because the transformations they employ are limited to
one or two domains (such as Web pages, or mathematics)
and, although they might permit some customisation,
they cannot easily be programmed to handle completely
new transformation tasks. This can be the case even in
systems that are examples of universal design.

2.1 Assistive technologies for print disabilities

In 1972, Rubinstein and Feldman proposed a Braille
terminal for blind computer operators [34]. Computer-
driven reading machines for the blind were also con-
ceived at that time [2]. During the 1980s, when MS–
DOS was the industry standard, many companies (such
as Cobolt Systems, Dolphin Systems, Techno-Vision and

Transformation frameworks and their relevance in universal design 3

PulseData) marketed “adaptive” or “assistive” technolo-
gies for blind DOS users. These adaptations usually in-
volved a combination of speech hardware and screen-
reading software. Screen magnifiers for partially-sighted
people were also common, and some Braille displays were
available, although the latter were more expensive and
required knowledge of Braille, which not all blind people
had [30].

Pitt and Edwards [30] evaluated a screen reader and
found several inadequacies. Unlike the line-mode termi-
nals of the 1970s, most DOS applications updated the
screen in a highly non-linear fashion. Simply reading ev-
erything as it was written was no longer effective, and
algorithms had to be developed to allow blind people
to extract the appropriate information from the screen
without having to read or listen for too long and with-
out having to remember too much context (since verbal
information is transient).

Developing such algorithms often involved making
specific allowances for commonly-used applications, usu-
ally by writing “profiles” for those applications. For ex-
ample, if a clock was displayed at a certain screen po-
sition, specific code had to be written in order to avoid
reading the content of the position in question, as such
content is updated every second. This led to a situation
where blind people (other than programmers) were effec-
tively restricted to certain pieces of software, and certain
versions of them, as a trivial change in the software’s ap-
pearance could require the writing of a new profile.

GUIs. The rise of the GUI during the 1990s rendered
DOS screenreaders obsolete, and happened some time
before effective replacements were developed [40]. As
well as the problems that DOS screenreaders had to
face, there was now the additional complication that
programs can display their controls by writing bitmaps,
instead of using the standard system calls, and thus
be more difficult to intercept (this is an example of
the problems raised by signal-based representations dis-
cussed in Section 3.1). Moreover, the visual concepts of
GUIs do not come naturally to computer novices who
have been blind from birth. Research interest in screen-
readers included the Mercator project for the X window
system [28], and the GUIB project for Windows [42],
which tries to simulate in a speech environment the di-
rect manipulation of positioning windows.

Navigation. When the amount of data that has to
be displayed is significantly greater than what will fit
on the display, users have to “navigate” around the
data, and can “get lost” (for example, see Watts-Perotti
and Woods’ article on the subject [41]). The use of
screen magnification, speech, Braille, or any other out-
put method that cannot display as much information
simultaneously as the software designer expected, can
accentuate this problem.

2.1.1 Application-level transformations Because of the
above-mentioned problems with assistive technologies,
Raman [32, 33], Zajicek et al. [46], and others adopted
the approach of implementing specialised applications
to cater for the needs of blind people, rather than try-
ing to adapt industry-standard systems that were not
originally designed for the purpose. Raman extended
the EMACS editor with a speech interface that is com-
pletely different from its visual interface. He also pro-
duced a comprehensive system for reading mathemat-
ical documents as speech (either interactively or non-
interactively). Zajicek’s work involves a Web browser
that provides navigation aids for the blind, involving
information-retrieval techniques on complex Web pages.

2.2 Customising Print

Syntax highlighting. Normally used for programming
languages, syntax highlighting involves marking up text
with colours (or fonts) to indicate its syntax. This helps
people with print disabilities, provided that they can see
the highlighting, because, once they are familiar with
the language and its idioms, they can “zoom out” and
navigate around the colour pattern without having to
read the details. It also assists with fixation: if, due to
physical or other reasons, it is difficult to concentrate on
a fixed point on the page, then it is often easier to return
to that point by using low-resolution colour information.

Colour highlighting has been effectively used in nor-
mal text [14], as well as in music (by Sibelius [11]). It
is an example of enhancing a notation by adding extra
information in a format orthogonal to the original, so as
to aid navigation around the notation.

Layout problems. Large text implies that only a part
can be fitted into a given area. If the layout is not flexi-
ble, then extensive navigation is required, such as labo-
rious horizontal scrolling, or unwieldy large paper that
introduces extra requirements on the reprographics fa-
cilities.

Even if the layout is flexible, some page-layout algo-
rithms can fail to produce a readable layout, given the
extreme constraints that very-large print presents. Such
algorithms have a maximum text-size-to-page-area ra-
tio beyond which they break down. This can be demon-
strated by viewing a website with frames and tables on
a low-resolution screen at the largest font setting.

For this reason, people who use very large print will
often wish to transform tabular layouts into a more flexi-
ble form (see, for example, the various website mediation
technologies that have been produced [6]).

2.3 Braille Typesetting

Algorithms for typesetting Braille text have been de-
veloped since the 1980s. Once the Braille codes have

4 Silas S. Brown and Peter Robinson

Fig. 1 A refreshable Braille display attached to a normal
keyboard (photograph from www.tieman.de)

been produced, they can be sent to an embosser, i.e.,
a device for producing raised dots on suitable material,
sometimes called a “Braille printer”, or to a refreshable
Braille display, which uses mechanical or piezoelectric
techniques to temporarily raise the dots (Figure 1).

Some of the more well-known typesetting products
are the Royal National Institute for the Blind’s “Braille-
It!”, the US National Federation of the Blind’s NF-
BTrans, and the commercial TuxTrans system (which
is multilingual and can also translate some mathemat-
ics). The state of the art is probably the high-resolution
(20dpi) Tiger Advantage embosser with its Windows
printer driver that allows almost any document (includ-
ing diagrams) to be embossed with little effort, but most
establishments have older embossers.

Contractions. The use of “contractions” (abbrevia-
tions) can increase the reading speed in alphabetic
scripts. This is not just data compression, since many
experienced users of Braille associate contractions with
phonetic or even semantic concepts (e.g., using the con-
traction for “mother” in the word “chemotherapy” is a
bad idea). Even high-end Braille typesetting products
are sometimes overzealous in their use of contractions,
particularly with newly-invented words like “scandisk”
(which contains “and”, so is sometimes incorrectly ab-
breviated “sc&isk”). The use of speech synthesis algo-
rithms could help to avoid cross-syllable contraction.

Customisability. Most contraction algorithms are rule-
based and can be used for different languages if appro-
priate rules for each language are provided. A problem
with many such systems is that it is very difficult for the
user to customise the rules, which may need to be done
in a pedagogical setting. Blind children learn the con-
tractions and word abbreviations of Braille in carefully-

graded steps, and while they are doing this they need
special texts that use some contractions but not oth-
ers [12]. If these texts are to be generated automatically,
then the teacher must be able to customise the list of
contractions that can be used, preferably without get-
ting lost in a large database of rules and exceptions in
an unfamiliar notation.

East Asian languages. Producing Braille from Chinese
and Japanese text presents other challenges. There are
Braille codes for analytically representing the characters,
but most text is more readable when transcribed from
one of the phonetic character sets, so the text must first
be “read” into sounds [21]. The latter requires natural-
language processing, because there is usually more than
one way of reading any given character, depending on
the context.

Specialist notations. More general problems are asso-
ciated with specialist Braille notations such as math-
ematics, musical scores, chemical bonds, and so on.
These notations have many different standards and
house styles, and most existing transcription software
(such as MFB [24] and Goodfeel [26]) is limited to out-
putting in very few of them. The problem is further com-
plicated by the fact that the source material is stored in
many diverse formats and therefore multiple conversions
are often required, sometimes leading to information loss
due to the limitations of intermediate formats.

3 Generalised transformation frameworks

This section reviews some transformation systems that
are programmable, i.e., they can be used as a basis
for implementing new transformation tasks as needed.
These systems are not limited to one domain, but deal
with generalities, such as symbols and data, that can ap-
ply to many domains. A generalised system that is used
in the field of software engineering, for example, might
equally well be used to accomplish transformation tasks
when dealing with mathematical or musical notation.

The notion of transforming data from one structure
to another is a very general one. Nearly every program
ever written can be thought of as a transformer, inter-
preting its input (perhaps a sequence of commands from
the user) and producing some output (perhaps feedback
to the user as the input is being given). Conversely, a
given transformation could conceivably be implemented
in virtually any programming language.

As is the case with many programming problems,
however, the class of transformations that form the main
focus of this paper, i.e., the conversion and adaptation
of the notations of various educational disciplines, can
be achieved more easily with some programming tools
and languages than with others. While different pro-
grammers have different ideas of what is easy and what

Transformation frameworks and their relevance in universal design 5

is difficult, it is still possible to achieve some general-
ity by stating that, if a tool or language was developed
specifically to support a particular design approach that
is well-suited to a certain class of problems, then many
people who wish to solve problems in that class are likely
to find that tool or language easier to learn and use than
a more general programming language, and the associ-
ated design approach is more likely to be adopted, hence
reducing the amount of work that might otherwise result.

Many transformation tools are actually Turing-
powerful and could potentially be used as general-
purpose programming languages, but it is still useful to
make the distinction, because these tools are biased to-
ward a particular class of problems and a particular de-
sign approach. If they are used outside that class, the
resulting code may not seem so high-level, particularly
if there is overt emulation of the behaviour of other
general-purpose programming systems.

Any programmable system must strike a balance be-
tween versatility and simplicity. The limit of versatil-
ity is to require the user to write the entire program
in low-level code, but that gives little simplicity. Con-
versely, the limit of simplicity is to forbid any program-
ming (just provide built-in special-case functionality),
but that gives little versatility. Between these limits lies
a complex non-linear relationship that depends on de-
sign decisions. These should make the system powerful
enough to serve its purpose, but simple enough to justify
its use as a tool.

3.1 Symbolic vs signal-based representation

Representations of information in computer memory
can generally be divided into two categories: symbolic
and signal-based. Symbolic representations are based on
the practice of encoding the identifications of symbols,
whereas signal-based representations are based on mea-
surements of some physical quantity (such as light or
sound) which may contain information. Scanned images,
for example, are signal-based, whereas program code is
largely symbol based.

Some representations are symbolic in one sense and
signal-based in another. For example, many desktop
publishing applications identify which symbols are on
the page but measure their positions (which the user
can indicate with a pointing device). This sometimes
causes difficulty when a program needs to act on the
relationships between different symbols, since those re-
lationships need to be interpreted from the physical po-
sitioning data. Similarly, a MIDI file generated by a mu-
sic keyboard identifies which notes are being played but
measures their positions in time. If the music is to be
written in staff notation then these time measurements
must be interpreted.

Signal-based representations may lead to more accu-
rate reproduction of an original source, but they limit the

effectiveness of automatic processing, since apart from
rudimentary transformations on the signal itself (such
as amplification), any processing must first involve inter-
preting the signal into a symbolic representation. Such
signal-to-symbol conversion lies in the domain of “artifi-
cial intelligence” and is presently unreliable. It is beyond
the scope of this paper, which deals with symbolic rep-
resentations.

Users of applications that prepare documents are sel-
dom aware of whether or not some aspects of their in-
formation are being stored as measurements rather than
codes, and of the significance of this. This is particularly
true given the prevalence of WYSIWYG (what you see is
what you get) and direct manipulation in user interfaces,
since these make signals and symbols indistinguishable.
Therefore, users may find it arbitrary that certain pro-
cessing operations can be performed automatically on
certain documents but not on others.

3.2 Unix tools

Many command-line tools commonly associated with the
Unix environment are suitable for performing transfor-
mation operations on text-based data. Bentley [5] de-
scribes the task-specific languages of these tools as “lit-
tle languages”; several are reviewed in Salus [35]. Three
themes often recur: regular expressions, pipes, and pre-
processors.

3.2.1 Regular expressions The non-interactive stream
editor, sed, can perform regular-expression based substi-
tution operations on its input, and has a command lan-
guage similar to that of the interactive editors ed and vi.
This language is Turing-powerful—a Turing machine can
be emulated by a set of search-and-replace commands in
a loop—and sed scripts exist for numerous transforma-
tion tasks.

Since sed scripts are cryptic and can be difficult to
maintain, the support for regular expressions and other
text processing has also become a major feature of some
scripting languages with higher-level constructs, such as
Awk, Perl, Ruby, Python, and Emacs lisp, which are
frequently used to achieve transformations.

From 1962 to 1967, Bell Labs developed the String-
Oriented Symbolic Language, or SNOBOL [15]. This
utilises a language for pattern matching which is con-
sidered by some to be clearer than regular expressions
as well as being more powerful; it supports recursively-
defined patterns and is in some respects similar to a
parser generator (see Section 3.3) with full backtrack-
ing. At present, it is rarely used due to its relative slow-
ness and the consequent prevalence of regular-expression
based systems. In comparison with regular expressions,
SNOBOL code tends to use fewer special characters and
a higher-level structure.

6 Silas S. Brown and Peter Robinson

3.2.2 Pipes Unix shells, such as sh, bash, zsh, ksh,
csh, ash, tcsh etc, support various control-flow features
and allow the construction of pipelines to pass the output
of one command to the input of another, perhaps with
other commands acting as “filters” to perform transfor-
mations on data while it is in the pipeline. Hence com-
plex transformations can be built up from smaller prim-
itives. The Unix environment provides many commands
that can be used in pipelines to obtain such functional-
ity as sorting, searching, and arithmetic evaluation. It is
also possible to construct pipelines graphically (see, for
example, Spinellis [36]).

3.2.3 Preprocessors and macros A preprocessor copies
its input to its output, and, while doing so, it checks for
certain embedded codes and acts on them. Generally,
the embedded code that the preprocessor recognises is
interpreted, executed, and replaced with its output. This
is termed “preprocessing”, because the output produced
is frequently passed to another program, such as a com-
piler or a typesetting package, for further processing and
display.

When considering a preprocessor’s role in the conver-
sion of notations, it is useful to differentiate between the
input of the transformation and the input of the prepro-
cessor. Preprocessors can be thought of as having two
distinct modes of operation:

1. The input of the preprocessor is fixed, and encodes
the nature of the transformation. The input of the
transformation is provided separately, in the form of
the preprocessor’s configuration or environment, and
is queried by the embedded code.

2. The input of the preprocessor is the input of the
transformation. The nature of the transformation is
governed by the configuration of the preprocessor or
by including a library of code and definitions.

The fixed input mode is used when the overall form
of the desired output is fixed (does not depend on the
transformation’s input), although some parts of the out-
put do depend on the transformation’s input data. Data-
dependent code is embedded into a fixed document. This
is the approach taken by server-side embedded scripting
languages on Web servers, and by the C preprocessor
when it is used to customise some code according to the
user’s desired configuration.

A well-known example of server-side scripting is
PHP. Server-side scripting systems are also available
for several existing programming languages including
Python, Java, Tcl, Perl and Scheme, as well as a few
specially-designed languages.

The user-supplied input mode is used to accomplish
more complex tasks. The macro language built in to the
typesetting software TEX [23], for example, has enabled
other languages to be transformed into plain TEX for
typesetting. This includes the LATEX language for struc-
tured documents, MusiXTEX [38] for musical notation,

and XML formatting objects via PassiveTEX [31]. Some-
times the macros redefine the input language completely,
but usually the two languages can be mixed and the
preprocessor effectively adds new features to the output
language.

3.3 Parser generators

A parser is a program that takes a stream of input and a
grammar, and uses the grammar to calculate the parse
tree (the hierarchical structure) of the input. Actions
are taken on the resulting structure. This can be used
as the basis of a transformation. Since much of the ef-
fort in creating a parser can be automated by using a
parser generator, or “compiler compiler” [1], this method
can be useful when implementing some transformations,
particularly those that follow a complex input structure.
Attribute grammars [22] are frequently used for such a
purpose, by recursively working on the parse tree in a
bottom-up fashion. The contents of terminal nodes in the
tree are used to calculate the attributes of non-terminal
nodes, which in turn influence the attributes of higher
non-terminals until it is possible to take action on a non-
terminal and its attributes. It is however necessary to
write the “action” code in a general-purpose program-
ming language that is supported by the parser generator,
but for some transformations this might be as simple as
printing out the parsed data in a different order.

Perhaps the most famous example of a parser gener-
ator is the Unix tool Yacc (Yet Another Compiler Com-
piler) and its GNU equivalent, Bison. These require aux-
iliary code to tokenise the input, i.e., to group the char-
acters into units such as integers and identifiers. Nor-
mally, the associated tool lex, which is based on regular
expressions, is used as a tokeniser. These tools are de-
signed primarily for speed. Creating fast parsers is de-
sirable when they will be used in production compilers,
as these may be given large quantities of code. However,
in the context of transforming notations for individual
needs and requirements, the speed of the parser might
be less important than the usability of the parser gen-
erator. If there is less scope for error when writing the
grammar for the parser generator, then transformations
can be prototyped more quickly and with less effort and
resources. In many cases, this will outweigh the longer
runtimes of less-efficient parsers.

GLR (generalised look-right) parsers, such as
Elkhound [27] and more recent versions of GNU Bi-
son, help to relieve the problem by supporting arbitrary
grammars, using backtracking if necessary. A separate
tokeniser is not required, as tokens can be included lit-
erally in the grammar, hence reducing the level of skill
that is required on the part of the parser generator’s
user. It is still necessary, though, for the user to have
some understanding of parsing theory and to avoid cer-
tain pitfalls. For example, many parser generators will

Transformation frameworks and their relevance in universal design 7

crash (or produce parsers that crash) if a user specifies
an action at the beginning of a left-recursive reduction
rule.

3.4 Rewriting systems

Rewriting theory, sometimes also called “rule-based pro-
gramming”, is often used in equational reasoning, in-
cluding automated deduction, automated verification of
specifications, type theory, etc. A rewriting system in-
volves a collection of “rewriting rules”, which are di-
rected equations. Informally, they specify that when-
ever a given pattern of symbols is encountered, it must
be rewritten in a specified form. These rules are ap-
plied in sequence in accordance with a rewriting strategy,
which is usually a normalising strategy, meaning that
the structure is repeatedly transformed until it is in “nor-
mal” form and the rules cannot effect further changes.
Rewriting is Turing-powerful.

The difference between rewriting and simple “search
and replace” (with or without regular expressions) is
that rewriting operates on hierarchical structures, rather
than on an unstructured string of characters. A rewriting
system operates on data that has already been parsed.
Hence, it is possible to create rules that specify such
things as what types of data the rule applies to and
in what context, possibly with other conditions added.
Rule patterns frequently correspond to fragments of the
parse tree. The resulting rules tend to be more concise
than their search-and-replace counterparts. Rewriting
strategies sometimes specify that the pattern replace-
ment must first occur in a particular part of the parse
tree, such as the outermost level.

TXL [9] is an example of a generic rewriting language
that incorporates a parser generator, allowing arbitrary
languages to be parsed, and subsequently applies rewrite
rules to the abstract syntax trees that are generated. The
commercial DMS software maintenance system [4] em-
ploys a similar method for its program transformations.

The Stratego language [19] also uses rewrite rules on
abstract syntax trees. In Stratego, the rewriting strategy
is user-definable. Stratego itself does not include facili-
ties to parse and format the syntax trees, the latter being
provided by auxiliary tools such as XT [20].

Rewriting languages are also used by the well-known
symbol-based mathematics package Mathematica [43]
and the Rigal programming language [3], and logic pro-
gramming languages such as Prolog are also based on
it.

Rewriting is best suited for mathematical structures
where the rewriting rules follow naturally from the math-
ematical definition of the structure. Any transformation
that can be expressed informally as a set of “this pattern
should be re-written as that” statements, which capture
the complete transformation and are not merely exam-
ples of it, is likely to be easily implemented in a rewriting

system as long as the input data can be parsed into the
system. Rewriting systems may be more difficult to use
in cases where it is less obvious what the rules should
be, or when the transformation needs to go through one
or more intermediate states before the desired result can
be achieved (this needs more thought on the part of the
transformation programmer).

3.5 XML-based tools

There is no shortage of books and websites on XML [45]
and related presentation tools, many of which make use
of the XSLT transformation language [44]. This is effec-
tively a variation on the rewriting systems mentioned
above, except that it is not necessary to construct a spe-
cialised parser for each type of input before the rewriting
can begin, because well-written XML makes the relevant
structure explicit. Cascading style sheets (CSS) provides
a more limited way of transforming XML text for presen-
tation (CSS level 2 and above can be used with arbitrary
XML).

XML and XSLT can be verbose. As with other frame-
works, some transformation tasks require a lot of code,
and this can present problems, particularly for people
with print disabilities, due to the overhead of writing
and navigating the code. This problem can be partly al-
leviated by XML-aware editors and other development
tools, as long as these applications themselves are acces-
sible.

3.6 Multiple hierarchies and matrix-like structure

Most symbolic data is hierarchical, or tree-like, at least
after it has been parsed. Generalised markup languages,
such as XML, can be used for describing hierarchical
structures over documents and data directly. In gener-
alised markup languages, a piece of data can be enclosed
within an “element”, which can in turn be a member of
a higher-level element, etc.

It is often overlooked that much data is also matrix-
like in nature, that is, it can be indexed along two or
more orthogonal dimensions which can be addressed
independently. Tables and spreadsheets are matrices.
A musical score (which represents parallel streams of
events) is matrix-like, and so are parallel translations
of literary works. They can be interpreted as having
tree-like structures, but there are several equally-valid
branching orders. Often it is possible to read a docu-
ment in several different ways, using, in effect, several
different methods of indexing into the items of data that
make up the document. It can be useful to treat these in-
dices as the different dimensions of a multi-dimensional
matrix, so that switching from one system to another
amounts to slicing along a different dimension.

8 Silas S. Brown and Peter Robinson

equation 1

expr 1 rel 2 expr 3

term 1 op 2 term 3 op 4 term 5 term 1

id 1 exp 2 num 1 id 2 num 1 num 1

x 2 + 3 x + 4 = 0

Fig. 2 4DML’s representation of a parse tree

The programming language APL uses matrices as a
primitive type. However, it is often more useful to em-
ploy a conventional tree-like hierarchical structure, par-
ticularly if the data’s structure is recursive, as is the case
with mathematical expressions, which can contain other
expressions to any depth. However, using a hierarchical
structure throughout makes things more complex when
they would perhaps be better represented as matrices.
When a single hierarchical structure is not the most nat-
ural way to represent the structure of a notation, it can
impose artificial restrictions on the notation’s transfor-
mation [7].

Multiple overlapping structures can be represented in
a single hierarchy by making use of such things as XML
linking (ID and IDREF), but this can be complex and
require more effort from the programmer. The simulta-
neous handling of hierarchical structures and matrix-like
or overlapping structures can be viewed as a challenge
for many existing transformation frameworks.

4 4DML

4DML (four-dimensional markup language) is a gener-
alised transformation framework developed by the first
author [7]. It represents data in such a way that it can
be treated as either tree-like or matrix-like, or both, as
appropriate. This orthogonality also allows multiple, in-
dependent hierarchies over the same data without undue
complexity. This is useful when there is more than one
set of markup, e.g., logical divisions that are separate
from physical divisions and indexing divisions.

4.1 The data structure

4DML’s data structue is illustrated in Figure 2. It con-
sists of symbol-based data and a hierarchical structure
over that data that indicates how the original input was
parsed. However, it is possible to add multiple hierar-
chies that are orthogonal to each other by adding more
layers to the diagram.

The illustration corresponds to a four-dimensional
pointset: the horizontal dimension corresponds to which
symbol is being marked up, the vertical dimension to the
depth of the markup, the text to the type of markup, and
the numbers (which are also represented by background

eqn 1 eqn 1 eqn 1 eqn 1 eqn 1 eqn 1 eqn 1 eqn 1 eqn 1

expr 1 expr 1 expr 1 expr 1 expr 1 expr 1 expr 1 rel 2 expr 3

term 1 term 1 op 2 term 3 term 3 op 4 term 5 term 1

id 1 exp 2 num 1 id 2 num 1 num 1

x 2 + 3 x + 4 = 0

Fig. 3 The true pointset in Figure 2

colours) to the position of each piece of markup among
its peers. That such positioning information is needed
is indicated by Figure 3, in which the true pointset is
shown. All markup is duplicated such that the markup
over any particular symbol can be represented out of
context.

The left-to-right order is irrelevant (it can be recon-
structed from the other data), and is shown for clarity
only. Since different notations may represent the same in-
formation in different arrangements, the ordering should
be a property of the markup, not of the underlying data.

4.2 Transformation by model

The primary algorithm associated with 4DML is “trans-
formation by model”, which takes some 4DML input
along with a “model” of the desired structure, and trans-
forms the input as necessary to reflect the structure of
the model. The algorithm can also report which objects
have been lost in the process, if any.

The algorithm works by performing a top-down
traversal of the model, and, while doing so, reads off rele-
vant parts of the input. Since 4DML can be read in many
different ways, it is not difficult to read it in whatever
way is dictated by the structure of the model, regard-
less of whether or not this matches the original struc-
ture. Hence, it is possible to perform complex structural
transformations merely by writing down the form of the
desired result. It is also possible to follow the structure
of the input in the same way as a conventional stylesheet
processor.

In other words, each element in the model will cause
the occurrence of the following:

1. The input is searched for all elements that match the
name of the model element. Only such elements at
the highest level at which they occur will be used.
The search will cut across all other markup.

2. The input is divided into groups, one for each distinct
element that was found, and the groups are sorted by
position number. Any other markup from the input
is included in each group.

3. Any model code that occurs within the current model
element is executed once for each group.

4. If the model element is empty (a leaf node), then
the data from each group is copied to the output,
discarding all remaining markup.

Transformation frameworks and their relevance in universal design 9

A B C

D E F

G H I

table 1

row 1 row 2 row 3

col 1 col 2 col 3 col 1 col 2 col 3 col 1 col 2 col 3

A B C D E F G H I

Fig. 4 A 3×3 table and an illustration of how it might be
represented in 4DML

table 1 table 1 table 1 table 1 table 1 table 1 table 1 table 1 table 1

row 1 row 1 row 1 row 2 row 2 row 2 row 3 row 3 row 3

col 1 col 2 col 3 col 1 col 2 col 3 col 1 col 2 col 3

A B C D E F G H I

Fig. 5 Selecting column 1

Thus, any element X in the model is effectively inter-
preted as universally quantified (“for each X”). Arbi-
trary text in the model is copied to the output whenever
it is encountered. Model elements can be given attributes
(parameters) to specify their behaviour in a flexible man-
ner.

Figure 4 shows how a 3×3 table or matrix, with the
input format representing columns within rows (as is
the case with HTML) might be represented in 4DML.
It is equally easy to select a row as to select a column
(Figure 5), so if the user wishes to transform the table
into a notation that requires it to be read in columns
rather than rows then this is virtually transparent.

The complete specification of the order in which the
transposed table is to be written is essentially the nested
statement:

– For each “col”, select that “col” and
– For each “row”, select that “row” and

• Write out what is selected

In 4DML’s compact model language (CML),
this is abbreviated to col/row (more correctly,
table/col/row, which would properly handle the case
of several tables), with appropriate parameters added so
that the markup is re-named or deleted as required by
the typesetting or display software that will produce the
output notation.

4.2.1 Compact Model Language (CML) CML is a text-
based language designed to assist with the coding of
4DML models. In practice, most models have a tail-
recursive structure and express such things as “for each
song, for each verse, for each syllable,. . . ” which in XML
would require a number of closing tags:

<SONG> <VERSE> <SYLLABLE>
</SYLLABLE> </VERSE> </SONG>

In CML, the above is expressed as
SONG/VERSE/SYLLABLE. CML also has other opera-
tors and can represent any hierarchical document,
but its syntax is specifically designed for representing
typical 4DML models concisely.

Complete models in CML are often small enough to
be given to the processor as command-line arguments.
Alternatively, CML can be embedded into a file as a
macro language (similarly to PHP), which is useful when
there is a large amount of text (such as typesetting
markup) to include before, after, or between the input.

CML’s syntax resembles that of XPATH in XSLT,
but its working is fundamentally different. CML ex-
presses the form of the desired output, whereas XPATH
expresses a path to be taken through the input. With
CML, it does not matter if the elements of the input
are nested in a different way than is shown by the CML
model, since 4DML transposes the nesting as appropri-
ate. Hence, the author of the model is encouraged to
consider the structure of the result rather than follow-
ing the structure of the input.

4.3 Matrix markup language (MML)

Before 4DML can work with structured data, the data
must first be made available to it. It can be cumber-
some to hand-code matrix-like data in a hierarchical
markup language like XML, since the markup is very
verbose and repetitive. For example, in coding the lyrics
of a song, one might have to enclose each syllable in a
<SYLLABLE>. . . </SYLLABLE> pair, whereas it would be
easier to define a separator (for example, the whites-
pace) to stand for “next syllable” (other separators can
advance the verse number or the translation).

In the general case, one can construct a parser for an
arbitrary domain-specific input language, but this can
require a significant amount of effort for an end-user.
There is scope for a markup language that provides for
some simple re-definitions (such as “whitespace means
next syllable”) while not being as complex as a parser
generator. Matrix Markup Language (MML) is a text-
based language designed to assist with the coding of
4DML data in this way. Arbitrary strings can be defined
to advance markup at various levels of the hierarchy (the
precedence is shown by the order in which they are spec-
ified), and multiple independent hierarchies can also be
expressed.

The 4DML prototype can also process XML input.

5 Example applications of 4DML

This section illustrates some example cases where 4DML
can be useful for converting between different notation

10 Silas S. Brown and Peter Robinson

systems. All of these tasks can be achieved without the
use of 4DML, but would require several different trans-
formational frameworks and tools to achieve the same
results, and the code could in some cases be complex
and difficult to maintain.

This paper does not address the details of 4DML or
the precise operation of its models, but some example
models are illustrated and briefly explained.

5.1 Website “scraping”

Web services that publish content such as weather re-
ports are often very detailed. A weather forecast might
contain a tabulation of details on air pressure, temper-
ature, wind speed and pollen counts, over several days
and perhaps in several locations. For those relying on
large print, speech synthesis or Braille, it can take much
time to locate the small amount of data that is actually
required, particularly if the software cannot guess the
most logical way of reading the table.

The practice of “scraping” refers to the use of an
automatic program to interpret data that is presented
with the intention of being read by a human, such as
data from a screen display or a complex website. Histor-
ically, “scraping” has frequently been used in the area of
disabled users’ access to computing. Its main disadvan-
tage is that any re-design in the layout of the screen or
website is likely to break the program that reads it, so
these programs need frequent maintenance.

4DML has been used as a “website scraping” sys-
tem to read off appropriate parts of an HTML weather
forecast, providing a short summary such as:

Saturday: Sunny Intervals. Sunday: Light Showers.
Monday: Cloudy.

The transformation is essentially a matrix transpo-
sition, so that the website’s table is read vertically by
column, and a clipping (a limit on the range of data
that is output). Both of these are expressed in a concise
transformation “model”:

td start-at=2 end-at=4 between=”. ”/tr start-at=2
end-at=3 merge/(font, ”: ”, alt)

Informally, this means: “For columns (tds) 2 through 4,
do the following (while outputting . between each col-
umn): For the merged content of rows (trs) 2 and 3,
write out the text enclosed by font, then :, then the text
enclosed by alt.” This happens to be the day name and
the weather forecast respectively, which are not explic-
itly labelled. Merging is necessary because the font and
alt are in different rows. An alternative approach would
be to state:

font after=”: ”, alt

layout:
.
.
.

.

.

.
r

Sigma
.
.
.

.

.

.

r
r

.

.

.

.

.

.r
.
.
.

.

.

.
rr
r

below:
.
.
.

.

.

.

r r
r

id n
.
.
.

.

.

.
rr

.

.

.

.

.

.

r
r
rr

=
.
.
.

.

.

.

r
r

.

.

.

.

.

.

r
r

0
.
.
.

.

.

.r rr
above:

.

.

.

.

.

.

rr r

id k
.
.
.

.

.

.
rr

.

.

.

.

.

.

r
r

end
layout

.

.

.

.

.

.

rr rrr
fraction:

.

.

.

.

.

.

r rrr

id f
.
.
.

.

.

.
rr

.

.

.

.

.

.

rr r
superscript

.

.

.

.

.

.

rr
id n

.

.

.

.

.

.
rr

.

.

.

.

.

.

r
r
rr

baseline
.
.
.

.

.

.
r

id a
.
.
.

.

.

.
rr

.

.

.

.

.

.

r
over
.
.
.

.

.

.r
r

id n
.
.
.

.

.

.
rr

.

.

.

.

.

.

r
r
rr

end
fraction

.

.

.

.

.

.r
rrr

Fig. 6 Annotated Braille mathematics (Nemeth linear code)

This model occasionally needs to be re-written to cope
with changes in the site’s layout, although not every lay-
out change affects the model. The script has been in daily
use for many months.

If the website were to release weather data in a stan-
dardised format that is specifically intended for process-
ing by a program, then this would remove the need to
re-write the model whenever the web designers change
the layout. However, it is often the case (at the time of
writing) that data in such formats is only available for a
fee, since it would make it easier to set up a competing
source of weather forecasts.

5.2 Mathematics reading

4DML was used to parse a MathML document and out-
put the result as text suitable for a speech synthesiser,
appropriately rendering the included mathematical ex-
pressions. For example, the expression

k∑
n=0

fna

n

was transformed into “sigma from n equals 0 to k of
f to the n a over n”. The model for this is somewhat
larger because of the number of different mathematical
symbols it needs to translate.

By changing the model, Braille output was produced,
either as an annotated visual representation (Figure 6)
or as codes suitable for controlling an automated Braille
embosser or a Braille display.

The inclusion of mathematics as an example is merely
illustrative, because mathematics can already be trans-
formed and customised using specialised systems such
as AsTeR [32]. The novelty of 4DML is better shown
in other domains, but we felt it was important for any
new transformation system to show that it can process
mathematics as well.

5.3 Typesetting for language learning

When teaching written Chinese to Western students,
Chinese characters are often written with small pronun-

Transformation frameworks and their relevance in universal design 11

ciation guides around them, and sometimes the mean-
ing of each character or group of characters is indicated
alongside in the language of the student.

There are several systems for indicating pronuncia-
tion. Some use special phonetic symbols (such as zhuyin,
which is informally known as bopomofu), and others em-
ploy the Latin alphabet. These pinyin (alphabetical) sys-
tems use either numbers or special accents to indicate
tonal inflection, and they use various different spellings
that are not always intuitive to native speakers of En-
glish (this is a common source of pronunciation errors).
Different students prefer different pinyin systems, and
many beginners prefer to devise their own systems for
private use, but there are advantages in learning one of
the standardised systems (such as Hanyu Pinyin which
is used in mainland China) since it is widely used in
printed books, dictionaries, and computer software.

Many students try to move from their private no-
tations onto the standard that they wish to learn. Such
moving is usually done by writing both notations in par-
allel and progressively deleting parts of the private nota-
tion according to the student’s progress. In this way stu-
dents can be guided from one pinyin system to another,
and also towards reading Chinese characters directly.

The “ruby” system of writing pinyin above the char-
acters is difficult for partially-sighted students because
it employs very small print, and if it is enlarged without
adjustment then the result can be unwieldy and give rise
to tracking problems (i.e., people with certain sight con-
ditions lose track of which line they are reading). Addi-
tionally, if these students want to produce a customised
version of the notation for themselves, then they are im-
peded by the graphical way in which the symbols are
positioned relative to each other; they either have to
write it by hand or use a graphical wordprocessor, and
both can be difficult for visually-impaired students.

4DML allows a user to produce a “model” of the de-
sired output in the language of a Chinese-capable, text-
driven typesetting package such as CJK–LATEX. In Fig-
ure 7, the different lines of text, which have been printed
at similar sizes to facilitate zooming, have been brought
very close together so as to aid tracking, and colour has
been used to compensate for the resulting crowding and
to further assist with tracking (shades of grey can also
be effective). The blue private notation (which has been
generated automatically) has mostly been taken away,
and the few Chinese characters that the user has learned
have been duplicated into the pinyin line. Syllable sepa-
ration dots (which are not standard in Chinese) have also
been used, as have parentheses to indicate a higher level
of grouping. It is also possible to include symbols denot-
ing gestures (if giving a presentation) or musical tones
(if singing a song) according to the student’s needs.

Adjustments to the model can be made over time,
such as changing the fonts, spacing and colours, chang-
ing the order in which the lines appear (or deleting some
lines altogether), and controlling which Chinese charac-

dùı· � ·q̀ı�
I’m sorry,
� �� �

(Wǒ
I

�

shr
sh̀ı·tú

attempt
� �

�
speak

�
� ·wén)
Chinese

�
kě·

shr
sh̀ı

but
	

(wǒ
I

�
�

speak
�

�
�

� ·hǎo)�
no good,
� �

ȳın·
tsz
čı

therefore
�

(wǒ· �
my

� �
x̀ın)
letter

dà·
doar
duō

mostly
� �

(ȳıng·wén
English

shū·xiě
write
��

�).

���
Rú·

goar
guǒ

If
��

(j̄ın·tiān· �
today’s
� � �

tiān·q̀ı
weather

��
hǎo)�
fine,

etc

Fig. 7 A customised notation to assist with Chinese studies

(a) CEDICT format:

� [Wo3] /I/

� � [shi4 tu2] /attempt/

� [shuo1] /speak/

�� [zhong1 wen2] /Chinese/

(b) PinYin-based format:

Wo3 shi4-tu2=attempt shuo1 zhong1-wen2

(c) Song lyrics format:

Shang4 di4 xian4 yi3 xia4 ling4, pai4 qian3

� � � 	
 � , �
Shang4 di4 di4 shang4 zi3 min2, wang2 guo2

� � � � � � , � �

guang1 zhao4 lin2 di4 shang4 ...

� � � � � ...

qin2 xuan1 jiang3; an1 wei4 ...

� � � ; � � ...

Fig. 8 Different ways of inputting annotated Chinese

ters (and which aspects of pinyin) are assumed to be
known. Sometimes it is desirable to produce several dif-
ferent presentations of the same text, as when other stu-
dents or a teacher is involved or when more space is
needed for handwritten corrections, and sometimes it is
desirable to send the output as plain text to a Chinese-
capable email client. These are achieved by using differ-
ent models.

There are many established ways of inputting ideo-
graphic characters. Most of these involve typing a char-
acter’s pronunciation (in some dialect) or codes that
represent clues about its appearance, and then select-
ing from the characters that match those criteria. This
essentially amounts to making queries on a database or
dictionary of characters, and for the language student
the system can be extended as follows:

1. Use a dictionary that includes definitions in English
or another language, and allow searches on these def-
initions as well as any of the character’s other at-
tributes (using this method it is also possible to re-
trieve a sequence of several characters in one opera-
tion);

12 Silas S. Brown and Peter Robinson

2. Once the character(s) have been identified, insert into
the document the entire dictionary entry (including
pronunciation and definition), not just the character
itself.

This means that the input to the 4DML transfor-
mation is a sequence of dictionary entries which can be
edited for readability (see Figure 8). The user can ei-
ther use a specially-programmed input method or can
construct the sequence manually by searching a dictio-
nary file and copying from it (perhaps with the aid of
keyboard macros).

If Chinese characters have already been provided,
then it can be unclear how they should be grouped into
words (which can be formed of two or more characters),
and in this case it is useful to keep the pinyin together so
that its grouping can be changed quickly (for example,
by replacing a space with a hyphen). Sometimes Chinese
characters may not be available at all, and only pinyin
and English (or another language) are present.

If the input has been provided by others, then it may
be in a more esoteric format, such as song lyrics, where
a line of pinyin is placed above a line of characters, and
pairs of lines from different stanzas are interleaved.

5.4 Aspect-oriented music encoding

There are essentially four ways of inputting Western mu-
sical notation into a computer:

1. Scanning. This is only feasible if the visual render-
ing of the original musical notation is of sufficiently
good quality and is rarely possible with handwritten
music.

2. Using a direct manipulation music publishing system
such as Sibelius [11]. Such software can be difficult
to use for people with print disabilities.

3. Playing the music on a keyboard or similar. Due to
the limitations in artificial “aural skills”, the result-
ing notation is usually inaccurate for all but the sim-
plest music.

4. Writing in a “musical code” (also called “little mu-
sic language”), i.e., a special computer language that
gives instructions to a music typesetting program.

Since the latter option is the most feasible for print-
disabled people, that is the one that is examined here.

Modern Western musical notation has a large “vo-
cabulary” of possible symbols, so the computer lan-
guages that represent it have to be fairly complex. This
means that those who wish to write in such languages
will either have to spend time learning them (which can
be too much for an occasional user), or will be slowed
down by the frequent need to refer to a reference manual
or online help system. If the user is also the composer,
then this problem might restrict the composition.

The first author’s approach to addressing this prob-
lem is to pass through the music several times, each time

begin music

begin part

!block pitch

have whitespace character as bar note

r rrrd ddddfca aarrd ddddfca aadce gfcdfeca gfcddfeeg

gfbagffg dcfffg feaabb ddcc bbaa gfgaabaadfa

!endblock

!block duration

have whitespace character as bar note

0 2488 8881144 28888

8881144 28114 11481148

114111148 11481148 114848

114848 4882 4882 88888883333

!endblock

!block accidental

have whitespace character . as bar note rubbish

.ss ...s ..s ..ss .sn.sn

..n nn .s...n...n

!endblock

Fig. 9 Extract from a musical score using one method of
aspect-oriented music encoding. In this case the other as-
pects include octave, dot, tuplet, tie, articulation, dynamics,
keychange and text.

encoding just one or two aspects (note letters, octaves,
enharmonics, note values, dots, tuplets, phrasing, artic-
ulation, etc). Thus the user can type in all of the note
letters in the piece, then go back to the beginning and
type in all of the octaves, and so on (see Figure 9). This
is more efficient because only a small amount of vocab-
ulary needs to be considered at any one time. It also
introduces the possibility of distributing the work-load
between several people with limited training.

Some modern styles of composition can also lend
themselves to an aspect-oriented construction. The in-
dependent aspects of the notation that are progressively
added are not necessarily the aspects of musical nota-
tion; rather, they are the aspects of the compositional
framework defined by the composer, which is then con-
verted into standard musical notation by the 4DML
model. The underlying idea is similar to the separation
of concerns in aspect-oriented programming [10].

4DML was used to transform between a variety of
aspect-oriented formats and the languages of three mu-
sic typesetting systems. A different model was used to
produce Japanese Koto tablature (see Figure 10), and it
is also possible to convert into several different versions
of Braille music and other notations as required. This is
discussed in more detail elsewhere [8].

Transformation frameworks and their relevance in universal design 13

The Foggy Dew
(Irish)

Tuning: Nogijoshi

� �
�
���
��

� 	

 �

�

�
��

�

�� �
��
��

�

�

� �
�

�
� !
"#

$ %

& '

(
)
*
+,

-

./ 0
12
34

5

6

78
9
:;<

x =>

?

@ ACB

D
E
F
GH

I J

K L

M
N
O P
Q R

S T

U V

W

X Y

Z [

\]

^
_`a
bc

d e

f g

h
i
j
kl

m

no p
qr
st

u

v

w x

y z
{}|~� �C�

�
���
��

� �

� �

�
�
�
��

� �
� �
�

�� �
��
��

�

Fig. 10 Japanese Koto notation produced using 4DML with
Lout and CJK–LATEX

6 Availability

The 4DML system described in this paper has been im-
plemented and is available for download. We aim to im-
prove the quality of the distribution shortly. It is in reg-
ular use for a variety of tasks by at least one individual
with low vision, and it has been used by others although
it has not yet been possible to obtain feedback from large
numbers of users.

7 Conclusion

Virtually all information-society applications involve no-
tations [29, 13], and the transformation of these between
different versions is a component part of universal access,
since it can help to cater for individual user requirements
and for different tasks and environments. Tools that sup-
port the programming of such transformations can make
it easier to create new notations on demand and to im-
plement universal design. They are not in themselves
complete solutions, but can contribute towards such an
overall objective.

The 4DML system allows the user to specify the
structure of the desired result in a fairly concise manner,

without needing to design an algorithm or a set of trans-
formation rules as is normally the case. This can help de-
velopers, particularly print-disabled developers (of which
the first author is an example), to prototype transforma-
tions more quickly and to experiment with new notations
during efforts to address educational needs.

Acknowledgements The first author is supported by a stu-
dentship from the UK’s Engineering and Physical Sciences
Research Council (EPSRC).

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

2. Jonathan Allen. Reading machines for the blind: The
technical problems and the methods adopted for their
solution. IEEE Transactions on Audio and Electroacous-
tics, 21(3):259–264, June 1973.

3. Mikhail Auguston. RIGAL—a programming language
for compiler writing. Lecture Notes in Computer Science,
502:529–564, 1991.

4. Ira D. Baxter. DMS: practical code generation and en-
hancement by program transformation. In Workshop on
Generative Programming, pages 19–20, 2002.

5. Jon Louis Bentley. Programming pearls: Little lan-
guages. Communications of the ACM, 29(8):711–721,
August 1986.

6. Silas S. Brown and Peter Robinson. A World Wide
Web mediator for users with low vision. In ACM CHI
2001 Workshop No. 14. http://www.ics.forth.gr/

proj/at-hci/chi2001/files/brown.pdf.

7. S.S. Brown and P. Robinson. Automatically rearrang-
ing structured data for customised special-needs presen-
tations. In Simeon Keates, P. John Clarkson, Patrick
Langdon, and Peter Robinson, editors, Universal Access
and Assistive Technology: proceedings of the Cambridge
Workshop on UA and AT, pages 109–118, Mar 2002.

8. S.S. Brown and P. Robinson. Transforming musical no-
tations for universal access to performance and composi-
tion. In Simeon Keates, John Clarkson, Patrick Langdon,
and Peter Robinson, editors, Designing a More Inclusive
World: proceedings of the Cambridge Workshop on UA
and AT, pages 123–132. Springer, Mar 2004.

9. James R. Cordy, Charles D. Halpern, and Eric Promis-
low. TXL: A rapid prototyping system for programming
language dialects. In Proceedings of The International
Conference of Computer Languages, pages 280–285, Mi-
ami, FL, Oct 1988.

10. Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-
oriented programming: Introduction. Communications of
the ACM, 44(10):29–32, Oct 2001.

11. Ben Finn and Jonathan Finn. Sibelius: The Music Nota-
tion Software, 2001. Sibelius Software Ltd, Cambridge,
http://www.sibelius-software.com/.

12. Office for Standards in Education. Inspection Report—
RNIB New College, Worcester, page 37. Alexandra
House, 33 Kingsway, London, WC2B 6SE, Oct 2000. In-
spection number 223644.

14 Silas S. Brown and Peter Robinson

13. T. R. G. Green and A. F. Blackwell. Design for usability
using cognitive dimensions. Tutorial session at British
Computer Society conference on Human Computer In-
teraction HCI’98, 1998.

14. Peter Gregor and Alan F. Newell. An emperical inves-
tigation of ways in which some of the problems encoun-
tered by some dyslexics may be alleviated using com-
puter techniques. In Proceedings of the Fourth Interna-
tional ACM Conference on Assistive Technologies AS-
SETS 2000, pages 85–91, Nov 2000.

15. R. E. Griswold, J. F. Poage, and I. P. Polonsky. The
SNOBOL4 Programming Language. Prentice-Hall, sec-
ond edition, 1971.

16. Dirk Hermsdorf, Henrike Gappa, and Michael Pieper.
Webadapter: A prototype of a WWW-browser with new
special needs adaptations. In Proceedings of the 4th
ERCIM Workshop on ‘User Interfaces for All’, num-
ber 8 in Long Papers: WWW Browsers for All, page 15.
ERCIM, 1998.

17. Julie A. Jacko, Max A. Dixon, Robert H. Rosa, Jr., In-
grid U. Scott, and Charles J. Pappas. Visual profiles: A
critical component of universal access. In Proceedings of
ACM CHI 99 Conference on Human Factors in Comput-
ing Systems, volume 1 of Profiles, Notes, and Surfaces,
pages 330–337, 1999.

18. Julie A. Jacko and Andrew Sears. Designing interfaces
for an overlooked user group: Considering the visual pro-
files of partially sighted users. In Third Annual ACM
Conference on Assistive Technologies, pages 75–77, 1998.

19. Patricia Johann and Eelco Visser. Warm fusion in Strat-
ego: A case study in the generation of program transfor-
mation systems. Annals of Mathematics and Artificial
Intelligence, 29(1–4):1–34, 2000.

20. M. Jonge, E. Visser, and J. Visser. XT: a bundle of
program transformation tools. Electronic Notes in The-
oretical Computer Science, 44, 2001.

21. Mitsuji Kadota. Japanese Braille Tutorial, Oct
1997. http://buri.sfc.keio.ac.jp/access/arc/

NetBraille/etc/brttrl.html.
22. D. E. Knuth. Semantics of context-free languages. Math-

ematical Systems Theory, 2(2):127–146, 1968.
23. Donald E. Knuth. The TEXbook. Computers and Type-

setting. Addison-Wesley, 1986.
24. Didier Langolff, Nadine Jessel, and Danny Levy. MFB

(music for the blind): A software able to transcribe and
create musical scores into braille and to be used by blind
persons. In Proceedings of the 6th ERCIM Workshop
on ‘User Interfaces for All’, number 17 in Short Papers,
page 6. ERCIM, 2000.

25. S. Ludi. Are we addressing the right issues? Meeting
the interface needs of computer users with low vision.
In Simeon Keates, P. John Clarkson, Patrick Langdon,
and Peter Robinson, editors, Proceedings of the First
Cambridge Workshop on Universal Access and Assis-
tive Technology, pages 9–12. Engineering Design Cen-
tre, Cambridge University Engineering Department, Mar
2002. Technical Report 117, ISSN 0963–5432.

26. Bill McCann. GOODFEEL Braille Music Translator,
Jun 1997. Dancing Dots Braille Music Technology, http:
//www.dancingdots.com/.

27. Scott McPeak. Elkhound: A fast, practical GLR parser
generator. Technical Report UCB/CSD-2-1214, Univer-
sity of California, Berkeley, Computer Science Division

(EECS), University of California, Berkeley, California
94720, Dec 2002.

28. Elizabeth D. Mynatt and W. Keith Edwards. Mapping
GUIs to auditory interfaces. In Proceedings of the ACM
Symposium on User Interface Software and Technology,
Audio and Asynchronous Services, pages 61–70, 1992.

29. Cognitive Dimensions of Notations. T. R. G. Green.
In Alistair Sutcliffe and Linda Macaulay, editors, People
and Computers V: Proceedings of the Fifth Conference of
the British Computer Society, pages 443–460. Cambridge
University Press, Nov 1989.

30. Ian J. Pitt and Alistair D. N. Edwards. Improving the
usability of speech-based interfaces for blind users. In
Second Annual ACM Conference on Assistive Technolo-
gies, Vision Impairments – II, pages 124–130, 1996.

31. Sebastian Rahtz. PassiveTEX. Text Encoding Initiative.
Available in most TEX distributions, 2003.

32. T. V. Raman. Audio System for Technical Readings. PhD
thesis, Cornell University, 1994.

33. T. V. Raman. Emacspeak: a speech-enabling interface.
Dr. Dobb’s Journal, Sep 1997.

34. Richard Rubinstein and Julian Feldman. A controller
for a Braille terminal. Communications of the ACM,
15(9):841–842, September 1972.

35. Peter Salus, editor. Little Languages and Tools, vol-
ume 3 of Handbook of Programming Languages. Macmil-
lan Technical, first edition, 1998.

36. Diomidis Spinellis. Unix tools as visual programming
components in a GUI-builder environment. Software—
Practice and Experience, 32(1):57–71, January 2002.

37. Constantine Stephanidis. Aims and scope. Universal
Access in the Information Society, 1(1):A4, 2001.

38. Daniel Taupin, Ross Mitchell, and Andreas Egler.
MusiXTEX: Using TEX to write polyphonic or instru-
mental music, Apr 1999. ftp://ftp.gmd.de/music/

musixtex/musixdoc.ps.
39. David Taylor and Christopher Harris. About nystag-

mus. Technical report, Nystagmus Network, 108c Warner
Road, Camberwell, London, SE5 9HQ, UK, Sep 1999.
http://www.btinternet.com/~lynest/nystag.pdf.

40. Jim Thatcher. Screen reader/2: Access to OS/2 and the
graphical user interface. In First Annual ACM Confer-
ence on Assistive Technologies, Vision Impairments – I,
pages 39–46, 1994.

41. Jennifer Watts-Perotti and David D. Woods. How expe-
rienced users avoid getting lost in large display networks.
International Journal of Human-Computer Interaction,
11(4):269–300, 1999. ISSN 1044–7318.

42. G. Weber, D. Kochanek, C. Stephanidis, and
G. Homatas. Access by blind people to interaction
objects in MS Windows. In Proceedings of the ECART
2 European Conference oon the Advancement of Re-
habilitation Technology (Stockholm), page 2, May
1993.

43. Stephen Wolfram. The Mathematica Book. Cambridge
University Press, fourth edition, Apr 1999.

44. World Wide Web Consortium. XSL Transformations
(XSLT) Version 1.0, W3C Recommendation, Nov 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116.

45. World Wide Web Consortium. Extensible Markup Lan-
guage (XML) Version 1.0 (Second Edition), Oct 2000.
http://www.w3c.org/TR/2000/REC-xml-20001006.

Transformation frameworks and their relevance in universal design 15

46. Mary Zajicek, Chris Powell, and Chris Reeves. A web
navigation tool for the blind. In Third Annual ACM Con-
ference on Assistive Technologies, pages 204–206, 1998.

