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In this chapter, we describe a system for inferring complex mental states from
a video stream of facial expressions and head gestures in real-time. The sys-
tem abstracts video input into three levels, each representing head and facial
events at different granularities of spatial and temporal abstraction. We use
Dynamic Bayesian Networks to model the unfolding of head and facial dis-
plays, and corresponding mental states over time. We evaluate the system’s
recognition accuracy and real-time performance for 6 classes of complex men-
tal states—agreeing, concentrating, disagreeing, interested, thinking and un-
sure. Real-time performance, unobtrusiveness and lack of preprocessing make
our system suitable for user-independent human-computer interaction.

1 Introduction

People exhibit and communicate a wide range of affective and cognitive mental
states. This process of mind-reading, or attributing a mental state to a person
from the observed behaviour of that person is fundamental to social interac-
tion. Mind-reading allows people to make sense of other’s actions within an
intentional framework [1]. The majority of people read the minds of others all
the time, and those who lack the ability to do so, such as people diagnosed
along the autism spectrum, are at a disadvantage [2]. Beyond social inter-
action, there is growing evidence to show that emotions regulate and bias
processes such as perception, decision-making and empathic understanding,
in a way that contributes positively to intelligent functioning [8, 13, 23].

The human face provides an important, spontaneous channel for the com-
munication of mental states. Facial expressions function as conversation en-
hancers, communicate feelings and cognitive mental states, show empathy
and acknowledge the actions of other people [6, 15]. Over the past decade
there has been significant progress on automated facial expression analysis
(see Pantic and Rothkrantz [35] for a survey). The application of automated
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Fig. 1. Mental state inference in a video labelled as discouraging from the Mind
Reading DVD [5]: (top) selected frames sampled every 1 s; (bottom) results of mental
state inference. The overall probability of disagreeing is 0.75, a correct classification

facial expression analysis to human-computer interaction (HCI) however, is
limited to basic, inconsequential scenarios. This is because the majority of
existing systems either attempt to identify basic units of muscular activity
in the human face (action units or AUs) based on the Facial Action Coding
System (FACS) [16], or only go as far as recognizing the set of basic emotions
[11, 12, 14, 29, 36, 39]. The basic emotions comprise only a small subset of
the mental states that people can experience, and are arguably not the most
frequently occurring in day-to-day interactions [38].

In this chapter, we describe a system for inferring complex mental states
from a video stream of facial expressions and head gestures in real-time. The
term complex mental states collectively refers to those mental states—both
affective and cognitive—that are not part of the classic basic emotions, and
which, as a result have not been addressed by the computer science research
community. The system makes two principal contributions. First, it classifies
different shades of complex mental state classes, and second, it does so from
a video stream of facial events in real-time. Figure 1 shows the output of the
system for a video labelled as discouraging from the Mind Reading DVD [5].
It is our belief that by building systems that recognize a wide range of mental
states, we widen the scope of HCI scenarios in which this technology can be
integrated.

2 Related Work

We begin our review of related work with Garg et al.’s approach to multimodal
speaker detection [19] as this provides the inspiration for our present work. In
their work, asynchronous audio and visual cues are fused along with contex-
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tual information and expert knowledge within a Dynamic Bayesian Network
(DBN) framework. DBNs are a class of graphical probabilistic models which
encode dependencies among sets of random variables evolving in time, with
efficient algorithms for inference and learning. DBNs have also been used in
activity recognition and facial event analysis. Park and Aggarwal [37] present
a DBN framework for analyzing human actions and interactions in video. Hoey
and Little [22] use DBNs in the unsupervised learning and clustering of facial
displays. Zhang and Ji [42] apply DBNs to recognize facial expressions of ba-
sic emotions. Gu and Ji [20] use DBNs to classify facial events for monitoring
driver vigilance. Other classifiers that have been applied to facial expression
analysis include static ones such as Bayesian Networks and Support Vector
Machines that classify single frames into an emotion class [11, 32].

The input to the classifiers are features extracted from still or video se-
quences. While numerous approaches to feature extraction exist, those meet-
ing the real-time constraints required for man-machine contexts are of particu-
lar interest. Methods such as principal component analysis and linear discrimi-
nant analysis of 2D face models (e.g., [34]), can potentially run in real-time but
require initial pre-processing to put images in correspondence. Gabor wavelets
as in Littlewort et al. [30] are feature independent but are less robust to rigid
head motion and require extensive (sometimes manual) alignment of frames
in a video sequence. The approach that we adopt for feature extraction is
based on the movement of points belonging to facial features [12, 36, 32]. Fa-
cial analysis based on feature-point tracking compares favourably to manual
FACS coding [12].

3 The Mind Reading DVD

Existing corpora of nonverbal expressions, such as the Cohn-Kanade facial
expression database [26], are of limited use to our research since they only
cover enactments of the classic basic emotions. Instead, we use the Mind
Reading DVD [5], a computer-based guide to emotions, developed by a team
of psychologists led by Professor Simon Baron-Cohen at the Autism Research
Centre, University of Cambridge. The DVD was designed to help individuals
diagnosed along the autism spectrum recognize facial expressions of emotions.

The DVD is based on a taxonomy of emotion by Baron-Cohen et al. [4]
that covers a wide range of affective and cognitive mental states. The tax-
onomy lists 412 mental state concepts, each assigned to one (and only one)
of 24 mental state classes. The 24 classes were chosen such that the seman-
tic distinctiveness of the emotion concepts within one class is preserved. The
number of concepts within a mental state class that one is able to identify
reflect one’s empathizing ability [3].

Out of the 24 classes, we focus on the automated recognition of 6 classes
that are particularly relevant in a human-computer interaction context, and
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that are not in the basic emotion set. The 6 classes are: agreeing, concentrat-
ing, disagreeing, interested, thinking and unsure. The classes include affective
states such as interested, and cognitive ones such as thinking, and encompass
29 mental state concepts, or fine shades, of the 6 mental states. For instance,
brooding, calculating, and fantasizing are different shades of the thinking class;
likewise, baffled, confused and puzzled are concepts within the unsure class.

Each of the 29 mental states is captured through six video clips. The
resulting 174 videos were recorded at 30 frames per second, and last between
5 to 8 seconds, compared to a mean duration of .67 seconds per sequence in
the Cohn-Kanade database [26]. The resolution is 320×240. The videos were
acted by 30 actors of varying age ranges and ethnic origins. All the videos
were frontal with a uniform white background. The process of labelling the
videos involved a panel of 10 judges who were asked ‘could this be the emotion
name?’ When 8 out of 10 judges agreed, a statistically significant majority,
the video was included. To the best of our knowledge, the Mind Reading DVD
is the only available, labelled resource with such a rich collection of mental
states, even if they are posed.

4 The Automated Mind-Reading System

A person’s mental state is not directly available to an observer (the machine
in this case) and as a result has to be inferred from observable behaviour
such as facial signals. The process of reading a person’s mental state in the
face is inherently uncertain. Different people with the same mental state may
exhibit very different facial expressions, with varying intensities and durations.
In addition, the recognition of head and facial displays is a noisy process.

To account for this uncertainty, we pursued a multi-level representation
of the video input, combined in a Bayesian inference framework. Our system
abstracts raw video input into three levels, each conveying face-based events at
different granularities of spatial and temporal abstraction. Each level captures
a different degree of temporal detail depicted by the physical property of the
events at that level. As shown in Fig. 2, the observation (input) at any one
level is a temporal sequence of the output of lower layers.

Our approach has a number of advantages. First, higher-level classifiers
are less sensitive to variations in the environment because their observations
are the outputs of the middle classifiers. Second, with each of the layers being
trained independently, the system is easier to interpret and improve at dif-
ferent levels. Third, the Bayesian framework provides a principled approach
to combine multiple sources of information. Finally, by combining dynamic
modelling with multi-level temporal abstraction, the model fully accounts for
the dynamics inherent in facial behaviour. In terms of implementation, the
system is user-independent, unobtrusive, and accounts for rigid head motion
while recognizing meaningful head gestures.
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Fig. 2. Multi-level temporal abstraction in the system

4.1 Extraction of Head and Facial Actions

The first level of the system models the basic spatial and motion characteris-
tics of the face including the head pose. These are described by z facial actions
Z = {Z1, . . . , Zz} based on the FACS. Each action describes the underlying
motion of an abstraction across multiple frames. Figure 3 summarizes the spa-
tial abstractions currently supported by the model: head rotation along each
of the three rotation axes (pitch, yaw and roll) and facial components (lips,
mouth and eyebrows). For example, Z1[t] may represent the head pose along
the pitch axis at time t; the possible values of Z1 are {AU53, AU54, null} or
the head-up AU, head-down, or neither respectively. To determine the time
scale of head and facial actions, we timed the duration of 80 head-up and
97 head-down motions in head nod gestures, sampled from 20 videos by 15
people representing a range of complex mental states such as convinced, en-
couraging and willing. The movements lasted at least 170ms, a result similar
to that in the kinematics of gestures [9]. The system produces facial or head
actions every 5 frames at 30 fps, or approximately every 166ms.
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Fig. 3. A video stream is abstracted spatially into head pitch, yaw and roll actions,
and lips, mouth and eyebrow actions. The actions are in turn abstracted into displays
and mental states. The displays present in a model of a mental state are determined
by a feature selection mechanism. For clarity, the displays for only two mental states
are shown

For head and facial action extraction, feature points are first located on
the face and tracked across consecutive frames using FaceTracker [18], part
of Nevenvision’s facial feature tracking SDK. Figure 4 describes the 2D model
of the face used by the system, and how the head and facial AUs are measured.
The motion of expression-invariant feature points over successive frames such
as the nose tip, nose root, and inner and outer eye corners are used to extract
head rotation parameters. This approach has been successfully used in a num-
ber of existing systems [33, 28, 39, 27]. A more accurate, but computationally
intensive approach involves tracking the entire head region using a 3D head
model [10, 17, 41]. Since our objective was to identify head actions automati-
cally and in real-time, rather than come up with a precise 3D estimate of the
head pose, a feature-point based approach was deemed more suitable than a
model-based one. Facial actions are identified from motion, shape and colour
descriptors derived from the feature points. The shape descriptors capture the
deformation of the lips and eyebrows, while the colour-based analysis is used
to extract the mouth actions (aperture and teeth).

4.2 Recognition of Head and Facial Displays

Head and facial actions are in turn abstracted into y = 9 head and facial
displays Y = {Y1, . . . , Yy}. Displays are communicative facial events such as
a head nod, smile or eyebrow flash. Each display is described by an event
that is associated with a particular spatial abstraction as in the action level.
Like actions, display events can occur simultaneously. P (Yj [t]) describes the
probability that display event j has occurred at time t. For example, Y1 may
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1. Head yaw P9P10
P11P12

2. Head pitch P4[t] − P4[t − 1]

3. Head roll � P9P11

4. Eyebrow raise
(P11P21+P1P17+P12P23)t

(P11P21+P1P17+P12P23)0

5. Lip pull
(AP7+AP8)t−(AP7+AP8)0

(AP7+AP8)0
> k

6. Lip pucker
(AP7+AP8)t−(AP7+AP8)0

(AP7+AP8)0
< k

7. Lips part
∑

Aperture +
∑

Teeth ≈ 0

8. Jaw drop
∑

Aperture ≥∑Teeth ≥ a

9. Teeth
∑

Teeth ≥ t

Fig. 4. Extraction of head and facial actions: (left) the 25 fiducial landmarks tracker
per frame; (right) action descriptors. Pi represents point i in the face model

represent the head nod event; P (Y1[t]|Z1[1 : t]) is the probability that a head
nod has occurred at time t given a sequence of head pitch actions. We timed
the temporal intervals of 50 head-nod (AU53) and 50 head-shake gestures;
a single display lasted 1 second on average. Accordingly, the time scale of a
single display is 30 frames at 30 fps, or 6 actions. The output progresses one
action at a time, i.e., every 166ms.

To exploit the dynamics of displays, we use Hidden Markov Models
(HMMs) for the classification of temporal sequences of actions into a cor-
responding head or facial display. Although defining the topology of an HMM
is essentially a trial-and-error process, the number of states in each HMM were
picked such that it is proportional to the complexity of the patterns that each
HMM will need to distinguish; the number of symbols were determined by
the number of identifiable actions per HMM. Accordingly, the head nod and
head shake were implemented as a 2-state, 3-symbol ergodic HMM; episodic
head turn and tilt displays as 2-state, 7-symbol HMMs to encode intensity,
lip displays such as a smile, or pucker and mouth displays as in a jaw drop
or mouth stretch, are represented by a 2-state 3-symbol HMM; the eye-brow
raise as a 2-state, 2-symbol HMM. We decided to model the HMM level sep-
arately rather than part of the DBN to make the system more modular. For
our purposes the two approaches have the same computational complexity.

4.3 Mental State Inference

Finally, at the topmost level, the system represents x = 6 mental state
events {X1, . . . , Xx}. For example, X1 may represent the mental state agree-
ing; P (X1[t]) is the probability that agreeing was detected at time t. The
probability P (Xi[t]) of a mental state event is conditioned on the most re-
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cently observed displays Y[1 : t], and previous inferences of that mental state
P (Xi[1 : t − 1]). We found that two seconds is the minimum time required for
a human to reliably infer a mental state; video segments of less than 2 sec-
onds result in inaccurate recognition results [25]. As shown earlier in Fig. 2,
we chose to sample these 2 seconds using a sliding window of 30 frames, sliding
it 6 times, 5 frames at a time. In terms of displays, the sliding window spans
1 display and progresses 6 times one display at a time.

Representation

We use DBNs to model the unfolding of head and facial displays, and cor-
responding mental states over time. DBNs are an appealing framework for
complex vision-based inference problems. DBNs function as an ensemble of
classifiers, where the combined classifier performs better than any individual
one in the set [19]. They also incorporate multiple asynchronous cues within a
coherent framework, and can model data at multiple temporal scales making
them well suited to modelling hierarchically structured human behaviour.

To represent the x mental state classes, we decided to model each men-
tal state as a separate DBN, where the hidden mental state of each DBN
represents a mental state event. The event has two possible outcomes: it is
true whenever the user is experiencing that mental state, and false otherwise.
Having a DBN per class means that the hidden state of more than one DBN
can be true; mental states that are not mutually exclusive or may co-occur
can be represented by the system.

Like all probabilistic graphical models, a DBN is depicted by its structure
and a set of parameters. The structure of the model consists of the specification
of a set of conditional independence relations for the probability model, or a
set of (missing) edges in the graph. The parameter set θi for mental state i
is described in terms of an observation function, a state-transition function,
and a prior. The observation function Bφ is parameterized by conditional
probability distributions that model the dependencies between the two nodes.
The transition function A encodes temporal dependency between the variable
in two slices of the network. The prior π the initial state distributions. The
model is given by its joint probability distribution:

P (Xi,Y, θ) = P (Y|Xi, Bφ)P (Xi|A, π)

4.4 Parameter Learning

When the data is fully observed and the network structure is known, Maxi-
mum Likelihood Estimation (MLE) can be used to estimate the parameters
of a DBN. When all the nodes are observed, the parameters Bφ can be de-
termined by counting how often particular combinations of hidden state and
observation values occur. The transition matrix A can be viewed as a second
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Fig. 5. Discriminative power of head and facial displays in complex mental states.
Display Ids: 1:nod, 2:shake, 3:tilt, 4:turn, 5:lip-pull, 6:pucker, 7:mouth open, 8:teeth
present, 9:eyebrow raise

histogram which counts the number of transitions between the hidden state
values over time.

In addition to the above parameters, we define a heuristic H that quantifies
the discriminative power of a display for a mental state: H = P (Yj |Xi) −
P (Yj |X i). The magnitude of H is an indication of which displays contribute
the most (or least) to recognizing specific mental states. The sign depicts
whether it increases or decreases the probability of the mental state. Figure 5
summarizes the discriminative power of head and facial displays for 6 different
complex mental states.

A post-hoc analysis of the results of parameter estimation yields an in-
sight into the facial expressions of complex mental states. The exercise is an
important one given the little literature there is on the facial expressions of
these states. The strongest discriminator was the head shake for disagreeing
(0.42), followed by an eyebrow raise for interested (0.40). The analysis shows
that single displays are weak classifiers that do not capture complex mental
states, verifying the suitability of DBNs.
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Table 1. Summary of model selection results. Column i summarizes how the prob-
ability of mental state i is affected by observing evidence on each of the displays.
Row j depicts the effect of observing display j on the probability of each of the
mental states

agreeing concentrating disagreeing interested thinking unsure

head nod +0.28 -0.08 -0.05 -0.07 -0.08 -0.07
head shake -0.11 +0.42 -0.13 +0.04
head tilt -.019 -0.06 +0.34
head turn +0.18
lip corner pull +0.17 -0.17 -0.1
lip pucker -0.10 +0.1 +0.06
mouth open -0.13 +0.07 -0.14 +0.40 -0.05
teeth present -0.14 -0.14 +0.39 -0.17
eyebrow raise -0.08 -0.17 -0.15 +0.34 -0.08

Model Selection

The results of parameter estimation show that the head and facial displays
that are most relevant in discriminating mental states are not by necessity
the same across mental states. This observation provided the motivation to
implement model selection in search for the optimal subset of head and facial
displays most relevant in identifying each of the mental states. Using only the
most relevant features for the DBN structure reduces the model dimensions
without impeding the performance of the learning algorithm, and improves
the generalization power of each class by filtering irrelevant features.

Assuming the inter-slice topology is fixed, the problem of feature selection
is an optimization one defined as follows: given the set of y displays Y, select
a subset that leads to the smallest classification error for videos in a test set
of size S. Each video in the set yields T instances of mental state inference.
The classification error per video per instance is 1 − P (Xi[t]). Accordingly,
the classification error of mental state i is given by the sum of the error over
the T instances for all S videos:

ei =
1

ST

S∑
s=1

T∑
t=1

(1 − P (Xi[t])) (1)

We implemented sequential backward elimination [31] to find the opti-
mal subset of observation nodes for each mental state. Features are removed
recursively such that the classification error, ei, of the DBN model is mini-
mized. Note that the algorithm does not guarantee a global optima since that
depends on the training and test sets used.

The results of sequential backward elimination are summarized in Table 1.
A non-blank entry at cell (j, i) implies that display j is present in the DBN
model of mental state i; the number is the value of the discriminative-power
heuristic H of display j for mental state i. A positive value means that observ-
ing display j increases P (Xi); a negative one means that observing display j
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decreases that probability. The magnitude depicts the extent with which the
probability will change. The columns summarize how each mental state is
affected by observing evidence on each of the displays. For instance, the ta-
ble predicts that an open mouth, teeth or eyebrow raise would increase the
probability of interested, but a head nod would decrease it (assuming it was
non-zero). The row depict the effect of observing a display on the probability
of each of the mental states. For instance, observing a head shake would in-
crease the probability of disagreeing and unsure but would decrease that of
concentrating and thinking. Note that the table only provides a prediction;
the actual behaviour of the DBNs will depend on the combination of displays
recognized, their dynamics, and the probability of the previous mental states.

5 Recognition Accuracy

The accuracy is a measure of the classification performance of the system on a
pre-defined set of classes. Those classes are agreeing, concentrating, disagree-
ing, interested, thinking and unsure. The objective of this experiment was to
test how well the system performs when the 29 mental state concepts in each
of the 6 classes are included. Each concept is represented by 6 videos from
the Mind Reading DVD for a total of 174 videos. The challenge that the test
posed is that while the concepts share the semantic meaning of the class they
belong to, they differ in intensity, in the underlying head and facial displays,
and in the dynamics of these displays. To the best of our knowledge, this is
the first time different shades of a mental state are included in the evaluation
of an automated facial expression analysis system.

5.1 Classification Rule

A classification rule is needed to determine whether or not the result of clas-
sifying each video in the test set is a correct one. The classification rule that
we have used is a combination of the least-error rule with a threshold rule.
The threshold rule was necessary because the least-error rule alone ignores the
system’s explicit representation of co-occurring mental states. The classifica-
tion result for a video that is truth-labelled as i is a correct one if ei = emin

or ei <= 0.4, that is, if the class with the least-error matches the label of the
video, or if on the whole the inferences result in the label of the video at least
60% of the time. Figure 6 shows an example display recognition and mental
state inference in a 6-second long video labelled as undecided from the Mind
Reading DVD. Throughout the video, a number of asynchronous displays that
vary in duration are recognized: a head shake, a head tilt, a head turn, a lip
pucker, and an eye-brow raise. The displays affect the inferred mental states
over time as shown in the figure. The error value e is shown for each of the
classes over the entire video as in (1). Since undecided belongs to the unsure
class, and unsure scored the least error (and also meets the threshold), this is
an example of a correct classification.
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Fig. 6. Trace of display recognition and mental state inference in a video labelled as
undecided from the DVD [5]: (top) selected frames from the video sampled every 1
second; (middle) head and facial displays; (bottom) mental state inferences for each
of the six mental state classes and corresponding table of errors. Since the least error
is unsure and undecided belongs to the unsure class, this is a correct classification
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5.2 Results

Out of the 174 videos, 10 were discarded because FaceTracker failed to locate
the non-frontal face on the initial frames of the videos. We tested the system on
the remaining 164 videos, which spanned 25645 frames or approximately 855
seconds. Using a leave-one-out methodology, 164 runs were carried out, where
for each run the system was trained on all but one video, and then tested with
that video. Note that chance responding is at 16.7% since this is effectively a
6-way forced choice procedure. Chance responding describes a classifier that
picks a class at random, i.e., does not encode any useful information.
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thinking 1 4 0 3 20 3 64.5
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Fig. 7. Recognition accuracy: (top) 3D bar chart of results (bottom) confusion
matrix. The last column of the matrix is the true positive (TP) or classification rate
for each class; the last row yields the false positive (FP) rate. For a false positive
rate of 4.7%, the overall recognition accuracy of the system is 77.4%

The results are summarized in the confusion matrix and 3D bar chart in
Fig. 7. Row i of the matrix describes the classification results for mental state
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i. Column i states the number of times mental state i was recognized. The
last column states the true positive (TP) or classification rate for class i. It
is given by the ratio of videos correctly classified as mental state i to the
total number of videos truth-labelled as i. The bottom row yields the false
positive (FP) rate for class i, computed as the ratio of videos falsely classified
as i to the total number of videos truth-labelled as anything but i. In the
3D bar chart, the horizontal axis describes the classification results of each
mental state class. The percentage that a certain mental state was recognized
is given along the z−axis. The classification rate is highest for concentrating
(88.9%) and lowest for thinking (64.5%). The false positive rate is highest
for concentrating (9.6%) and lowest for disagreeing (0.7%). For a mean false
positive rate of 5.1%, the overall accuracy of the system is 77.4%.

5.3 Discussion

The overall accuracy of the system (77.4%) and the classification rates of each
of the 6 classes are all substantially higher than chance responding (16.7%).
Unfortunately, it is not possible to compare the results to those of other sys-
tems since there are no prior results on the automated recognition of complex
mental states. Instead we compare the results to those reported in the liter-
ature of automated recognition of basic emotions, and to human recognition
of complex mental states.

The accuracy of automated classifiers of basic emotions typically range
between 85–95% [35]. Although this is higher than the results reported here,
it is somewhat expected since the basic emotions are by definition easier to
identify than complex ones, especially in stimuli that is stripped out of context.
From an engineering point of view, the automated recognition of complex
mental states is a challenging endeavour compared to basic emotions. This is
because basic emotions have distinct facial expressions that are exploited by
automated classifiers, while the facial expressions of complex mental states
remains an open research problem. In addition, the DVD was not developed
with automation in mind, so the videos are technically challenging compared
to existing facial expression databases in a number of ways:

• Within-class variation
• Uncontrolled rigid head motion
• Multiple, asynchronous displays
• noisy evidence

Videos within a class vary along several dimensions including the specific
mental states they communicate, the underlying configuration and dynamics
of head and facial displays, and the physiognomies of the actors. In contrast,
the stimuli used in training and evaluating existing automated facial analy-
sis systems are typically more homogeneous, confined to a single prototypic
expression of an emotion class. Hence, a video that varies substantially com-
pared to other videos in the class along any of these dimension may end up
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being misclassified. For instance, only 60% of the videos labelled as assertive
were correctly classified as agreeing. The rest were misclassified as concentrat-
ing or unsure since the underlying displays did not contain a head nod or a
lip-corner pull (a smile) the most frequently observed displays in the agreeing
class. The accuracy results then, will largely depend on the specific concepts
that are picked for training and testing in each class and how different are
their underlying displays. When the mental state concepts that share the un-
derlying head/facial displays are only the ones picked for training and testing
the system, the results reported are much higher. For example, in an earlier
version of the system we reported an overall accuracy of 89.5% for 106 videos
that cover 24 mental state concepts [24].

In terms of the underlying head and facial displays, there were no re-
strictions on the head or body movements of the actors, and there were no
instructions given on how to act a mental state. Hence, the resulting head
gestures and facial expressions are natural, even if the mental state is posed.
In addition, while each video is given a single mental state label, it comprises
of several asynchronous head and facial displays. Processing displays in con-
text of each other by considering the transitions between displays, boosts the
recognition results of humans for complex mental states [25]. Existing auto-
mated facial analysis systems of basic emotions, on the other hand, rely solely
on facial expressions for classification and do not support the recognition of
head gestures. Accordingly, the stimuli used in evaluating these systems is
often restricted in terms of rigid head motion: the actors of these images or
videos are either asked not to move their head, or are asked to exhibit very
controlled head motion, and typically consists of a small number of frames
limited to a single facial expression.

Finally, the head and facial display HMM classifiers are imperfect: displays
may be misclassified or may pass undetected by the system altogether. Both
cases will result in incorrect evidence being presented to the mental state
DBNs. Depending on the persistence of the erroneous evidence, its location
within the video, and its discriminative power, the resulting mental state
inferences may be incorrect. Figure 8 shows an example of misclassification
due to noisy evidence. The 5.7 second long video is labelled as vigilant, and
is in the concentrating class. The output starts with a high probability of
concentrating, which drops to 0 when a head shake is observed at 3.0 seconds.
The head shake however, is a falsely detected display that persists for 1 second.
At 5.0 seconds the head shake is no longer observed, and the probability of
concentrating shoots up again. Unfortunately though, the effect of the head
shake was such that concentrating did not score the least error and did not
meet the 0.4 threshold and the video ended up being misclassified.

In a preliminary study [25] we show that human recognition of complex
mental states from the Mind Reading DVD [5] is lower than that of the classic
basic emotions, and reaches an upper bound of 71% for videos from the DVD.
At 77.4%, the results of the automated mind-reading system are comparable
to that of humans.
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Fig. 8. Incorrect classification due to noisy evidence: (top) selected frames—sampled
every 1 second—from a video labelled as vigilant from the DVD [5]; (middle) head
and facial displays; (bottom) mental state inferences for each of the six mental state
classes and corresponding table of errors. Note the effect of the false head shake on
decreasing the probability of concentrating. The rest of the displays are not shown
since there was nothing detected by the HMMs

6 Real-Time Performance

Real-time performance pertains to a system’s ability to respond to an event
without a noticeable delay. Executing in real-time is crucial since the idea
is that applications adapt their responses depending on the inferred mental
state of the user; it is pointless for an application to respond to a confused
user long after she is no longer experiencing this mental state.

6.1 Objectives

The objective of this analysis is to quantify the real-time performance of
the automated mind-reading system. The throughput and the latency are
typically used to quantify the real-time performance of a vision-based system
[40]. The throughput is the number of events that are processed per unit
time. For the automated mind-reading system, the throughput translates to
the number of mental state inferences made per second. The latency is defined
as the time elapsed, or delay, between the onset of an event and when the
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system recognizes it. For the automated mind-reading system, the latency
translates to the time it takes the system to infer the mental state, from the
time a frame is captured.

6.2 Results

The processing time at each level of the system was measured on a Pentium
IV (3.4 GHz) processor with 2GB of memory. The results are summarized
in Table 2. For feature point tracking, Facetracker runs at an average of
3.0ms per frame of video at a resolution of 320×240 captured at 30 fps. The
time taken to extract a single action was sampled over 180 function calls. On
average, head-action function calls took 0.02ms per frame depending on the
amount of head motion in the frame; facial-action function calls lasted 0.01ms
per frame. In total, this level of the system executes at 0.09ms per frame.
The time taken to compute the probability of a head/facial display was also
sampled over 180 invocations of the HMM inference algorithm. On average,
a call to the HMM inference lasts 0.016ms. Since there are nine displays
implemented so far, this level of the system executes at 0.14ms every five
frames. Finally, the implementation of fixed lag smoothing of the six previous
inferences using unrolled junction tree inference for a DBN with an average
of seven nodes (one hidden mental state and six observation nodes) takes
6.85ms per slice. Hence, this level executes at 41.10ms for the six complex
mental states.

Table 2. The processing time at each level of the automated mind-reading system
(measured on a Pentium IV (3.4GHz) processor with 2GB of memory)

level tracking action-level display-level mental state-level total

time (ms) 3.00 0.09 0.14 41.10 44.33

6.3 Discussion

To be deemed as real-time, the throughput of the system has to be at least
six instances of mental states inferences per second to keep up with the input.
This is because the DBNs are invoked every 5 frames at a capture rate of
30 frames per second. Also, the latency of the system has to be comparable
to the latency of high-level facial expression recognition in humans, which
ranges between 140–160ms [7]. In our current implementation, the DBNs are
the bottleneck of the system. Nonetheless, since 41.1ms is less than 166ms,
the system runs in real-time. The total processing time for a frame is 44.34ms.
In terms of scalability, feature-point tracking, the extraction of head and facial
actions and displays all run in linear time. At the mental state level, inference
runs in polynomial time in the number of nodes [21].
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7 Conclusion

The two principal contributions of this chapter are: 1) an automated system
for inferring complex mental states, 2) a system that classifies the video input
in real-time. The results also yield an insight into the optimal subset of facial
and head displays most relevant in identifying different mental states. We
reported promising results for the recognition accuracy and speed performance
of 6 classes of complex mental states. Further research is needed to test the
generalization power of the system by evaluating the system on a completely
different previously unseen corpus of videos. The system we have presented
serves as an important step towards integrating real-time facial affect inference
in man-machine interfaces.
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