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Classification of complex information: Inference of
co-occurring affective states from their expressions

in speech
Tal Sobol-Shikler,Member, IEEE,and Peter Robinson

Abstract— We present a classification algorithm for inferring
affective states (emotions, mental states, attitudes and thelike)
from their non-verbal expressions in speech. It is based on the
observations that affective states can occur simultaneously and
that different sets of vocal features, such as intonation and speech
rate, distinguish between non-verbal expressions of different
affective states. The input to the inference system was a large
set of vocal features and metrics that were extracted from each
utterance. The classification algorithm conducted independent
pair-wise comparisons between nine affective-state groups. The
classifier used various subsets of metrics of the vocal features and
various classification algorithms for different pairs of affective-
state groups. Average classification accuracy of the 36 pair-
wise machines was 75%, using tenfold cross-validation. The
comparison results were consolidated into a single ranked list
of the nine affective-state groups. This list was the output of the
system and represented the inferred combination of co-occurring
affective states for the analysed utterance. The inference accuracy
of the combined machine was 83%. The system automatically
characterised over 500 affective state concepts from the Mind
Reading database. The inference of co-occurring affective states
was validated by comparing the inferred combinations to the
lexical definitions of the labels of the analysed sentences. The
distinguishing capabilities of the system were comparable to
human performance.

Index Terms— Affective computing, human perception, cogni-
tion, affective states, emotions, speech, machine learning, intelli-
gent systems, multiclass, multi-label.

I. I NTRODUCTION

A FFECTIVE states and their behavioural expressions, and
in particular their non-verbal expressions in speech, are

important aspects of human reasoning, decision-making andcom-
munication [1]–[4]. According to the ‘Theory of mind’ [5], [6],
affective states such as beliefs, intents, desires, pretending and
knowledge, can be the cause of behaviour and thus can be
used to explain and predict others’ behaviour. The integration
of affective states and their behavioural correlates in fields such
as human computer interfaces and interactions (HCI), human-
robot interactions (HRI) and speech technologies can enhance the
system and user performance and has many potential applications
[3], [4], [7]. Therefore, there is an increased interest in detecting,
analysing and imitating these cues.

In this paper the termaffective statesrefers to emotions, mental
states, attitudes, beliefs, intents, desires, pretending, knowledge
and moods. Their expressions reveal additional information re-
garding the identity, personality, psychological and physiological
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state of the speaker, in addition to context-related cues and
cultural display rules. This wide definition of the termaffective
statesdraws on a comprehensive approach to the role and origin
of emotions [8], [9]: affective states and their expressions are
part of social behaviour [10], [11], with relation to physiological
and brain processes [2], [12]. They comprise both conscious[13]
and unconscious reactions [2], [14], [15], and have cause and
effect relations with cognitive processes such as decisionmaking
[1], [2]. A number of affective states can occur simultaneously
[16]–[18], and change dynamically over time. A similar viewof
the conceptaffective statesis given by Ḧoök [19] who describes
affect as human, rich, complex and ill-defined experience.

The term ‘expression’ refers here to the outward representation
of affective states. This is the observable behaviour (conscious or
unconscious) that people can perceive and would like to interpret.
It can be affected by factors such as context and cultural display
rules. This perspective is also reflected in automatic synthesis
systems that aim to imitate only the behavioural expressions and
not their source (automatic systems do not feel nor think at this
stage).

Several affective states often occur simultaneously [17],[18],
[20]. The existence of co-occurring affective states can bea
product of the different time spans that characterise different
affective states, and of the wide range of contexts, personalities
and people reactions. Examples of co-occurring affective states
and their behavioural expressions include being happy and at
the same time showing interest, tiredness etc.; genuine joyful
and amused laughter vs. stressed laughter; thoughts resulting
in the expression of confidence and excitement, or uncertainty,
misunderstanding and stress. Mixtures of conflicting affective
states (such as the aversion and attraction that some peoplefeel
towards snakes) can also occur. These examples represent only
a small part of the repertoire of co-occurring affective states
that people express and infer on a daily basis. The issue of co-
occurring affective states in speech has been discussed in the
literature [17], [18] and annotation (labelling) methods of co-
occurring affective states in speech corpora have been presented
[20], [21]. For example, Devillerset al. [20] present annotation
of a major affective state and a secondary affective state for each
sentence. However, no automated inference solution has been
suggested.

The challenges for the design of systems that infer affective
states from their expressions are:

• Create a general framework that can handle a large variety
of affective states and their expressions rather than a system
that is specific to predefined emotions.

• Recognise affective states that often occur in everyday life
(rather than strong expressions of basic emotions that are



IEEE TRANS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ..,NO. .., ... 2009 2

rarely experienced or seen).
• Handle various affective states that occur simultaneouslyin

a speaker-independent manner.

There are three main approaches to the inference of affective
states from their non-verbal expressions. The most commonly
used approach [21]–[26] is thecategorical approach, which
entails the inference of a small set ofbasic emotions[27], such as
happy, sad, angry, afraid, disgustedandsurprised. The termbasic
emotionsrefers to qualitatively distinct states that are held to be
universal at least in essence, i.e. recognisable by most people from
most backgrounds. Stereotypical expressions of these affective
states are perceived as easier to act and to recognise, and therefore
useful for both quick acquisitions of data-sets, and as a starting
point for developing inference systems. However, these emotions
do not encompass the entire range of human affective states,and
do not relate to nuances of affective states and their expressions,
although in recent works they are defined as groups comprising
several affective states each [25]. Inference of a single emotion for
each analysed sentence limits the scope of the inference andits
ability to grasp the complexity of the information. Furthermore, if
the small set is used only as a starting point, it is an open question
whether the same behavioural cues can be used for both extreme
emotions and subtle expressions of complex affective states.

The second approach is to detect the existence of a selected
affective state in real situations, such as drivers’ stress, attempts at
insurance fraud and post-natal depression [28]–[30]. Thismethod
is basically a bi-polar classification in which a state either exists
or not. It does not refer to other co-occurring affective states.

The third approach, which has recently become more
widespread, is thedimensionalapproach, in which several expres-
sions are represented in a one, two or three dimensional space,
with dimensions such as passive-active, positive-negative and low-
high arousal levels [8], [31]–[36]. The dimensional approach
provides in theory a more continuous scale for interpretation but
the research usually refers to recognition of the edges or areas, for
example: positive and low arousal or negative and high arousal
level. These descriptions are often correlated to physiological
processes such as changes in heart rate or skin conductivity, but
they do not reflect the large variety of affective states nor the
different levels of their experience. Various combinations of the
categorical approach and the dimensional approach have been
offered [26], [37]. For example, Xiaoet al. [26] present two
methods for hierarchical inference of six basic emotions. The first
comprises classification according to active-passive (dimensional
approach) as a first stage, and then classification into the single
emotions (categorical approach). The second method comprises
first classification of speakers’ gender, followed by hierarchical
classification into a binary graph. These methods provide a better
resolution version of the dimensional approach, with or without
a label for each sub-set of emotions. However, there are complex
affective states that cannot be distinguished in this manner be-
cause the transition between them is gradual and therefore blind
clustering (unsupervised learning) is not effective [38].

These three approaches refer to affective states as single
entities, although co-occurrences of affective states arecommon.
These approaches do not refer to different level of experience of
the affective states. The number of affective states or dimensions
that can be recognised is limited and does not represent the range
of affective states and their definitions as people use and express
in everyday life.

Researchers who develop automatic recognition systems of
affective states from speech try to define one set of metrics or
attributes that are calculated from the vocal or speech features,
which are extracted from the speech signal, to distinguish between
all the affective states they infer [8], [23], [24], [39]. However,
comparison between the results shows no agreement about the
role and the significance of each metric. Furthermore, thereis
no common basis for comparison because they use different
databases, affective states, features and metrics. Xiaoet al. [26]
use one set of metrics but refer to different calculatedmassesof
metrics to distinguish between different groups of affective states
at different levels of a hierarchical classification, and the actual
weight of each metric in the classification is not known.

In this paper, we present a different approach, which is to infer
co-occurring affective states for each utterance. A classification
method whose output for each sample is a set of multiple classes
rather than a single class was developed. The classificationresults
reflect shades of affective states and nuances of expressions and
not only their detection. This method uses different sets ofvocal
features and metrics to distinguish between different affective
states. This approach has also been adopted by the recently
published W3C Emotion Markup Language [40].

The paper first describes the methodology that was used in this
research. It then focuses on the classification, the validation of the
inference and the system generalisation.

II. M ETHODOLOGY

The design of the classification system was influenced by four
main factors. The first was the goal of recognisingco-occurring
affective states. This goal evolved from the need to recognise
human behaviour as it occurs in real situations and scenarios.
The second factor, which evolved from the first, was the choice
of a representation or conceptualisation method to represent the
large range of affective states and the relations between them. The
third factor was the choice of data-sets for training and testing.
The fourth factor was derived from the observation that different
vocal features and metrics distinguish the expressions of different
affective states [26], [38].

The choice of underlying theory and representation method of
knowledge and meanings in the problem domain defines the scope
of the system and its limitations. It influences the definitions of the
system’s input, output and architecture, in addition to themethod
and scope of training and testing data.

We chose to use the prototype approach [41], [42]. This
assumes that language and knowledge shape the way people
categorise information. It has both contents of individualcate-
gories and the hierarchical structures among them. Therefore, it
can represent a large range of affective states in terms thatare
intelligible and reflect knowledge. The Mind Reading taxonomy
is an example of this approach [43]. Table I presents the main
group categories of the Mind Reading taxonomy. Each of these
groups includes many different affective states that sharea
common meaning and knowledge. For example, theunfriendly
group includes 120 affective states, such asargumentative, cold
and discouraging. However, the groups or categories in the
taxonomy often include affective states that are on opposite sides
of dimensions such as passive-active or positive-negative. For
example, in theunfriendly group there are bothignoring and
argumentative, i.e. not engaged and fully engaged. Therefore, it
cannot be taken directly for training a machine.
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TABLE I

THE 24 AFFECTIVE STATE GROUPS(EMOTIONS) THAT CONSTITUTE THE

M IND READING TAXONOMY OF BARON-COHEN et al. [44]. BASIC

EMOTIONS ARE LISTED IN THE LEFT COLUMN. THE GROUPS THAT ARE

ADDRESSED IN THIS PAPER ARE INDICATED WITH A*. T WO GROUPS

WERE EXTRACTED FROM THE INTERESTED GROUP: INTERESTED AND

ABSORBED.

afraid touched bothered* unfriendly* thinking*

surprised fond hurt sneaky interested**

angry liked sorry bored excited*

sad kind disbelieving wanting sure*

happy* romantic unsure*

disgusted

For the inference system, a set of nine affective-state groups
or archetypes was chosen to represent a large variety of affec-
tive states and co-occurring affective states. The affective-state
groups were:joyful, thinking, absorbedor concentrating, stressed,
excited, opposedor disagree, interested, confidentor sure, and
unsure. Each affective-state group consisted of several affective
states that generally represent a dominant common concept.
For example, the affective statesabsorbed, engaged, committed,
concentratingand focusedwere assigned to theabsorbedgroup.

These affective-state groups are often used to describe human
behaviour. Several of these affective-state groups can co-occur
in everyday situations. Some of them were observed in human-
computer interactions [45], [46]. The set and the affective-state
groups it comprised were simple enough to be used both by
people and systems. Most of the affective-state groups and the
single affective states they included drew on definitions and
categories from the Mind Reading taxonomy and database [43]
with modifications. The chosen set aimed to minimise the duality
within category groups, for example in distinguishing between
interest and concentration [45]. The choice of several affective-
states to represent each affective-state group increased the number
of samples for training and testing and the reliability of the
system. Vidrascuet al. [25] present a similar approach for manual
annotation (labelling) of speech samples, using eight groups
of basic emotions that contain 20 definitions of fine-grained
affective-state concepts. The multiple nuances and subtleaffective
states within each group compensated, to an extent, for inter-
speaker variability (in perception, interpretation and expression)
and for some of the limitations posed by acting and labelling. In
addition, these affective states are relatively easy to induce and
therefore to act in a non-stereotypical manner.

A. Training and testing data

The choice of representation method affects the definition
and choice of data-sets and the manner of data acquisition. On
the other hand, the data-sets’ structure defines the scope and
capabilities of the classification, by defining the types andrange
of available samples and classes for training and testing.

There is a growing effort to use real recorded data for recog-
nition [25], [26], [36]. However, using corpora of real (notacted)
recorded data for training often cannot overcome the limitations
posed by the manner of representation. Using real data may
further limit the scope of the system because annotation of
real data is complicated [20], [47], which in practice limits the

developers to labelling few affective states (or dimensions). Most
of the researchers use their own hand-picked sets of single words
or sentences, chosen from very big data-sets, creating proprietary
data-sets.

We used another approach in which the training and initial
testing of a machine were conducted on a fully annotated database
of acted affective states [43]. The voice part of the Mind Reading
database was used for training and testing [43], [48]. The Mind
Reading database is classified using a prototypical taxonomy, and
is available commercially as a DVD. This can be used to teach
children and adults diagnosed with Autism Spectrum Disorder,
who have difficulties recognising emotional expression in others,
to recognise the behavioural cues of a large variety of affective
states in their daily lives. We used an experimental versionof
the database that consists of over 700 affective states arranged
into the 24 groups presented in Table I. Each affective stateis
represented by six different sentences uttered by six different
actors. In total it includes 4400 utterances recorded by tenUK
English speakers of both genders and of different age groups,
including children. According to its publishers, the acting was
induced [44], [50] and the database was labelled by ten different
people. (The commercial version includes 412 of these affective
states.)

The database is acted, but its original purpose (teaching hu-
mans) and the large number of affective states that it represents,
make it a suitable choice for training a machine to recognise
affective states and for validation on a large variety of affective
states (although humans need fewer samples for training).

A set of 380 sentences of 93 affective states from the Mind
Reading database was used for training the pair-wise classification
machines. A set comprising 253 sentences that belong to the same
affective states and to additional similar concepts was used for
testing the combined inference machine, i.e. a 60%-40% split
between training and testing, respectively. In the affective states
that were used both for training and for testing, the ratio was
70%-30% respectively. In total, 633 sentences were used for
training and testing. The remaining affective states from the Mind
Reading database and their recorded expressions were laterused
for further testing (validation). Naturally evoked affective states
were examined in a later stage in which the inference resultsthat
were obtained by the inference machine were compared to other
indicators [49].

B. Attribute set

Research [38], [57] reveals two characteristics of subtle affec-
tive states. The first characteristic is that different vocal features
and metrics (attributes) distinguish between the expressions of
different affective states, i.e. a set of attributesx may distinguish
between class A and class B, while a different sety distinguishes
between class A and class C. However, class A and class B may
share some attributes that distinguish both of them from class
C. The second characteristic is that when one class is compared
to another class, a threshold often distinguishes between these
classes. It happens when a certain attribute has a continuous
range of values between the examined classes. It is especially
true when examining consecutive speech samples from sustained
interactions in which the change in expression is often gradual,
until a change of affective state is observed. The classification
algorithms in use and the inference results should reflect these
subtle transients.
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Several conclusions for the design of a classification system
were derived from these observations:

• A large enough set of attributes, based on features and
metrics that would characterise the affective states and the
differences that were observed between their expressions was
defined. The contribution of each attribute was measured as
the number of times in which it was used in the classifi-
cation, i.e. automatically selected by the attribute selection
algorithms. Only a few of the 173 attributes were not used
at all (listed in Section IV).

• Different sets of attributes were used to distinguish between
different affective states, as opposed to one set of attributes
that distinguishes between all affective states. This approach
was tested and justified also in the training process by the
results of using the same sets of attributes for the classifica-
tion of different pairs of affective-state groups. Often, sets
that yielded very good results for one pair of affective-state
groups yielded no more than random probability for another
pair.

• Although many different algorithms and approaches have
been tested, at the end the chosen algorithms were based
on thresholds, either as the distance between the samples at
the border between the classes (SVM) or on the attribute
values that were used to distinguish between classes in the
tree-based classification, rather than on the distance between
the centres of the classes. Blind clustering techniques (unsu-
pervised learning) were not effective for complex affective
states. Several methods of blind clustering were examined
unsuccessfully (listed in the Section IV).

C. Dataflow

The data flow in the system consisted of a three-stage pre-
processing of the incoming speech signal: extracting vocalfea-
tures from the input speech signal, extraction of temporal char-
acteristics and metrics calculation, and normalisation.

After the pre-processing stage, the normalised metrics entered
as attributes into a two-stage classification system (Figure 1). The
classification included a first stage of pair-wise decision machines,
i.e. each machine compared between two affective-state groups
(one-against-one classification [51], [52]).

The set of attributes and classification algorithm was selected
independently for each pair of affective states. Differentgroups of
attributes were used for the different pair-wise decision machines.
For a set of 9 affective-state groups, 36 pair-wise machines
were required. Each affective-state group appeared in 8 pair-
wise machines or comparisons. The second stage was a voting
algorithm that consolidated the comparisons into a single ranked
list. The decisions of all the pair-wise machines were entered
into a voting machine that decides which were the most probable
affective states that could be related to the processed speech signal
and to what extent. Each of the recognisable affective-state groups
was ranked according to the number of comparisons in which it
was chosen.

n Affective-state groups

n*(n-1)/2 Decisions

Inferred  Affective-state groups

Speech Signal

Pre-processing

Normalized metrics

Pair-wise Decision Machines

Voting Machine

Feature extraction

Metric calculation

Normalisation

Fig. 1. Schematic description of the dataflow in the inferencemachine.

D. Classification methodology

Pair-wise machines have been used in research for inference
of affective states. For example, Vidrascuet al. [25] use them
because they chose to use support vector machines (SVM) as
the classification algorithm, with a single feature set. Trained
in this manner, all the pair-wise machines depend on each
other. Furthermore, extending the machine to accommodate new
affective states requires retraining of the whole machine.

In this paper, two significant guidelines were combined in
the implementation of the series of pair-wise classifications. The
first stemmed from the observation that expressions of different
affective states are characterised by different sets of vocal features
and metrics [38]. From this observation evolved the conclusion
that there was no requirement for one set of attributes (normalised
metrics) to represent all the examined affective-state groups.
Therefore, each pair-wise machine had its own sub-set of at-
tributes from the total number of metrics that were extracted from
each speech signal (utterance or sentence). The second guideline
was that each pair-wise machine could be trained independently,
based on a classification method that yielded the best results for
the specific affective-state groups and attributes. Optimisation was
done for each pair so better results could be achieved for a single
pair. The overall machine was flexible because affective-state
groups could be added or subtracted according to the requirements
of the system, training only the new machines (possibly with
samples from new corpora). The attribute selection methods,
the chosen attribute sets and the classification algorithmswere
compared to other sets and methods (described in details in
Section IV).

Two voting algorithms for finding one class or affective-
state group were examined (using voting of the 36 classification
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machines). The first was the Condorcet voting method [53]–
[55] with a single winner (no co-occurrences). The second was
a threshold method that allowed inference of more than one
candidate per sentence or utterance, i.e. in each sentence only
affective states exceeding the mean number of comparisons by
more than one standard deviation were considered. The inference
results of these two methods were compared to the labels of the
samples, as defined by the Mind Reading database (the expected
result).

Training was done with the data mining tool Weka [56]. The
extraction of vocal features, metric calculations, the implemen-
tation of the classification machines, the voting and the testing
were done in Matlab.

E. Validation

In order to examine the inference of co-occurring affective
states, the combinations inferred for each sample (sentence or
utterance) of the training and testing sets were compared tothe
lexical definitions of the examined affective states. The inference
was then applied to all the 4400 utterances of the Mind Reading
database. As a stronger measure, the results for all the samples
or sentences that represent an affective state were evaluated. A
Friedman test [58], that measures the significance of ranking, was
applied to the ranked lists of the sentences that belong to each
affective state. In order to find a meaningful interpretation of these
results, a double-threshold procedure was applied to each sentence
and to the sentences that represent an affective state. The double-
threshold procedure automatically inferred the combinations of
affective-state groups that characterise each affective state. It
found the affective-state groups that were chosen by most ofthe
pair-wise machines (the first threshold) in most of the sentences
that represent an affective state (the second threshold). The
thresholds were set over one standard deviation above the mean
number of machines and sentences, respectively. The results of
the double-threshold procedure (combinations of lexical concpets)
were compared to the lexical definitions of the examined affective
states (Section V).

The distinguishing capabilities of the system were compared
to human performance on the Cam Battery Test [44] (SectionV-
D). The inference system was also applied (as is) to naturally
evoked affective states from the Doors database [38]. Doorsis
a Hebrew database of affective states naturally evoked during a
computer game based on the Iowa gambling test [2]. For each
speaker, Doors includes 100 repetition of two sentences uttered
throughout the game, in addition to utterances with un-restricted
text spontaneously evoked during the game and during intervening
interviews. The inference results were compared to other recorded
indicators such as event and physiological measurements [49],
[59]. Expression changes between successive sentences in a
sustained interaction appeared in the distribution of the pair-
wise classification results, therefore the full ranked lists were
used for the analysis. Significant correlation was found between
the inferred affective states and game events, such as gain and
speakers’ choices. In addition, temporal changes in the inferred
affective states were observed simultaneously with events, text
and changes in various physiological and behavioural reactions
(the details of these measurements are beyond the scope of this
paper [49], [59]).

III. PRE-PROCESSING: EXTRACTION OF VOCAL FEATURES

AND METRICS

Before classification, three stages of pre-processing wereap-
plied. The first stage was the extraction of vocal features that
represent the expressive properties of the speech signal ( [8],
[23], [24] and references within). These were time series resulting
from short-term analysis of the speech signal with a moving
window (overlapping time-frames). The vocal features included:
the fundamental frequency, the vibration rate of the vocal chords
(also referred to asf0, pitch or intonation), using a completely
automated extraction algorithm derived from Boersma’s algorithm
[60]; smoothed energy curve of the speech signal using average of
the energy over a time frame combined with Hamming window;
spectral content, the distribution of the energy over the whole
frequency range, calculated with a Bark scale based filter bank up
to 9 kHz [61], [62]; harmonic properties [59], such as consonance
and dissonance, based on findings from physics, musicology and
neuro-science that show that people both generate and perceive
these properties [59], [63]–[67]. The features were calculated for
short and overlapping time frames of 50 msec and overlap of 40
msec for the duration of the utterance. All the vocal features were
extracted automatically, with no manual intervention.

The values of most of the vocal features change during the
utterance. An automatic algorithm that divided the duration of
the analysed utterance into several parts according to their vocal
properties was developed [59]. This rule-based algorithm divided
the sentence or the utterance into parts such as silence, voiced
(parts in which there are vibrations of the vocal chords and
the fundamental frequency is not zero) and unvoiced (where the
fundamental frequency is zero), in combination with energypeaks
and the like. Temporal characteristics that draw on terms from
disciplines such as linguistics and musicology were calculated.
For example, units that correspond approximately to linguistic
properties such as syllables, consonants and vowels were calcu-
lated from combinations of the extracted speech parts, in addition
to durations, time and frequency lapses between occurrences of
the different speech parts that correspond to terms such as tempo
and melody [59].

Secondary metrics were then calculated, including statistical
properties, such as the number of occurrences, median, range and
maximum or extreme values of each vocal feature and of the
temporal metrics [23], [39]. The median was used because it is
less sensitive to outliers than the mean. This choice was supported
by correlation tests of various metric types. In total, a setof 173
secondary metrics for each speech signal was used. The following
list is a rough summary of the metric distribution: 34 pitch related
metrics, 19 energy related features, 17 ‘tempo’ related features,
19 harmonic properties and 84 metrics of spectral content in
21 frequency bands [59]. A summary of the metrics for which
statistical measures were used appears in Table II. The vocal-
features and the secondary metrics were defined and examined
by analysis of the two datasets Mind Reading [43] and Doors
[57]. Mind Reading supplied a large variety of affective states
while Doors provided multiple text repetitions by each speaker,
with natural transition between affective states during sustained
interactions.

The third stage was normalisation of the values, so that all
the metrics were represented on a similar scale. Each metric
was normalised separately for every speaker. Each speaker has
individual characteristics that derive from the speaker’sidentity,
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TABLE II

DISTRIBUTION OF FEATURES AND METRICS

Types Metrics
# of

metrics

f0

Speech rate, voiced/unvoiced durations,f0,
up/down slopes, properties of peak values 34

Energy
Amplitude, max energy, durations and lapses
between peak values 19

‘Tempo’
Relative durations of speech parts
shape of energy peaks 17

Harmonic
Properties

Number and duration of harmonic intervals 19

Spectral
Content

Central frequencies (Hz): 101,204,309,417,531,
651,781,922,1079,1255,1456,1691,1968,
2302,2711,3212,3833,4554,5412,6414,7617

84

including parameters such as gender, body structure, personality,
spoken language and accent, or from the recording conditions.
The normalisation compensated for the inter-speaker variability.
As a result, the expressive characteristics of an affectivestate in
comparison to other affective states could be compared between
speakers. Therefore, no re-training of the machine was required
for new speakers.

IV. CLASSIFICATION

The classification algorithm of co-occurring affective states
included two stages. The first stage consisted of pair-wise decision
machines (one-against-one classification [51], [52]). Thesecond
stage was a voting algorithm that consolidated the comparisons
into a single ranked list.

A. Pair-wise machines

The flow of the training process of each pair-wise classification
machine can be seen in Figure 2.

For each pair of affective-state groups, the training consisted of
finding an optimised combination of both a classification method
and a sub-set of attributes (normalised metrics) that yielded the
best classification results. Training and attribute selection were
jointly conducted. The exploration of both multiple attribute
selection methods and classification algorithms follows the exper-
iments conducted by Oudeyer [23]. All the training was conducted
using the data-mining tool Weka [56]. Imbalanced training sets
cause bias [68], therefore for each pair of affective-stategroups
the training was conducted on similar-size datasets.

The classification algorithms used were linear SVM [69],
[70], a classification algorithm that defines a hyperplane which
maximises the distance between the samples of two classes, and
C4.5 [71], a decision-tree method constructed through divide-
and-conquer strategy, as applied in the J48 package of Weka.
These algorithms yielded the best results and their implementation
was simple. Additional algorithms were examined, whose perfor-
mance was not as good and in most cases their implementation
was more complicated. For example, polynomial and Gaussian
SVMs, Gaussian mixtures, Naive Bayesian, and neural networks
were examined, in addition to various rule-based and decision-tree
classifiers.

Train algorithm 1λTrain algorithm 1λTrain algorithm 1λTrain algorithm 1λTrain algorithm Testing set

Training set

Good
enough 

performance 
?

Test machineTest machine

No

Automatic metrics selection

Modify metrics set

Choose best machineChoose best machine
Yes

Random selection of similar size sub-sets 
for training 

For each 
classification 
method

Combined machine

Metrics

Samples of expression group #2Samples of expression group #1

Metrics

Method #2 (Method #n)
Method #1

Fig. 2. Flowchart for optimisation of a single pair-wise machine

Attribute selection was done as a series of exploratory at-
tribute selection methods. Both scheme-dependent and scheme-
independent selections were used [56]. Examples of the examined
selection and evaluation methods include: best first selection,
forward greedy hill climbing augmented by backtracking, and
evaluation of the individual contribution of each attribute [72],
principal component analysis (PCA), expectation maximisation
(EM), gain ratio evaluation with respect to the class, ranking
attributes by their individual evaluation using entropy, information
gain attribute evaluation and more, using the algorithms that are
implemented in Weka [56]. The attribute selection stage was
applied even if the classification algorithm includes an inherent
attribute selection, for example decision-trees (C4.5).

The procedure was repeated for different classification algo-
rithms until no further improvement was achieved. No optimal
combination of an attribute-selection algorithm and a classifica-
tion algorithm was found for all the pair-wise machines. When
the search was exhausted the best machine and the best set
of attributes were selected. Although the procedure of attribute
selection sounds exhaustive and imprecise, in practice formost of
the machines the maximal number of sub-sets that were examined
before a good enough solution was found is four or five. Good-
enough solutions were defined as a combination of tenfold cross-
validation over 70-75%, minimisation of the difference between
the true-positive values of the two classes (in this case under
5%), Receiver Operator Characteristic (ROC) area close to one
(over 0.9), and precision over 95% on the training data. If the
automatic methods did not yield good enough results additional
manual feature selection was used. One method was to combine
the attributes selected by the C4.5 algorithm with attributes
selected by attribute-selection algorithms and finding thebest
sub-set from these attributes. These sets usually comprised less
than 10 attributes each, with overlaps. The optimisation using this
method was simple and sometimes yielded better results thanthe
original sets. A more radical solution, when the attribute selection
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algorithms yielded relatively poor results was the selection of
attributes or metrics that had been extracted from certain vocal
features only, for example,all the metrics that were calculated
from the fundamental frequency. The training process was con-
cluded when no further improvement was found. Therefore, six
machines were accepted with cross-validation values between
60% and 70%.

Table III lists the pair-wise machines, the tenfold cross-
validation rate of each machine, the classification algorithm that
was chosen, SVM or tree (C4.5), and the number of attributes used
in the machine. There were 6 SVM-based machines and 30 tree-
based machines, chosen according to the listed objective criteria.
A few of the SVM machines presented similar performance to
tree-based machines but were not chosen due to an arbitrary de-
cision or due to a larger number of attributes. The cross-validation
was usually worse in the SVM machines that were based on
the full attribute set though the precision was similar, possibly
due to over-fitting. Attribute selection often improved thecross-
validation of the SVM machines, and the heuristic method for
attribute selection proved better than the more traditional methods
in these cases. The tenfold cross-validation was at least 60% in
all the machines. The average cross-validation rate for allthe 36
machines was 76%. Devillerset al. [20] review ten sets of pair-
classification results, in the range of 60%-90% (median 76%).
They mostly refer to classification between well-distinct affective
states or dimensions, such as positive-negative, negativevs. non-
negative, emotion vs. non-emotion, frustration vs. others, and the
like. The results presented here refer to 36 pair-wise machines of
more subtle and more intricate (less distinctive) affective-states
and show that such affective states can be classified with similar
accuracy rates.

The average number of attributes in the pair-wise machines
was 10 (the median is 8), which is very low compared to the
full set of 173 attributes. Only three machines had more than
20 attributes. These were SVM machines for which fully manual
attribute selection was applied, for exampleall the metrics that
were derived from the spectral content under a certain frequency,
i.e., all the statistical properties of the energy in the relevant filter
bands.

Different attributes were automatically found to distinguish
different affective-state groups. This result strengthens the initial
observations that different vocal-features and metrics distinguish
different affective states and justifies the individual attribute-
selection step. In some cases, a certain affective-state group shared
certain attributes with another (second) affective-stategroup while
the same attributes distinguished between this affective-state
group and a different (third) affective-state group. This was
confirmed by using the attributes that distinguish between one pair
of affective-state groups to compare between a different pair. The
result was that a set of attributes that yielded near optimalresults
for one pair of affective-state groups (precision over 95% on the
full set) yielded no more than random probability for another
pair of affective-state groups. This test was repeated withsimilar
results for different pairs of affective-state groups, often when one
of the affective-state groups remained constant. In addition, if the
set of attributes was very large it did not improve the results and
usually made them worse, possibly due to over-fitting.

In a few cases, two different sets of attributes yielded similar
classification results for the same pair of affective-stategroups
(either with the same classification algorithm or with different

classification algorithms) and an arbitrary decision of which set
and algorithm to use was required. There was no other correlation
between these attributes in other cases. It may indicate (or
confirm) that there is a redundancy in the vocal cues of affective
states (or affective-state groups).

The design of such systems require many factors that may
affect their structure, such as the definition of vocal features and
precise extraction algorithms, metrics definition and calculation,
choice of training samples, and more. The design requires the
developers ‘to get intimate with the data’ [56]. The existence of
several good-enough solutions and the occasional redundancy in
the data compensate for the possible lack of reproducibility.

At the end of the training process, the number of machines in
which each attribute appeared was counted. The attributes that
appeared in the largest number of machines were (the normalised
values of) the number of different harmonics that appeared in 15
of the 36 pair-wise machines [59]; the median of the fundamental
frequency and the standard deviation of the energy in the first
filter-band that appeared 11 times each; the minimum value of
energy durations where there is no pitch (for example in fricatives)
and the range of the energy in the first and second filter bands
that appeared in eight machines each. The attributes that did not
appear in any of the machines were a few harmonic intervals, the
length of the down-slopes of the fundamental frequency and a
few properties of the high spectral-bands. These results show that
relatively compact and efficient machines can distinguish between
pairs of complex affective states, while most of the 173 attributes
are required for the classification of all the nine affective-state
groups.

TABLE III

DETAILS OF THE 36 PAIR-WISE MACHINES, INCLUDING : TENFOLD

CROSS-VALIDATION , MACHINE TYPE: TREE (C4.5)OR SVM, AND THE

NUMBER OF ATTRIBUTES THE MACHINE USED.

absorbed

sure

stressed

excited

opposed

interested

unsure

thinking

joyful
82%
SVM

19

83%
Tree

8

61%
Tree
18

60%
Tree

8

71%
Tree

7

77%
SVM

40

75%
Tree

8

72%
Tree
13

absorbed
84%
SVM

12

87%
Tree

5

81%
Tree

6

78%
Tree

6

82%
Tree

5

64%
Tree

6

73%
Tree
10

sure
84%
SVM

12

79%
Tree

7

72%
Tree

8

78%
Tree

8

78%
Tree

8

75%
Tree

7

stressed
73%
Tree

9

84%
Tree

7

66%
Tree

7

68%
Tree
15

72%
Tree
15

excited
74%
Tree

9

71%
Tree

9

64%
Tree

8

79%
Tree

8

opposed
75%
Tree

8

79%
SVM

6

81%
Tree

6

interested
72%
Tree

8

83%
Tree

8

unsure
89%
SVM

22

B. Combination: inferring co-occurring affective states

Distinguishing nine affective-state groups required 36 pair-wise
machines, in which each affective-state group was considered by
eight machines. These 36 comparisons were then combined to
calculate an ordered ranking of the nine affective-state groups.
That means that each affective-state group was ranked according
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to the number of comparisons in which it was chosen in the range
0-8.

Ranked lists of inferred affective-state groups can be usedin
different manners for different applications, as described in the
next sections.

C. Validation

Examination of inference or classification results is mostly done
by inferring one candidate so it could be compared to the labels
of the testing set. Detection results are given using the CL score
(class-wise averaged recognition, i.e. average of the diagonal of
the matrix) [25]. Results for 4-7 basic emotions, distinct affective
states such as fear, anger, sadness, happiness and ‘neutral’, are
on average 28%-77% ( [20], [25], [26] and references within).

In order to select a single leading candidate, Condorcet voting
[53] with the two-round runoff method, a second round of pair-
wise comparisons between the candidates with the maximum
number of votes, was used. For nine affective-state groups,the
probability of randomly choosing an affective-state groupis 11%.
In the single winner method all the affective-state groups were
recognised with a much higher rate than that. Most of them, with
over 65%, as can be seen in Table IV. The testing yielded an
overall recognition accuracy of 70% (true-positive recognition).

TABLE IV

CONFUSION MATRIX OF THE INFERENCE MACHINE USING THE

CONDORCET METHOD.

\
\

\
\

\
\

Actual
class

Inferred
class

joyful

absorbed

sure

stressed

excited

opposed

interested

unsure

thinking

joyful 75.0 3.6 0.0 0.0 3.6 3.6 7.1 7.1 0.0

absorbed 0.0 69.0 3.4 3.4 0.0 0.0 10.3 6.9 6.9

sure 0.0 14.3 78.6 7.1 0.0 0.0 0.0 0.0 0.0

stressed 0.0 0.0 4.3 73.9 8.7 8.7 4.3 0.0 0.0

excited 11.1 5.6 5.6 11.1 61.1 0.0 5.6 0.0 0.0

opposed 2.6 2.6 17.9 0.0 12.8 61.5 0.0 0.0 2.6

interested 3.6 3.6 3.6 3.6 0.0 0.0 71.4 7.1 7.1

unsure 0.0 3.4 0.0 13.8 0.0 6.9 0.0 65.5 10.3

thinking 0.0 7.1 0.0 3.6 3.6 0.0 7.1 7.1 71.4

However, in the case of affective states it is not necessary to
solve conflicts in order to determine a single winning candidate,
because several of the candidates can co-exist. Therefore,a second
method was tested, selecting affective-state groups that were
chosen by several machines. The threshold for selection wasset
over one standard deviation above the mean number of machines,
which means that at least six machines preferred an affective-state
group.

For example, in Table V, represents the inference results (the
ranked list) of one sentence of the affective statechoosingfrom
the affective-state groupthinking. Each cell represents the number
of machines that chose an affective-state group. The cells that
are marked in grey represent the affective-state groups (thinking
and unsure) that were inferred by the threshold method for this
sentence.

TABLE V

AN EXAMPLE OF THE THRESHOLD METHOD FOR ONE SENTENCE

LABELLED AS THE AFFECTIVE STATEchoosingTHAT BELONGS TO THE

AFFECTIVE-STATE GROUPthinking. EACH CELL SHOWS THE RANKING OF

ONE AFFECTIVE-STATE GROUP. DARK GREY MARKS AFFECTIVE-STATE

GROUPS CHOSEN BY THE THRESHOLD METHOD(SELECTED BY6-8

MACHINES).

Concept

joyful

absorbed

sure

stressed

excited

opposed

interested

unsure

thinking

choosing.wav 2 5 2 3 3 4 3 7 7

The inference results of the threshold method for the testing set
appear in (Table VI). Using the threshold method, the accuracy
of recognition of each affective-state group was at least 75%
(random probability in this case is 14%). The overall accuracy
was 83%. These inference results refer to subtle affective states.

TABLE VI

INFERENCE RESULTS USING THE THRESHOLD METHOD.

\
\

\
\

\
\

Actual
class

Inferred
class

joyful

absorbed

sure

stressed

excited

opposed

interested

unsure

thinking

joyful 89.3 3.6 3.6 21.4 35.7 25.0 17.9 21.4 7.1

absorbed 3.4 75.9 10.3 10.3 6.9 10.3 20.7 37.9 34.5

sure 10.7 17.9 89.3 10.7 7.1 50.0 17.9 7.1 3.6

stressed 17.4 4.3 8.7 78.3 26.1 17.4 34.8 30.4 13.0

excited 0.3 5.6 11.1 27.8 83.3 55.6 16.7 5.6 0.0

opposed 12.8 10.3 48.7 12.8 30.8 87.2 12.8 5.1 12.8

interested 10.7 17.9 7.1 21.4 7.1 14.3 75.0 32.1 21.4

unsure 6.9 27.6 0.0 34.5 13.8 17.2 24.1 82.8 31.0

thinking 0.0 50.0 10.7 17.9 3.6 7.1 14.3 42.9 85.7

The threshold method is more accurate in the sense that the
label of the examined affective-state group is more likely to be
included in the inference results, and it allows inference of co-
occurring affective-state groups.

D. Comparison to other classification methods

The architecture of independent pair-wise machines was com-
pared to others architectures, including a single machine for all
the affective-state groups, i.e. a machine that chooses oneof the
nine affective-state groups (one-against-all classification). This
machine was implemented with decision-tree classification, neural
network, polynomial SVM and Gaussian SVMs. In the pair-wise
architecture (one-against-one classification) an all SVMsmachine
was also examined. Although the precision of these machines
was in most cases relatively high (70%-90%), the true-positive
values for some of the affective-state groups were low and the
tenfold cross-validation results were close to random probability
(for example, 13% in the neural network system and 11% in the
all SVMs pair-wise classification).

Additional preliminary tests included various non-supervised
classification methods for pairs of affective-state groupsand for
several affective-state groups at a time, for example PCA and EM
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that were mentioned before, and more. They were not successful,
probably because the groups are not mutually exclusive and the
ranges of many attributes are continuous.

Most of these methods allow the inference of only one
affective-state group at a time while the pair-wise comparison
method allows inference of more than one affective-state group
for a single sample. Finding an optimised algorithm for each
machine in a pair-wise system, improves the results in comparison
to a single arbitrary algorithm (such as the all SVMs pair-wise
system). The same applies for a single sub-set of metrics.

Because the training was done for each pair of affective-state
groups, the machine training was relatively simple. As there was
no definite definition of the optimal solution (100% recognition
and 100% cross-validation are beyond the scope of realistic
expectations), the outcome ofgood enoughclassification for each
pair-wise machine was improved by the integration of multiple
classification results from the different machines.

V. CO-OCCURRING AFFECTIVE STATES

The previous section demonstrated the ability of the combined
machines to infer known entities, i.e. to recognise the classes
that it was trained to recognise. However, the design allowsthe
combined machine to simultaneously infer several affective-state
groups and rank them (in effect it performs “semi-blind” multi-
label classification), as demonstrated in Tables V and VI. In
order to examine these capabilities, we extended the scope of
the examined data and used different verification methods.

A. Inference within the training and testing sets

Annotation of subtle affective states, co-occurring and mixed
affective-states is difficult. Devillerset al. [20] describe annotation
of speech segments with one major affective state label and one
optional secondary label from a group of 21 fine grained emotions
that belong to 7 coarse emotion definitions, by two annotators.
The textual content had a role in the annotation.

In the case of the Mind Reading database there were already
over 700 fine-grained labels of affective states, and the text of
each sentence aimed to be neutral [44]. It remained to encode
the meaning and the expected behaviour of these affective states
according to the nine inferred affective-state groups, or more pre-
cisely, to evaluate the automatically inferred or encoded sentences.

To evaluate the inferred combinations of affective-state groups
we first looked at the inference results for the affective states
that were part of the training and testing data. The ranking for
each affective-state group was in the range 0-8. The highestscore
8 means that an affective-state group was recognised in all the
comparisons as the most probable candidate. Several classes or
candidates could be automatically chosen with a relativelyhigh
number of comparisons other than 8. If the criterion was one
standard deviation above the mean, these ranks were 6 and 7.
These affective-state groups were chosen in all but one or two of
the comparisons (pair-wise machines). It means that they did not
only appear and relate to the affective state but that they were
also dominant. Several dominant affective-state groups could be
recognised simultaneously. In the same manner it is possible to
say that an affective-state group wasnot recognised as significant,
or significantly was not recognised, if the ranking was in therange
0-2.

Table VII shows an example of the inference results for each
sentence with the affective statechoosingfrom the affective-state

group thinking. It shows that in all the sentences labelled as
choosing, the inferred affective-state groupthinkingwas the most
dominant. The affective-state groupunsurewas also dominant, it
was chosen by six or more machines in four of the six sentences.
Other affective-state groups, such asstressedand opposedwere
also recognised as dominant in some of the sentences. The
affective-state groupsurewas recognised with a very low rate, or
not recognised, consistently.

The next stage was to analyse affective states rather than single
sentences. This stage was based on the assumption that a semantic
concept (an affective state) can be bettercharacterisedby the
inference results that are common to all or most of the six samples
that represent it, rather than by a single sentence at a time.If
the affective-state groups characterise the affective state or the
behaviour related to it they should appear in most of the sentences
that represent it.

TABLE VII

AN EXAMPLE OF INFERENCE OF CO-OCCURRING AFFECTIVE-STATE

GROUPS FOR SENTENCES LABELLED AS THE AFFECTIVE STATEchoosing

THAT BELONGS TO THE AFFECTIVE-STATE GROUPthinking. EACH ROW

SHOWS THE SPEECH SIGNAL(ON THE LEFT) AND THE NUMBER OF

COMPARISONS IN WHICH EACH OF THE NINE AFFECTIVE-STATE GROUPS

WAS CHOSEN. DARK GREY MARKS AFFECTIVE-STATE GROUPS CHOSEN BY

6-8 MACHINES. L IGHT GREY MARKS AFFECTIVE-STATE GROUPS CHOSEN

BY 0-2 MACHINES (NOT RECOGNISED). THE FINAL DEFINITION OF THE

AFFECTIVE STATEchoosingIS AT THE 2 BOTTOM LINES, STATING THE

NUMBER OF SENTENCES IN WHICH IT WAS RECOGNISED(OR NOT): •

RECOGNITION IN 4-6 SENTENCES.

Concept

joyful

absorbed

sure

stressed

excited

opposed

interested

unsure

thinking

choosing1.wav 2 5 2 3 3 4 3 7 7
choosing2.wav 4 0 1 6 5 5 2 6 7
choosing3.wav 4 3 1 4 2 6 3 6 7
choosing4.wav 3 5 2 3 1 6 2 6 8
choosing5.wav 5 5 2 4 3 2 3 4 8
choosing6.wav 5 5 2 4 3 2 3 4 8

Choosing 6 4 6
Choosing • • •

In order to check the statistical significance of the results, a
Friedman test [58] that measures variance by ranks was applied
to the ranked lists, i.e. the inference results. The hypothesis in the
Friedman test is that all the columns are treated equaly, i.e. all
the affective-state groups are selected equaly. If the Friedman test
results are very small (p< 0.05), there is a strong evidence that the
hypothesis is not correct [73], and there is a significant difference
between the ranking results of the different columns. For example,
the Friedman test result for the affective statechoosingwas (p<
7 · 10

−5).
Friedman test can verify that all the affective-state groups

behave in a significant manner. However, it does not specify
the characteristics and meaning of this behaviour, i.e. what the
characteristic ranking of each affective-state group is and how a
combination of ranks characterises the analysed affectivestates.

Therefore, a double-threshold procedure was applied.Domi-
nantaffective-state groups wererecognisedby at least 6 machines
in at least 4 (>66%) of the six sentences with the same label. The
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dominant affective-state groups are marked in the next tables by
bullets •. Affective-state groups that wererecognisedin at least
6 comparisons in 3 of the same sentences are marked by empty
circles ◦ in the tables. They signify 50% of all the sentences
and 50%-75% of the sentences in which adominantaffective-
state group was recognised. These affective-state groups cannot
be considered dominant but they may be influential. Recognised
affective-state groups appear in dark grey. Similar procedure was
applied to affective-state groups that were chosen by 0-2 machines
in at least 4 sentences, and over-lapping 3 sentences respectively.
These affective-state groups werenot recognised for the examined
affective state and their inference may add to its understanding
by elimination. They appear in light grey.

The two rows at the bottom of Table VII summarise the inferred
combination of affective-state groups that refers to the examined
affective statechoosing, i.e. thinking and unsure. The affective-
state groupsure was not inferred. The affective-state groups
stressedand opposedare expected and accepted behavioural
expressions of the affective statechoosing, but they appeared
only in a small number of sentences and therefore could not
be considered significant or dominant for the affective state in
general.

A representative combination that was automatically inferred
for an affective state was compared to the lexical definitionof
the affective state labels in dictionaries [74] and thesaurus en-
gines, or to the expected behavioural characteristics. Theinferred
combinations were often similar to the lexical definitions (more
details in Section V-B). The results were checked by eight people
and most of the results were also presented to audience. There was
agreement regarding the justification of most of the results. In the
given example, the inferred combination forchoosingwas agreed
to be correct by nearly a hundred people. The lexical definition is
to decide what you want from a range of things or possibilities,
while the definition fordecideis to choose something, especially
after thinking carefully about several possibilities[74]. These
definitions entail the uncertainty at the choosing stage andthe
lack of it upon making the decision, but not clearly. Affective
state labels that have similar meaning often had a similar oran
identical inferred combination.

Table VIII shows the inferred combinations for each affective
state in thethinking group. The affective state labels that are
marked in grey were not part of the training set. The samples
of the other affective states were divided between trainingand
testing. Friedman test results appear next to the affective-state
labels. The affective-state groups that were identified by 6-8
machine are marked in dark grey. The affective-state groupsthat
were not identified with the examined affective states, i.e.chosen
by 0-2 machines, appear in light grey.

As can be seen, some of the affective states appear as com-
binations of several affective-state groups. All the combinations
correspond to the lexical definition of the affective statesand
to the expected behavioural patterns. This example demonstrates
how the inference of co-occurring affective-state groups improves
the recognition and characterisation of complex behaviourin
comparison to inference of a single affective state. Even though
many of the affective states were trained as a single affective-state
group, the inference results distinguish between them.

TABLE VIII

INFERENCE RESULTS OF INDIVIDUAL AFFECTIVE STATES FROM THE

thinkingGROUP OF THEM IND READING TAXONOMY: AFFECTIVE STATES

(AFFECTIVE STATES IN GREY LINES WERE NOT PART OF THE TRAINING

SET); FRIEDMAN TEST RESULTS; ACCUMULATED INFERENCE RESULTS,

DARK GREY SIGNIFIES RECOGNITION BY6-8 MACHINES IN 4-6

SENTENCES, LIGHT GREY SIGNIFIES NO RECOGNITION(0-2 MACHINES).

Concept F.T.

joyful

absorbed

sure

stressed

excited

opposed

interested

unsure

thinking

comprehending 7·10−3
•

deciding 1·10−3
• •

regarding 1·10−1
• •

thoughtful n.a. • • •

wool-gathering 1·10−4
• ◦ •

calculating 4·10−4
◦ •

dreamy 9·10−3
• • •

fantasising 8·10−4
• • ◦ •

brooding 7·10−5
• ◦ • ◦ •

considering 1·10−3
• • • • ◦ • ◦

choosing 7·10−5
• • •

thinking 3·10−3
• • •

realising 3·10−3
• • • •

B. Additional affective states

In order to explore the scope of the inference system and for
additional validation, the system was applied to new affective
states that were not used for the training of the system but
belong to the sameemotion groups[44], or meaning group, in
the Mind Reading taxonomy and database. Examples of such
affective states appear in grey in the Concepts column of Table
VIII. As can be seen, the inference results in these affective states
agree with the lexical meaning and with the expected behavioural
expressions. For example, the accumulated inference results of the
affective staterealising included the affective-state groupstress
that can be associated with (unpleasant) surprise. The affective
state considering was inferred as a combination ofabsorbed
and uncertain, and possiblythinking. Its lexical definition isto
spend time thinking about a possibility or making a decision
[74]. It refers to a state which is more inward or absorbed
than choosing. The combination was inferred automatically and
agrees with the meaning of the concept.Joy, excitementand
certaintywere not identified with this affective state in any of the
sentences. This additional information is not part of the definition
or characterisation but it may indicate by elimination on properties
of the affective state or its behavioural characteristics.

A Friedman test was first applied to the training and testing sets
(633 sentences) and then to all the Mind Reading database (4400
sentences). In 306 affective states of the 749 affective states of the
full Mind Reading database, much beyond the inferred affective-
state groups, the rankings of the affective states were found to be
significant for all the affective-state groups (p<0.05).

Most of the affective states (98%) that got significant results
in the Friedman test were included in the group of affective
states that passed the double-threshold procedure. In the other
two percent of the affective states, the ranking of all the affective-
state groups ranged mostly between 3-5, i.e. significantly close to
random, meaning that the set of affective-state groups could not
characterise them.
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On the other hand, the Friedman test implies thatall the
affective-state groups behave in a significantly characteristic man-
ner. The double-threshold procedure on the other hand, requires
that at least oneaffective-state group will be dominant. For a
large variety of affective states, it cannot be expected that all
the nine affective-state groups will be significant and meaningful.
Therefore, the double-threshold procedure characterisesmany
more affective states than the Friedman test.

The double-threshold procedure characterised 570 (76%) of
the affective states either as the inferred affective-state groups or
by elimination. From these affective states, approximately 85%
agreed with the lexical definition and the expected behaviour (by
agreement of all eight examiners). Using the double-threshold
criterion, at least four of the six sentences that define each
affective state had the same recognised affective-state groups, i.e.
total of 2280 sentences, from which at least 1784 sentences were
characterised (not by elimination). Both the Friedman testand
the double-threshold procedure are objective measures that verify
the accuracy and consistency of the results. Both were applied
automatically with no manual intervention. In many more single
sentences one or more affective-sate groups were recognised by
6-8 machines, and the inference results agree with the lexical
definition, but as a group they did not pass the double-threshold
criterion.

Multiclass and multi-label classification was performed while
the training was done with a single label at a time. Indeed,
not every nuance is distinguished by the set of nine affective-
state groups but it does characterise a wide range of affective
states. The repeated results and the large number of different
affective states imply that the inference method is meaningful.
Such capabilities of an automated system have not been reported
previously. One of the implications of these results is thatthe
machine can be used for mapping and conceptualisation of
affective states, i.e. to define the relations between affective states
according to their vocal expressions.

C. Speaker variability

In order to verify that the system can be used for different
speakers with no additional training, the recognition error rates
for each of the speakers in the Mind Reading database were
examined. This test was used because each of the training
sentences for a certain affective state was uttered by a different
speaker, and the random selection of samples implied that nuances
of affective states were trained on certain speakers and tested on
others. There was no significant difference in accuracy between
the different speakers over the whole Mind Reading database
(it ranged between 85-90%). The system was also tested on
recordings of six new speakers [59]. Each of the metrics in
the samples was normalised for each new speaker, as described
in Section III. No additional training of the inference system
was required. The inference results were significantly correlated
(P<0.05) to events and physiological cues [49].

D. Distinguishing affective states and comparison to human
performance

The inference machine performed a task that is usually per-
formed by people. Therefore its capability to distinguish between
different affective states was compared to human performance on
the CAM Battery Test (CBT) as reported by Golanet al. [44].

In the CBT, each question includes a recorded sentence and
a choice of four labels of affective states. After listeningto the
recorded sentence the participants were asked to “choose the word
that best describes how the person is feeling” from the four given
labels (one true answer and three foils). The inference machine
was applied to the same sentences or voices that were used for
the CBT, and used the same foil affective states that were used in
the battery questions. The foil affective states were represented
by the accumulated inference results of the samples that represent
the affective state in the Mind Reading database.

The CBT was tested on 21 participants with Asperger Syn-
drome (AS group) and on 17 matched controls (control group).
The average number of sentences recognised by the control group
was close to 43 sentences out of 50 and the participants in theAS
group recognised on average less than 36 concepts by their vocal
correlates [44]. In comparison, the inference machine successfully
distinguished between the affective states and the foil affective
states in 49 of the 50 sentences. In this case it outperformed
humans. These findings imply that the machine could distinguish
between complex affective states that were not necessarilypart
of the affective-state groups that it was trained to recognise.

VI. SUMMARY AND DISCUSSION

We present a classification method for inference of co-
occurring affective states from their non-verbal expressions in
speech. The input to the classification system is a large set of
metrics. The metrics are derived from the vocal features that are
extracted from the speech signal.

The classification consists of pair-wise comparisons between
affective-state groups (beyond the set of basic emotions, or
the dimensions positive-negative, active-passive). Eachpair-wise
machine has its own set of metrics and classification algorithm.
This stemmed from the observation that different vocal features
distinguish different affective states and the training process
verified it.

For each utterance, the pair-wise comparisons are consolidated
into a single ranked list that reflects the number of comparisons
in which each affective-state group is chosen. The ranked list
represents inference of co-occurring affective states. The ranked
list can be used in different ways for different applications. The
system can be easily adapted to new affective states and to new
speakers without affecting the existing machine.

Experiments on the Mind Reading database show that this
method allows accurate detection of the affective-state groups
from the speech signals. The paper presents examples of inference
of affective states from the initial training and testing data set
in comparison to their lexical definitions and to the expected
behavioural patterns. The inference was successfully extended
to new affective states that were not used for training. It was
further used for characterising a large variety of affective states.
The ability of the classification system to distinguish between
complex affective states was compared to human performancein
an independent test and was found to be superior.

The classification allows presentation of a very large number
of expressions and nuances. However, the presented system is
not complete. It does not represent the entire range of affective
states and does not distinguish between all the existing definitions
and all possible nuances. Nevertheless, this system shows that
very few, carefully chosen, affective-state groups can increase
the accuracy and the distinguishing capabilities of an automatic
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system to infer and characterise a very large range of affective
states within and beyond the set of affective-state groups that it
was trained to infer. The implication of independent training of
each pair-wise machine is that additional affective-stategroups
will require a few more pair-wise machines while no re-training
of the existing machines will be required. In this manner the
system can be easily adapted to various applications.

The system generalises to new speakers without additional
training due to the speaker-dependent normalisation process. The
generalisation to new languages is supported by the combination
of normalisation of speech metrics and of the representation
method.

A training strategy is presented to deal with learning cases
where a large set of predictor features are needed to disambiguate
between the categories while also addressing the sparsity inherent
in the problem. Many features and metrics contribute, overall, to
the classification, yet only a few of these features may be actively
employed by the speakers at any time to encode the characteristics
of the expression they want to deliver. The paper presents and
validates a strategy for modularising the learning problemby
decomposing it into simpler learning sub-tasks which can carry
out the learning effectively with a considerably smaller subset
of features. These strategies can benefit applications thatshare a
similar structure and challenges.

Inference of co-occurring classes can be beneficial in various
fields; in particular, fields that relate to other aspects of human
perception and cognition, such as colour retrieval [75], [76], that
share characteristics with the presented field of affective-state
inference. This paper shows that a comprehensive solution that
considers the representation method as a part of the classification
is very powerful because it provides representation of different
aspects of the complex information domain. Furthermore, it
enhances the existing knowledge of the domain by presenting
a new perspective. (In this case, presenting the relations between
affective states as inferred from their vocal correlates).It also
presents an objective tool (within the limitations of the training)
for representing information that is often perceived as subjective.
The architecture itself is simple to implement and providesboth
good classification performance and flexibility.
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