
 
 

 

  

Abstract—For people to accept robotic agents socially it is 
necessary for the robots to be easily classifiable. We propose 
three such kinds of classification for users: Type Classification 
(what is it?), Role Classification (how should I interact with 
it?), and Behavioral Classification (does it behave in 
concordance with its type and role?). As HRI researchers we 
can design experiments that measure length of time until people 
classify a given robot’s type and role, and a robot’s behavior in 
terms of the number of classification violations it commits. 
These measurements can then be used to calculate an Ease of 
Classification score. This score could be used as a basis for 
comparison between different user groups, different physical 
interaction spaces, and even different robots. Further, it can 
help provide insight into the likelihood a given robot will be 
socially accepted. 

I. INTRODUCTION 
HERE are a variety of tools available to Human-Robot 

Interaction (HRI) researchers seeking to assess aspects 
of the societal acceptance of robots. Some successful 
techniques described in the literature include: ethnographic 
observation [1], system response-time analysis [2], common 
ground analysis [3], embodiment measurement [4], 
perceived enjoyment analysis [5], comfort level analysis [6], 
interaction profile analysis [7], and others [8]. 

We suggest a new addition to this toolset: Classification 
Ease. For people to accept robots in social contexts it is 
important that the robots be easily classifiable, that is – end 
users should be able to quickly and easily identify a robot’s 
type, role, and behavioral function. We hypothesize that 
users will be more apt to feel comfortable around a robot 
that is easily classifiable, and thus will be more accepting of 
it. 

Classification Ease is consistent with one of the core ideas 
in Human-Centered Design: that technology acceptance is 
directly related to consistency with users’ mental models. In 
other words, the user should always be able to figure out 
what to do and know what is going on [9] with regards to 
interacting with the robot. It is also motivated by the 
Cognitive Dimensions Framework [10]. This is a “broad-
brush” evaluation technique described in the Human-
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Computer Interaction (HCI) literature as a means for 
designers who are not HCI experts to make evaluations that 
are quick but still very useful [11]. For our purpose, Type 
Classification corresponds with the Perceptual Mapping 
Dimension (what the robot’s physical appearance conveys), 
Role Classification with the Role-expressiveness Dimension 
(what role the robot presents), and Behavioral Classification 
with the Closeness of Mapping Dimension (how the robot’s 
behavior maps to its type and role).  

HRI researchers can design very straightforward 
experiments to measure how long it takes a user to classify a 
robot’s type and role, as well as the robot’s behavior in 
terms of the number of ways in which it violates the user’s 
classifications. Researchers can then use these measurements 
to calculate an Ease of Classification (EOC) score.  

Using an EOC score as a means for measuring societal 
acceptance of robots has several advantages. First, it can be 
used as a basis for comparison between different user 
groups, different physical interaction spaces, and even 
different robots. Second, in contrast to some of the 
aforementioned HRI assessment methods it is relatively 
quick and easy to measure. Last, it is designed to be a 
flexible metric that can accommodate the needs of different 
user groups and different user types. 
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Fig. 1. The Robotceptionist. Note the flowers, 
business cards, and memorabilia surrounding the 
desk, as well as the office attire the robot is 
dressed in. Photograph © 2005 by IEEE. 



 
 

 

II. KINDS OF CLASSIFICATION 

A. Type Classification  
Upon first encountering a robot within its intended 

physical space, it should be immediately apparent to users 
what general purpose the robot is intended to serve, i.e. its 
type. The robot’s physical appearance, movement, gait, 
speech, gesture, gaze, or stature can reflect this purpose. For 
example, when one encounters Tank the Roboceptionist [12] 
(Fig. 1) at Carnegie Mellon it is very easy to classify its type 
as ‘receptionist’. Tank is located near the entrance to a 
building, is stationary, is situated at human height inside a 
wooden booth, and is surrounded by objects that one would 
usually encounter in an office environment (business cards, 
vase of flowers, etc). Tank’s interaction style closely mirrors 
one of a friendly human receptionist in terms of polite 
speech, raised eyebrows, and a desire to answer questions. 
This robot is unlikely to be mistaken for anything other than 
what it is because its design and physical placement clearly 
reflect its type and purpose.  

In contrast, the fictional talking car KITT depicted on the 
television show Knight Rider often presented a very 
misleading type. When first glancing at KITT people 
assumed it was merely a car, not a socially interactive robot. 
The sole visual cue to its function was an LED display of 
lights inside the vehicle that only illuminated when it was 
speaking. Often KITT would remain silent and then 
suddenly speak, which startled people. This is because they 
had already classified its type as a non-sentient vehicle based 
upon the visual cues afforded to them. 

To help ensure a robot presents itself in a way that its type 
is easily and quickly classifiable, it may be helpful for robot 
designers to employ at least rudimentary contextual design 
[13] techniques. The more this process is employed the less 
guesswork will ultimately be required by end users, thus 
ensuring a greater likelihood of acceptance. Interestingly, 
alterations informed by contextual design needn’t be 
elaborate; otherwise physically unremarkable robots tele-
operated in hospitals by remotely located physicians are 
often “dressed up” in white lab coats by hospital staff to 
allow patients to quickly identify their function [14]. This 
ease of identification through physical means has surely 
helped the patients accept the presence of robots. 

Indeed, people who interact with personal robots in the 
home will often dress them in costumes [15], perhaps as a 
means to help other family members and visitors to the 
home readily classify the robot as non-threatening.  

B. Role Classification 
Role Classification refers to the kind of interactive 

relationship a user might expect from a robot. Goodrich and 
Schultz suggest the general roles interactive robots serve 
may be peer, assistant, or slave, and that the robot may 
report to another robot or human, or be fully independent 
[8]. Scholtz et. al. propose a taxonomy of roles that robots 
can be: Supervisor, Operator, Mechanic, Peer, and Bystander 
[16]; robots may also assume roles such as Mentor or 

Information Consumer [8].  
Some examples of robots that present easily classifiable 

roles include the iRobot RoombaTM vacuum cleaner (slave), 
the Sage museum guide robot [17] (mentor), and the PARO 
robotic seal [18] (peer).  

The role(s) a robot will adopt during interaction with a 
user should always be made explicit and should be 
immediately apparent. Furthermore, a robot should remain 
consistent with its advertised role. A comforting companion 
robot in a nursing home serving in a peer role should not 
suddenly adopt a mentor role and start lecturing residents 
about their health habits.  

The correct assignment of a robot’s role depends entirely 
upon the context in which it will be used and the population 
of users it is intended to interact with. Again, robot designers 
will benefit from closely studying the environment in which 
they wish to deploy their robot before embarking on its 
creation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

C. Behavioral Classification 
A well-designed robot will present its behavioral function 

clearly to a user and behave in concordance with its Type 
and Role Classifications.  For example, PARO the robotic 
seal (Fig. 2) [18] and the Huggable robot [19] present 
themselves embodied within stuffed animals, and behave as 
one might expect an animate toy or pet to act. Their 
behaviors do not violate their Type or Role Classifications, 
and thus are generally well accepted.  

In contrast, there have been several robots described in the 
literature that elicit a sense of unease among users due to a 
mismatch between their form, interactivity, and motion 
quality [20]. This parallels the uncanny valley effect 
reported by Mori [21]. These are robots that appear very 
human-like at first glance but then act in very un-humanlike 
ways. Such robots can be said to strongly violate their Type 
and Role Classifications, thereby preventing users from 
easily classifying them. Thus it is understandable that these 
robots seem not to be well accepted by society. 

 
 
Fig. 2. The PARO robotic seal robot. This robot is embodied 
within a stuffed animal, and acts as one might expect an animate 
toy to behave. It has generally been well accepted as a companion 
robot. Photograph © 2005 ACM. 



 
 

 

This is not to say robots ought never to surprise the users 
interacting with them. If a museum robot were to break from 
a lecture about dinosaurs and start telling archeology jokes, 
it is unlikely any humans would experience unease. So long 
as a robot follows the social conventions and constraints 
suggested by its type and role, unexpected behaviors are 
perfectly reasonable.  

III. EASE OF CLASSIFICATION SCORE 
We propose the following formula to calculate an Ease of 

Classification (EOC) score. This score is based upon the 
time it takes a user to identify a robot’s type and role, and 
the count of behavioral violations the robot commits. A 
robot with a lower EOC score can be said to be more easily 
classifiable than a robot with a higher one.  

Variables 
tt  : Time until type classification by user (in seconds) 
tr  : Time until role classification by user (in seconds) 
ti  : Total time user observes robot (in seconds) 
b  : Number of behavioral violations 
C : A constant to help weight behavioral violations  
E  : EOC Score 

Assumptions 
1)  Since b is simply a count of behavioral violations we 
will assume it to be a non-negative integer:  

 

! 

b " 0  
 
2)  A user should be able to classify a robot’s type and 
role within five minutes of interacting with it: 
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EOC Score Formula  
The ease of classification score may be calculated with the 

following formula: 
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Notes 
As this formula has yet to be verified experimentally, it is 

presently unclear what C ought to be. We expect this 
constant will vary depending on the users, robots, and tasks 
being evaluated. A low C value might be appropriate for an 
entertainment Bystander robot where behavioral violations 
are less critical, whereas a high C value might be required 
for a peer Mechanic robot. In other words, C helps to weight 
the robot within its context.  
 We have weighted tt and tr equally because we expect 
users to recognize a robot’s type and role at roughly the 
same time. Were a situation to warrant serial identification, 
the following formula might be more appropriate: 
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Such situations might be, for instance, a case of delayed 
introduction to the robot. For example, a user might see a 
still image of a robot that readily conveys its type through 
physical appearance but cannot identify its role until an in-
person encounter takes place. 

IV. DISCUSSION  
We have proposed a new addition to the HRI researcher’s 

toolset: Classification Ease. We hypothesize that when users 
can easily classify a robot’s type, role, and behavioral 
function they are more apt to feel comfortable with it, and 
thus will be more accepting of it. This notion is consistent 
with a core idea in Human-Centered Design, that technology 
acceptance is directly related to consistency with users’ 
mental models. It is also informed by the Cognitive 
Dimensions framework, mainly: the Perceptual Mapping 
Dimension (Type Classification), Role-expressiveness 
Dimension (Role Classification), and Closeness of Mapping 
Dimension (Behavioral Classification).   

HRI researchers can design relatively straightforward 
experiments that measure how long it takes a user to classify 
a robot’s type and role, as well as the robot’s behavior in 
terms of the number of ways in which it violates the user’s 
classifications. Researchers can then use these measurements 
to calculate an Ease of Classification (EOC) score.  

The EOC score has several advantages. First, it allows 
researchers a quantifiable metric that can be used as a basis 
of comparison between different user groups, different 
physical interaction spaces, and even different robots. For 
example, one might wish to compare EOC scores of two 
different types of companion robots used in both a nursing 
home and an elementary school. Thus an EOC Score can 
potentially provide a means for normalizing across varied 
user groups and robots.  

Another advantage to the EOC Score is that it should be a 
relatively easy metric for researchers to calculate. One 
possible experimental design would start with priming 
participants on the general types and roles one might expect 
to see in a robot before interaction takes place. Subjects 
would then be allowed unstructured interaction with the 
robot and asked to state when they have determined the 
robot’s type and role. These times would be noted. The 
subjects can be asked to think aloud [22] during the 
experiment and the experimenter can note when they express 
discomfort, increasing the behavioral violation count 
accordingly.   

A few ideas require further investigation. First, the EOC 
score in its present form is designed to deal with users’ “first 
impressions” of a robot. As a user acclimates to a robot it is 
likely their views about it will change over time. Second, it 
is presently unclear how straightforward it will be to adjust 
the EOC score to fully accommodate different contexts, user 
bases, and robot types while remaining an evenly normalized 
metric. Hopefully adjusting C will be a sufficient way to 
normalize the EOC score, but if not perhaps an additional 
constant should be included in the formula. 



 
 

 

The hypothesized relationship between Classification 
Ease and the social acceptance of robots will require 
experimental validation. We expect that additional research 
in this area will lead to a refinement of the EOC Score 
formula and to the establishment of a reproducible testing 
methodology. 
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