
International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

40

GoalMorph: Partial Goal Satisfaction

for Flexible Service Composition

Maja Vukovic and Peter Robinson

Computer Laboratory

University of Cambridge

15 JJ Thomson Ave, Cambridge CB30FD, UK

{firstname.lastname}@cl.cam.ac.uk

Abstract: AI Planning has proven to be a valuable tool for

generating composite services in a range of application domains,

such as travel planning and supply chain management.

However, it can fail to satisfy a composite service request if one

or more parts of the goal cannot be reached, due to the context

changes or missing service descriptions. As goals are structured

as conjunctions of goals states, each representing a partial

solution, satisfying some goal states instead of all can be better

than satisfying none of them. In this paper, we present

GoalMorph, a framework for context aware goal

transformation that (a) constructs context aware goals and (b)

reformulates failed goals into problems that can be solved by the

AI planner. The core of the approach is ContextMesh, a context

ontology, which facilitates context layering – the process of

expanding or reducing the number of context types and

generating corresponding context goal transformations.

Furthermore we employ a goal utility model that allows partial

satisfaction and demonstrate how it can be exploited to generate

a transformed goal. We discuss evaluation results, and

demonstrate that our implementation provides a practical and

scalable solution.

Keywords: Web service composition, AI planning, context-

awareness, partial goal satisfaction.

I. INTRODUCTION

Web service composition, the process of assembling

composite Web services from collections of individual,

interoperating Web services, has recently gained much

attention to support business-to-business or enterprise

application integration as well as the development of context

aware applications. It has been used to provide software

solutions in many application domains ranging from lifecycle

management[1], travel planning [2], making reservations for

dining and movies [3, 4], content and news conversion

services [5], etc. Available methods for composing Web

services include rule-based systems [4], planning [6], view

integration [7], scripting and coordination languages [8], to

name a few.

We have previously presented a framework for context aware

Web service composition [9], which uses the TLPlan [10]

planner for the selection of the required services and

sequencing of their execution. Different service compositions

result from different contexts such as: resources available,

time constraints, user profile and location.

Contextual changes may trigger further re-planning during

the execution of the services, causing the application to

evolve dynamically. This work is motivated by the

requirements for fault-tolerant, context-aware service

composition. Context aware service composition may fail if

there are missing service descriptions, context changes,

conflicts between goals or insufficient time/resources to solve

the goal. The classical planning model requires the

satisfaction of all goal states (conjunctions). In case one of

the goals cannot be satisfied, the entire request fails, and that

results in a lack of service provision to the user. Our system

is based on the concept of partial goal satisfaction; in many

cases it is better for the user to get a composite service that

partially satisfies her goals than no composite service at all.

In this paper
1
 we present a comprehensive context aware goal

transformation framework GoalMorph, which transforms

failed goals into the ones that can be solved. GoalMorph

separates goal conditions depending whether they are arising

from a user’s request into – core goals or are side-effects of

the current user’s context into – context goals. The core

component of our framework is a ContextMesh, a context

ontology consisting of a number of hierarchies along which

the context is organized – it specifies (application-specific)

concepts of context types and their relationships. It plays the

central role in transformation of goal by facilitating context

layering – the process of context folding and unfolding, to

expand or reduce the amount of contextual data and the

corresponding goals that need to be satisfied.

GoalMorph makes the following main contributions:

1. A model for representation of context aware goals.

2. Analysis and taxonomy of core and context goal types

and corresponding transformations.

3. A model of partial satisfaction to reason about partial

satisfaction of core and context goals.

4. A utility model to reason about goal transformations and

corresponding partial success in achieving one goal

against partial success in achieving another goal.

This paper extends our previous work on context aware

service composition to allow context aware (1) goal

construction and (2) goal transformation. Section 2 provides

background on planning technology and its application to

Web service composition problem. We identify and examine

the challenges in context-aware, planning-based, service

composition by means of an example scenario in Section 3.

Section 4 analyzes the architecture of our framework and its

prototype implementation. Section 5 presents and discusses

our evaluation results. Section 6 positions our work in the

research context of partial goal satisfaction and goal-oriented

1 This is the extended version of paper presented at NWESP 2005 [11].

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

41

service composition. We outline and discuss future work in

Section 7 and conclude in Section 8.

II. BACKGROUND

Planning is a problem solving technique, where knowledge

about available actions and their consequences is used to

identify a solution over an abstract set of possible plans [12].

There are three main inputs to the planner:

1. Initial state: A description of the starting world state.

2. Goal state: A description of the desired world state.

3. Operators: A set of descriptions of operators that

transform the world states

The output of the planning process is a plan—a sequence of

actions that can be executed in order to achieve the desired

goal. By explicitly declaring Web services as processes in

terms of their inputs, outputs, preconditions and effects, we

can apply the goal-oriented inferencing from the planning

technologies for the Web service composition.

(:goal
 (and
 (direction_found)
 (direction_speech_out)))

Figure 1 Sample TLPlan goal definition for service

composition request

Planning goals serve two purposes. Firstly, they represent

information about the planning problem or composition

request, by providing criteria for delivering a successful plan

– which goals states must be satisfied. For example, a user’s

request for driving directions may be described by the

conjuction of goal states in TLPlan syntax
2
 is shown in

Figure 1. Secondly, goals limit inference in the planning

process, by allowing a planner to backchain the goal

propositions.

III. RUNNING SCENARIO AND TECHNICAL

CHALLENGES

To illustrate how context aware applications can be built as

collections of cooperating services designed to interact with

one another, we synthesize a suitable procedure for context

aware restaurant lookup dynamically based on user location,

activity, and computing device; ensuring that the resulting

service looks and feels the same irrespective of the device

they use.

Table 1 shows timelines of three different cases of this

scenario. In the first case, Josh is using his laptop in the Lab

in Cambridge, with subscription to the entertainment portal

that provides restaurant recommendation service to make

lunch plans with his College friends. The portal in turn uses

2 Each goal is a defined either as the predicate or function symbol of the

domain by the first-order formulas. The goal predicate definition consists of

the name — name of the defined symbol (i.e. function, predicate or

generator) and arity – that specifies the number of parameters accepted by

the defined symbol. The corresponding goal instance then is described by

the symbol name and arguments. Both goal literals in Figure 1 have 0 arity.

UK-based restaurant and driving direction services to help

him locate a Spanish restaurant that makes his favorite dish.

Later in the day, Josh is in Zurich and wishes to go to the

closest Lebanese restaurant. The local restaurant guide

service, however, provides the restaurant information only in

German or French. Furthermore, it is formatted for

presentation on a mobile phone. As Josh is driving, he would

prefer the restaurant directions to be routed to his in-vehicle

information system and delivered in speech synthesized form.

A special new service for Josh may be assembled from

component services: RestaurantFinder, DirectionsFinder,

English translation and reformatting for in-vehicle

information system appliances (i.e. text to speech

translation).

A. Explicit Representation of Context Aware Goals

In all cases presented in Table 1, Josh’s high level goal is

retrieval of restaurant directions. However, this high level

request maps to a different system goal in a different context.

The planning goals are explicit descriptions of the goal

state(s) to be reached. For instance, when Josh is driving,

directions should be in the speech-synthesized form, which

results in addition of a further goal condition (directions

speech out), shown in Figure 1, as opposed to textual display

when he is walking on the street. Conventional planning

systems are designed to deal with explicitly defined goals. A

common approach in service composition is the use of goal

repositories, which store predefined, formalized goal

descriptions. This method is rather impractical, embedding

the dependencies between all possible combinations of

context values and the corresponding goal conditions would

make it difficult to extend later to take into account new

context values and types. In any case it may be impossible to

foresee all contexts in which the user may submit a request.

B. Partial Goal Satisfaction

Consider Case 3 of the scenario, where the planning process

may fail for a number of reasons – the planner having wrong

goal descriptions, the planner having incomplete knowledge

of the domain, or unavailability of required operators (e.g. if

there is no text-to-speech capability in this in-vehicle

system).

This should not result in the unsuccessful termination of the

composition process, as the approximation of the original

goal may be satisfied, and a partial and viable solution still

presented to Josh. For example, the system can detect the

extended context information. By knowing that Josh is only

driving at 20km/h, and is about to reach a red traffic light, it

could be reasonably safe to deliver the directions to his

SmartPhone – and therefore removing text2speech

requirements from the original goal – still satisfying it

partially. Furthermore, the system could also infer wider

context in which Josh submitted his request for restaurant

directions.

By observing his social setting and detecting he is with Anne,

the system could forward turn-by-turn directions to her

mobile phone, and she could guide him through the maze of

central Zurich.

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

42

Figure 2 Context Aware Service Composition: Restaurant Finder Scenario

 Input: Context data Output: Expected behavior

Case Activity Time Device used Location Text to speech Translation
1 Sitting 10am Laptop Office, Computer

Lab, Cambridge
N/A N/A

2 Walking 12.30pm SmartPhone Home, Newnham,

Cambridge
Read out directions N/A

3 Driving 7pm Embedded In-vehicle,

Limmatstrasse, Zurich
Read out directions Translate to English

Table 1 Sample context and expected application behavior in context aware restaurant finder.

I. GOALMORPH: FRAMEWORK FOR CONTEXT

AWARE GOAL TRANSFORMATION

GoalMorph is a comprehensive context aware goal

transformation framework or transforming goals into

problems that can be solved by the planner. GoalMorph

classifies goal conditions into core goals, which are arising

from a user’s request, and context goals, which are side-

effects of the current user’s context. ContextMesh is a

context ontology consisting of a number of hierarchies along

which the context is organized – it specifies (application-

specific) concepts of context types and their relationships. It

facilitates context layering – context folding and unfolding,

the process of expanding or reducing of number of context

types and the corresponding goals that need to be solved.

In this section we introduce our goal taxonomy, describe the

main components of the context aware goal transformation

framework, and the operations they provide.

A. Goal Taxonomy

A user’s request for a context aware composite service

consists of description of the user’s computational task

intention and the current context, such as user location,

activity, and computing device as described in Section 3.

Therefore goal literals, explicitly describing aspects of the

service request, are either implied by user’s task intention,

such (direction found), or by the context itself, such

as (directions speech out) that is a result of the

user’s driving activity. Correspondingly we separate goals

based on their origin, into intention driven—core goals and

context driven ones —context goals. Our taxonomy of goal

conditions consists of (1) core goals, (2) base core goals, (3)

dependent context goals and (4) independent context goals,

which together form the basis for our work on goal

transformation to enable partial goal satisfaction.

Core Goal Any goal condition that purely describes the

user’s task intention is a core goal. In our scenario from

Section 3 core goals would be (restaurant_found)

and (direction_found) goal conditions, whereas

(restaurant_found) is also a base core goal.

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

43

Base Core Goal The absolute minimal core goal condition

that needs to be satisfied to achieve a viable solution is a base

core goal. It may therefore not be removed from the goal

definition. For example, in our scenario where Josh requests

directions to the restaurant, the base goal is to find a

restaurant. To fulfill the service request and supply the user

with a viable solution this base goal or its respective

transformation must be reached.

Dependent Context Goal A Context goal condition, which

can be seen as the attribute of the goal condition (or directly

related to it) is a dependent context goal. For example

(directions speech out) the goal literal relies on

the presence of (directions found) the goal literal. If the core

goal is removed from the goal set, the corresponding

dependent context goals are also removed. (For example,

removal of (direction_found) implies removal of
(directions_speech_out).

Independent Context Goal A context goal condition that

does not (necessarily) directly affect the user’s request is

considered to be an independent context goal. For example,

in our scenario we may want to add the goal condition of

lowering the volume level of an in-car audio system while

presenting the driving directions using the text to speech

interface.

B. GoalMorph: Framework Overview

The entry point in the GoalMorph system is a request for a

composite service, as shown in Figure 4.The user selects the

base of the composition request from the

GoalRepository (getRestaurantDirections — Step 1 in

Figure 4), which holds the available core goal templates,

explicitly defined by domain engineers using the planning

language (Step 3a). ContextService is a general

middleware infrastructure for context collection from a large

number of disparate sources and the dissemination of that

information (Step 2) to interested clients. Our context service

component uses the solution as suggested by Lei et al. [13] to

retrieve context such as: user’s location, device in use and

user’s activity. ContextProxy generates context goal

conditions that constrain this composition request given the

context information, provided by the ContextService.

The final composition request is finally assembled from the

core goal conditions from GoalRepository (Step 3a) and

context goal conditions (Step 3b) from ContextProxy.

The planner, the core of the composition engine, takes the

problem definition (Step 4a) and domain definition (Step 4b)

and uses a knowledge about available actions and their

consequences to identify a solution (i.e. plan—a sequence

of actions that can be executed in order to achieve the desired

goal). This attempt may fail when the precise goal can not be

achieved or the domain knowledge is incomplete.

When planner failure occurs (Step 5b in Figure 4) control is

passed to the Goal Transformation Engine that transforms the

goal into a problem that can be solved by planner. Firstly, it

attempts to transform core goal(s), to see if some form of the

original goal can be satisfied, by interacting with

GoalRepository (Step 6a).

Figure 3 Explicit goal representation for cases 1 and 3 of

the motivating scenario

(define
(problem demo_problem)
(:domain demo_restaurant)
(:objects
r_type
r_city
c_address
r_address
r_name)

(:init
(and
(restaurant_type r_type)
(current_address c_address)
(restaurant_name r_name)
(restaurant_city r_city)
(restaurant_address r_address)
(restaurant_country_de)))

(:goal
(and
(direction_found))))

(a) Planning goal for Case 1, shown in Table 1

(define
(problem demo_problem)
(:domain demo_restaurant)
(:objects
r_type
r_city
c_address
r_addres
r_name)

(:init
(and
(restaurant_type r_type)
(current_address c_address)
(restaurant_name r_name)
(restaurant_city r_city)
(restaurant_address r_address)
(restaurant_country_ch)
(activity_driving)))

(:goal
(and
(direction_found)
(direction_speech_out)
(direction_language_en)))

(b) Planning goal for Case 3, shown in Table 1

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

44

Figure 4 Framework for context aware goal transformation

;;goal predicate ;;sample utility

(catering_facility_found cuisine_argument) 1
(catering_facility_take_away_found_found cuisine_argument) 2
(catering_facility_home_delivery_found cuisine_argument) 3
(catering_facility_take_away_found cuisine_argument) 3
(catering_facility_eat_in_found cuisine_argument) 4
(restaurant_found cuisine_argument) 10
(specialized_restaurant_found cuisine_argument) 15
(catering_facility_bistro_found cuisine_argument) 5
(catering_facility_cafeteria_found cuisine_argument) 3
(catering_facility_cafe_found cuisine_argument) 3

Figure 5 Sample Goal Type Hierarchy for Predicate (restaurant_found)

The transformed goal is then passed to the ContextMesh

(Step 6b), which performs context layering: refining the

context goal conditions by context unfolding or relaxing the

context goal conditions by context folding. These operations

are described in detail below. The context layering is guided

by the context importance measures provided by the user

through a GUI (Step 1). The transformed goal is then fed to

the planner and the successful composition is evaluated by

the user to refine the goal transformation utilities.

A. GoalRepository

The GoalRepository plays a central role in the creation

of composite service requests. One obvious, but deficient

way to solve service request generation is to have users

manually select the individual goal conditions. Unfortunately,

while the users may know what they want, they may not

know how to realize it in a particular planning language.

Requiring a user to understand the low-level details of an

unfamiliar planning syntax, including the details of the

domain knowledge is clearly unreasonable. Furthermore

aside from the users (and their task intention), there are two

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

45

more key stakeholders in the service composition request: (1)

service providers – service descriptions and their properties

restrict the set of available goals and (2) context data.

Our goal taxonomy, presented in Section 4.1, separates goal

conditions into core and context ones, based on their role in

the composition request. Goal Repository is a software

component that (1) stores the explicit core goal

representations of supported users tasks and (2) contains an

ontology of those explicit goals facilitating goal

transformations.

Each goal is specified as a list of predicates and functions

(goal conditions) that must be true in the goal world. For

example, the high level task of Josh is ”Find the directions

to the closest Spanish restaurant”. This task maps to the

explicit goal request shown in Figure 3(a). The core parts of

the goal description are the goal conditions

(restaurant_found) and (direction_found). Furthermore, the

(directions_speech_ out) goal literal is the context goal

condition that arises due to the current user context (i.e.

activity driving). The mapping from user’s task description in

natural, user-friendly, language ”Find the directions to the

restaurant” to goal declaration in the planning language is

supplied by a system (domain) engineer.

In GoalMorph, goals are represented in Planning Domain

Description Language (PDDL) [14]. PDDL is an action-

centred language, inspired by the well-known STRIPS [15]

formulations of planning problems. This allows for easy

import of goals into the GoalRepository, and enables

our framework to be used with any PDDL-based planner.

Figure 6 User Interface for Goal Selection

There are several ways for the user to select a goal, as shown

on in Figure 6 representing the GUI for goal selection. Once

the user selects the task, the corresponding goal is retrieved

from the GoalRepository, and user is prompted to

supply the necessary arguments to complete this composition

request. GoalRepository keeps track of all the goal

requests, their corresponding context, and number of their

invocations, to enable automated goal selection (i.e. having

the system actively making context-aware goal

recommendations). The core goal from Goal Repository

together with context goals obtained from ContextProxy

form the composition request, which is passed to the planner.

When the planner fails to devise a plan, a goal transformation

is attempted to generate a goal that can be solved by the

planner. For this purpose, the GoalRepository contains a

goal ontology consisting of a number of hierarchies along

which core goals are organized. Figure 5 shows ontology for

the (restaurant_found) goal literal. With each goal

condition we associate a utility value, which is used to select

the goal conditions that contribute to the effectiveness of the

overall service request when devising

a partial solution. For example, the goal literal with highest

utility is (specialized restaurant found cuisine argument) 15.

Goal utilities are application- and user- specific, and are

synthetically assigned in the current implementation of the

prototype. Issues about designing a system to create and

maintain these utility values are also being considered (as a

future work), however this paper concentrates on their use.

The GoalRepository provides a number of operations

for navigation through goal hierarchies – along both type and

argument dimension, which aid the substitution (or removal)

of goal type or goal argument so that the new, transformed,

goal may be solved.

Core goal transformations can take several forms:

Generalization: Obtain value of parent goal type / goal

argument

Definition: Movement along goal type or argument hierarchy

respectively towards the more generic value

Example 1: Type generalization

The (restaurant_found spanish) goal state may be substituted

by the (catering_facility_found spanish) goal.

Example 2: Argument generalization

Similarly if the Spanish restaurant requirement from the

previous example cannot be satisfied, trying to reach the goal

of (restaurant_found mediteranean) or relaxing this argument

(see below) may provide a partial solution.

Specialization: Obtain value of child goal type / goal

argument

Definition: Movement along the goal type or argument

hierarchy respectively towards a more specific value

Example 1: Type specialization

The (restaurant_found spanish) goal state may be substituted

by the (tapas_restaurant_found spanish) goal. Depending on

the domain engineering, this categoriation of the restaurant

can be also described by an additional argument such as

(restaurant_found spanish tapas).

Example 2: Argument specialization

Once the base of the goal request is satisfied, we may want to

impose further constraints on the goal. For instance,

requesting that the Spanish restaurant found must have a

parking facility.

Relaxation: Removal of goal type / goal argument

Definition: Removing the goal type or goal argument

constraint

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

46

Example 1: Type removal

Removal of this goal condition from the set of goal states to

be satisfied.

Example 2: Argument removal

Finding any restaurant, as opposed to the Spanish one.

Fi

Figure 7 ContextProxy, facilitating context dependent

goals, using cogotags.

B. ContextProxy: Generating Context Aware Goals

To accommodate for the vast variety of – possibly even

unanticipated – context types and their values that may be

encountered and their impact on goal conditions, we

introduce cogotags – context goal tags. Each cogotag

consists of the context type, value and the goal condition it

introduces. Different context data may imply addition of goal

conditions to the system or subtraction of goal conditions

from the goal.

To facilitate publishing and making cogotags generally

portable we present them in XML form, as shown in Figure

7.

Cogotags can either be provided by the user, context

middleware, or inferred from the previous interaction of user

with the system. XPPDL3
3
 converts XML-based cogotags to

a planner readable PDDL-based goal conditions.

<context-type> activity
</context-type>
<context-value> driving
</context-type>
<add-goal-condition> text2speech
</add-goal-condition>

Figure 8 Sample cogotag

The ContextProxy is a component that interacts with

context middleware and composition request manager. It

assembles context goal conditions and passes them to the

composition request manager, which together with core goal

conditions form the final composition request. The context

middleware an attach cogotags to the context data, otherwise

the ContextProxy steps in and adds or removes goal

3 http://www.cis.strath.ac.uk/ jg/XPDDL/

conditions based on the user profile, or past interactions with

the system.

When no context data is available (e.g. due to sensor failures)

the ContextProxy fetches historical context from the

ContextService using ContextMesh. Using cogotags

removes the need for pre-built queries, and allows for

flexible context goal generation, independent of context

middleware used. We envisage users creating and carrying

their own cogotags on the device or associated with personal

profile. System can then learn from these and users’

interactions with the system.

C. ContextMesh

The ContextMesh is a context ontology consisting of a

number of hierarchies along which context provided by the

Context Service is organized. It is a specification of the

concepts of context types and their relationships existing in

application domains. The ContextMesh, as an context

ontology, can be equated with taxonomic hierarchies of

context types, definitions, and the subsumption relation.

ContextMesh organizes context along standard conceptual

type-hierarchies within which instances are categorized.

For example, the activity of the user can be naturally

organized by the fact whether user is stationary or moving,

such as driving and typing can be specific instances of

activity sitting (stationary) or walking and running can be

instances of moving, shown in Figure 9(a).

(a) Activity - main hierarchy

(b) Activity - level of distraction

Figure 9 Two hierarchies for context activity

The ContextMesh allows for multiple (scenario-specific)

hierarchies of each context type. Aside from its conventional

and natural abstraction type-hierarchy, context types can be

organized as an enumerated set, a numbered line, or a

containment of components. The activity context type could

be organized in the following manner: as a set of activities

that can occur at a specific location; or along the numbered

line according to the estimated duration of activity, and

finally as a component partonomy – where activity can be

organized in a graph, with the part-of relations.

For example, in our scenario the activity values may be

further organized according to the level of distraction of the

user. Figure 9(b) depicts how typing (i.e. working on the

laptop) may be considered less distracting than driving.

Furthermore – context values are not mutually exclusive. For

instance, Josh could very well be talking to the passenger (or

on the cellphone) and driving the car at the same time, as

shown by shaded values in Figure 9(b).

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

47

Figure 10 ContextMesh: Context cluster for restaurant finder.

<scenario restaurant>
<context-dimension activity>
<values ... >
<related-type location utility=1000 hierarchy=location_hierarchy1/>
<related-type time utility=500 hierarchy=time_hierarchy1 />
<hierarchy duration activity_hierarchy1 orderings ... />
<hierarchy distraction activity_hierarchy2 comparison_function.../>
</context-dimension>
...
</scenario>

Figure 11 Internal representation of context type and utilities

A number of interesting issues arise here. When selecting

appropriate transformations, the first issue is which of these

two activities are of higher relevance in the current scenario,

which hierarchy should be used when determining goal

transformations. One solution would be to have this

importance measure specified at the domain engineering

design stage. Secondly, how does the conjunction of more

than one context value affect the anticipated behavior of the

application.

For example, the conjunction of talking and driving is in

itself more distracting than driving alone. In such a case, one

would definitely want to avoid displaying or even reading out

the driving directions.

Context is by nature highly interleaved. Activity, location,

device used, physical environment, weather etc. are all inter-

related. The relative importance of context types is

overwhelmingly scenario specific. For example, consider the

case where a user requests directions to a restaurant.

In this case location, activity and device used are of a higher

importance than time requirements, weather conditions,

lighting and noise. In contrast, primary context types for e-

learning could be time requirements, user profile and device

used.

One possible approach to managing all the context

hierarchies and scenario-specific preferences is to introduce a

utility function and associate it with each context type –

thereby identifying that satisfying one context goal can be

traded off against success in satisfying another context goal;

and also that satisfying a context goal to a greater extent is

preferable to satisfying it to a lesser extent. Again, we specify

context utilities at the domain engineering stage and refine

them through user feedback.

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

48

Correlation of different context types generates context

clusters, which are scenario specific. They facilitate

unfolding and folding of the context dimensions. In other

words, context cluster controls the number of context types

taken into account during the process of goal transformation.

Figure 10 shows the context cluster created for our scenario –

a set of independent context axes. Initially only the device

that the user is currently using is taken into account – a sold

line. The current value of this context type, represented by

fully filed circle, is SmartPhone. In the next iteration of

context layering we incorporate information about the other

available devices in the environment (initially an axis

represented by dashed lines in Figure 10). Pervasive

computing environments are characterized by richness of

context, ContextMesh and the process of context layering

therefore allow us to control the amount of context data

passed to the system along with the service composition

request.

1) ContextMesh Data Model and Management

The concepts and relationships in the ContextMesh are stored

in XML format, as shown in Figure 11, overlaying the

context data provided by ContextService. It therefore

allows for any other context ontology to be imported and

merged with it, provided that the necessary translation

mechanism exists. In addition to providing the mechanism

for merging other ontologies it is necessary that the context

utilities and relations are defined to allow for goal

transformation.

Every ContextMesh type dimension and corresponding

hierarchies have an XML representation and they can be

converted to ContextMesh object (dimension and/or

hierarchy). Within our Java implementation ContextMesh

hierarchies are represented by objects of the type

ContextHierarchy. In particular ContextMesh pulls values of

context type eligible for transformation by using getParent(),

getSibling(), getChild() methods of a ContextHierarchy

object, and receives values that are used to generate new

context goal conditions.

Which ContextHierarchy should be used is scenario

dependent, and is decided using the utilities.

ContextHierarchy holds the comparison function according

to which values are organized. ContextHierarchy implements

a comparable interface, which is used to determine the

order/hierarchy of the values stored in the

ContextDimension, allowing the developer to define

customized comparision of ContextHierarchy elements.

Along with each value a utility is stored for each hierarchy.

This is used to access the context values stored in

ContextDimension for this context type. Each context type

(i.e. its ContextDimension) may be related to other context

types. Corresponding ContextDimension objects store these

relationships. For example activity may be associated with

location and time of day. Each context relationship has a

“utility” associated with it, which is used to determine the

“strength” of relationships among different context type

pairs. These relationships and their utilities are scenario-

specific.

ContextMesh has methods for creating

ContextDimension objects, which represent values of

each context type, methods for adding and updating context

hierarchies for a dimension, methods for importing new

values of a context type, methods for managing relationships

between context types, and methods for obtaining and

creating a ContextDimension and

ContextHierarchy objects from their XML

representation.

2) Navigating through ContextMesh

ContextMesh provides the following operations for

navigation through contextual data:

Context value specialization

Definition: Movement along the specified context type

hierarchy towards a more general value (i.e. parent value)

Example: Goal to display information on LCD screen may

be substituted by a goal to display on CRT.

Context value specialization

Definition: Movement along the specified context type

hierarchy toward more specific value (i.e. obtain value of

child context)

Example: Goal to display information on CRT screen may be

substituted by a goal to display information on LCD.

Context value substitution

Definition: Obtains an equivalent substitute context value

(i.e. sibling value).

Example: Goal to display infromation on Desktop’s LCD

screen may be substituted by a goal to display information on

TabletPC’s LCD.

Context type expansion (“context unfolding”)

Definition: Obtain values of related context types. This may

result in a refined goal, where the plan eventually may

overachieve the original goal. This is useful when there are

operators with partially satisfied preconditions. Retrieving

additional context types may enable selection of operators

previously not applicable in the planning process.

Example: Goal requires that information is to be displayed on

LCD screen. No LCD screen is detected in the house, and the

goal cannot be satisfied. At the same time, a CRT display is

detected. By examining available operators the operator

display_on_crt where (location in_kitchen) precondition is

not applicable as the location of the user is not known. By

expanding ContextMesh and unfolding the location context

dimension, the user’s present location is detected to establish

the applicability of information display on the CRT.

Context type contraction (“context folding”)

Definition: Removal of the specified context type. Deletes a

context goal from the current set of open goals that the

planner must achieve.

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

49

Example No text to speech service is available. Remove the

text-to-speech requirement (i.e. do not take into account

activity of the user that implies goal constraint on text to

speech service).

Obtain context value at time t

Definition: Obtains a substitute context value at specified

point in time.

Example: If a sensor has failed and a context value can not be

obtained, a context history is accessed to try and retrieve a

past context value. Utility models are used to assign utility

values to the context values as well in order to guide the

transformation process. For example, a sibling value may be

preferable to the higher abstraction.

3) Summary

The contribution of the ContextMesh is twofold. Firstly,

by placing unified context ontology in the core of the

architecture all applications can query it for information

relevant to the application’s particular domain. More

importantly, by providing the ability to measure the success

of composition in terms of context preferences (i.e. the utility

function), it is the core component of context goal

transformation framework that reformulates unreachable

goals to problems that can be solved by the planner. It

facilitates soft goal satisfaction, allows for scenario-

specificity and does not require a single common ontology.

D. Goal Transformation Engine

Goal transformation is applied under two circumstances:

firstly when no plan is found for a given goal, and secondly

when a plan with a higher utility can be applied to solve a

goal, thereby over-achieving the original goal.

The context aware goal transformation algorithm builds on

the ideas presented by Cox et al. [16]. They devised a

framework for goal transformation in a continuous planner to

select appropriate goal transformations automatically. The

goal arguments and predicates may be moved along an

abstraction hierarchy, enumerated set, a number line, or

component containment.

We have extended their algorithm to allow for transformation

of context goal conditions as well. The process of goal

transformation involves transformations of both core and

context goal conditions. We summarize again, the operations

provided by GoalRepository and ContextMesh

respectively, which facilitate core and context goal

transformation:

Core goal transformations:

1. Goal Repository: Goal type transformations

(generalization and specialization)

2. Goal Repository: Goal argument transformation

(generalization and specialization)

3. Goal Repository: Goal predicate removal (constraint

relaxation)

Context goal transformations:

1. ContextMesh: Context Value Generalization

2. ContextMesh: Context Value Substitution

3. ContextMesh: Context Value Specialization

4. ContextMesh: Context Unfolding

5. ContextMesh: Context Folding

6. ContextMesh: Context Historical Substitution

GoalMorph uses contextual information to drive the

transformation process to devise “best-approximation” goals.

In addition, we incorporate utility model in the goals, to

enable reasoning whether one goal transformation has a

higher expected utility than another.

Algorithm 1 outlines the method for context aware goal

transformation. GoalMorph firstly it generates a set of

pending core and context goal conditions. By applying goal

type and goal argument transformation, it attempts to satisfy

the core goal - i.e. get the restaurant directions and prepare

them for display. If no transformation can be found even to

solve the core problem partially, the algorithm stops here.

Once the core goal can be (partially) satisfied, the

transformation engine attempts to refine/overachieve it by

transforming the context goals as well. For each context type

it retrieves current value (or uses it most recent value from

ContextHistory, if the current value is not available). It

then determines the hierarchy of importance for this type in

this scenario.

The next step is to compute the set of transformations to be

applied on this goal – a search problem, which can be guided

by following methods: (1) Domain control knowledge, (2)

Utility function and (3) User input.

Domain control knowledge, devised at the domain

engineering stage, may include control structures expressing

the priorities among goal transformations for the given

scenario.

The utility function is to be applied with a learning

mechanism, which over the time acquires utilities based on

the feedback from the user. The order in which

transformations are done is determined in the following

manner.

Firstly the utilities of substitute goals are determined to

calculate the overall cost-benefit of the substitute solution.

Initially we assign synthetic, random utility values to the goal

conditions. The next step is to apply learning algorithm to

refine these utilities. Upon the goal transformation and

execution of the resulting plan, user would provide feedback

on the usefulness of the transformation. The feedback is then

incorporated and reflected in the utility values of

transformations performed. Finally, the user may manually

guide the goal transformations. However in this work we are

focusing on the automated goal transformation.

The current implementation of this algorithm supports all of

the above methods, and they are evaluated in the next

section. The order in which transformations are applied and

evaluated at present is determined by the utility of the

resulting goal - the higher utility the higher priority of the

transformation. There may be cases where two

transformations have the same utility, the engine in that cases

randomly determines which to apply, if it. Otherwise, if there

is a case where both goal generalization and specialization

are of the same utility, a more refined/specific goal is always

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

50

preferred. When conflicting context goal conditions emerge

from the transformation the original goal always has

precedence over the transformed one, so the context type will

be folded and hidden.

II. EVALUATION

We have implemented the context aware goal transformation

framework and conducted initial experiments on our

prototype to determine its scalability and impact on the

overall performance of the system. The experiments were

performed on an 800 MHz, Pentium III with 2 GB RAM.

We modeled our scenario from entertainment domain,

described in Section 3, which contained 100 fact and 20

operators. To evaluate the transformation algorithm we

randomly removed certain operators from the domain to

simulate missing services. ContextMesh contained 7 context

dimensions, such as the ones described in Section 4.5, and

shown in Figure 10. Each context dimension contained up to

10 different values and their corresponding utilities, which

were initially, assigned synthetically random generated

values. Furthermore, each context type was associated with

one or more hierarchies.

We generated goals containing up to 40 goal literals.

Following are some of the sample service requests that were

offered by our system:

1. Find a dining or entertainment venue (location-based)

2. Find an entertainment venue (event-based)

3. Find a dining venue (cuisine-based search)

4. Find directions to the venue

5. Book dining or entertainment venue

6. Make booking and find directions for dining and

entertainment venue

All the planning is performed by TLPlan [10] in breadth first

search mode with no search control knowledge. TLPlan

normally uses domain specific search control information to

control simple forward chaining search, where the planning

operators are applied to the current state to generate its

successors. Bacchus et al. [10] demonstrate that that control

strategies can be a considerable aid in speeding up the

planning (up to 20times) compared to the planning without

search knowledge. In this work, however, we focused on the

performance of the goal transformation algorithm itself and

use the planner without control knowledge. We evaluated our

goal transformation algorithm, and compared two different

approaches in selection of transformations.

First one applied a random search algorithm, where

transformations were selected in a random manner, whilst the

second one was utility driven. We ran goal transformation

algorithm for each failed goal until the transformed goal

(with the highest utility) could be solved, otherwise the

transformation was set to terminate after 1sec.

(Partial) Goal Utility and Size To evaluate the utility of

transformed goal we employed a formal model to represent

partial fulfillment of the overall task, as well as individual

goals. We base our approach on the method for expressing

the degree of satisfaction of each atomic, atemporal4
4
, goal

literal, introduced by Haddawy et al.[17]. This allows

reasoning about the extent to which the goal is satisfied.

Haddawy et al. further separate atemporal goals into the ones

with symbolic and quantitative attributes. For example, a

symbolic goal would be (directions pda_display)

4 Atemporal goals describe what needs to be achieved, while temporal ones

describe when it is to be achieved. In our work, we focus exclusively on

atemporal goals.

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

51

and (screen_resolution 1024_768). In our work,

we are only concerned with symbolic goals. Haddawy et al.

define a degree-of-satisfaction function (DSA) for a symbolic

attribute goal, in terms of an application-supplied sequence S

of mutually exclusive goal literals g1, g2 ... gn, such that gn is

the actual component of the goal and gi represents a greater

degree of satisfaction than gj if i < j. DSA is in range [0.0-

1.0], where 0.0 is representing no satisfaction and 1.0 is full

satisfaction of the goal literal.

Goal ontology from GoalRepository and

ContextMesh hierarchy already provide a base for

devising a function for core and context goals respectively, to

specify partial satisfaction of atemporal goals. At present we

assign synthetic values to each goal literal in their

corresponding hierarchies, as described in sections 4.3 and

4.5. The overall satisfaction of the whole task is a sum of the

partial satisfaction value of each individual goal literal. This

can be further extended to incorporate the goal weight to

model the priorities for each goal literal. We used this formal

model to compare performance of plans generated for goals

with and without goal transformation. Furthermore, we ran

and compare goal transformation algorithm in random search

mode and utility mode for selection of transformations.

We measured the reduction in goal performance in two ways.

Firstly, we were interested in the number of goal literals that

can be satisfied with and without goal transformation. We

compared this to the size of the original goal (i.e. total

number of goal literals that are to be satisfied), and number

of goal literals that are solved when the planning fails to

satisfy completely the original request.

The results of this experiment show that both random based

goal transformation (see figure 12) and utility-driven goal

transformation find goals that can be solved and are at least

60% of the same size as the original request. The reduction in

number of goal literals satisfied is greater in cases without

the goal transformation than when planning with such

transformations, and as expected the lowest reduction occurs

when utility-driven transformations are applied.

However, even the randomized transformation selection

algorithm is also an improvement to the planning with the

original goal only, as the composition request can be

satisfied.

Secondly, we measured the overall goal utility by measuring

the sum of the utilities of each goal literal. We compared goal

utility with and without goal transformation. Figure 13 shows

the utility of the goal after random and utility based goal

transformations, when varying the problem complexity from

10 to 40 goals. Reduction in goal utility with goal

transformation does not increase with the number of goal

conditions introduced. That is due to the fact that there is a

higher probability in successfully transforming goals with

higher number of goal conditions.

It is important to note, that higher goal size may not imply

higher utility. Depending on user preferences shorter goals

may incur higher utility.

GoalMorph Latency In this experiment we compared the

time that it takes planner to find no solution (i.e. for goal to

fail) to the time taken to transform the goal into the one that

can be solved and replan, as shown in Figure 14. We

compared the total transformation time (taken to generate a

goal that can be solved) with the planning time (taken to

determine that the goal can not be solved). Whilst, as

expected the time difference increases with the number of

transformations, for all tested cases transformation time

remains sufficiently small (i.e. less then 1600ms for goals of

size 40) to justify the overhead introduced by goal

transformation.

Context and Core Goal Transformations Performance

We compared transformation time for core and context aware

goals and their impact on the overall transformation time. As

core and context goals may be dependent, we only compare

core and context aware goal transformations that can be

performed in isolation (independently). We expected the

context aware goal transformation is computationally more

complex (up to 8 times) due to the overhead in the

communication with the ContextMesh and context layering

process, interaction with ContextProxy to generate new

context goal(s), as well as interfacing with

ContextService to retrieve historical values, as shown

in Figure 15. Finally, performance of the context goal

transformations also depends

on the size of the size of the context hierarchy.

GoalMorph Scalability Finally we simulated an increase in

the goal size and observed systems behavior in terms of the

number of transformations generated and the running time of

GoalMorph. As shown in Figure 16 the system scales well,

being able to generate up to 240 core and context

transformations in 0.4seconds in the random transformation

selection mode. As expected the utility driven transformation

selection mode has a higher running time, due to the search

for the transformed goal with highest utility, whereas the

random search terminates once a first goal that can be solved

is found.

III. RELATED WORK

Most of the previous work in goal oriented service

composition [6, 2] has either assumed a static environment

where plans are always solvable, or focused on adapting the

execution process by replacing service instances. In contrast,

our work generates solvable goals even when service

replacement is not adequate – for instance, when no services

that would satisfy a particular part of a goal are available. In

this section we compare our solution to GTrans and discuss

previous research in the area of partial goal satisfaction.

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

52

Figure 12 Number of goal solved as a function of goal size using random search and utility transformation selection.

Figure 13 % of achievable utility of transformed goal solved as a function of goal size using random search.

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

53

Figure 14 Planning time (no plan found) vs Total transformation time

Figure 15 Performance of utility-driven core and context goal transformations as number of transformations increases

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

54

Figure 16 GoalMorph performance as a function of number of transformations.

A. Comparison with GTrans

Cox [16] introduced taxonomy of goal transformations based

on an organization of goals and objects in the goal hierarchy,

as an approach to planning in a world under continual

change. They extend PRODIGY [18] planner to

automatically select the appropriate goal transformations in

response to world changes to completely solve the

transformed problem. Later they apply this approach to

mixed-initiative planning [19].

We have extended their ideas by introducing the

ContextMesh to enable context aware goal transformation,

which allows the system not only to transform the actual goal

(e.g. abstracting the goal from finding a Spanish restaurant to

any closest restaurant or substituting Spanish with a

Mexican), but also to unfold and fold context layers,

transform the context goal conditions, to allow for

satisfaction

of the most “closest” goal in the “closest” context. Our

approach also enables the user to specify importance measure

across the context dimensions. We now discuss key

differences between our solution and Cox’s work.

Selection of Goal Transformations When selecting

applicable goal transformations, besides the commonly used

unguided search, GTrans relies on domain control knowledge

In their later work [19] GTrans supports so called “mixed

initiative approach” where users can establish and transform

goals manually through visual representation. Our system, in

addition to domain control search strategy and unguided

search (randomized algorithm), provides a utility model for

goals contexts and their corresponding transformations. The

utility model is designed to enable support for searching a net

benefit solution (i.e. one with a maximum goal utility and

minimum cost). The utility based approach makes out

approach to the goal transformation a domain independent

solution. It is important to mention that we support all three

approaches – utility-based, domain based, and manual

transformation; the implementation of the prototype employs

a hybrid approach to goal transformation. Goals are

organized in hierarchies and corresponding transformation

are assigned utilities.

User Interaction The user explicitly performs goal

transformations in the mixed-initiative version of GTrans.

In contrast, our solution enables the user to provide feedback

on the usefulness of a particular solution (after goal

transformation) and feeds this into the learning system to

update the utilities of corresponding goal transformations.

The design of the GoalMorph allows for system to be

extended to include the user directly in the goal

transformation loop, however in this paper we focus on

automated goal transformation.

Planner Dependence Cox et al. integrate goal

transformation with Prodigy, a state space nonlinear planner

which follows a means ends analysis backend chaining search

procedure that reasons about both multiple goals and

multiple alternative operations form its domain theory. Goal

Morph on the other hand is planner independent. This is

often advantage as we may want to substitute planner with a

new one, or may not have access to its source code. Our

prototype is implemented around TLPlan. We use internal

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

55

representation for goals, their hierarchies and utilities. The

system allows for goals to be imported in the PDDL format,

and is ontology independent, allowing for any arbitrary goal

and context ontology to be incorporated given the necessary

translation tools are in place.

Replanning GTrans, is not only planner dependent, but also

interleaves goal transformation with the actual plan

refinement process. We chose to keep our solution planner

independent and therefore it is designed in such a way to rely

on re-planning. As re-planning from scratch may be

extremely time-consuming, we take the partially created plan

from the planner, and incrementally perform goal

transformation and replan from there.

Supported Hierarchy Types Dependence GTrans allows

for goals (their predicates and arguments) to be organized

along the four key types of hierarchies: abstraction hierarchy,

number line, enumeration set and patronomy. We extend this

to allow for any arbitrary hierarchy to be included.

This is achieved by creating a comparable interface for each

hierarchy to define the wanted ordering among hierarchy

elements. Optionally, one can import the hierarchy directly.

Goal Priorization Finally, our utility model allows for goals

to be prioritized thereby guiding the selection of goal

transformations. At this stage of our prototype

implementation goals are treated independently.

B. Partial Satisfaction Planning

Goal transformation is related to PSP [17, 20, 21]—an area

of research in AI Planning that focuses on ensuring that the

resources in the planning problem are not overloaded. All of

these projects allow for PSP with goal utilities; however they

do not provide mechanism for goal priorization. Briel et al

[21] furthermore do not support interacting goals (i.e. goals

are assumed to be mutually exclusive). Williamson et al. [20]

allow for for partial satisfaction planning with goal utilities,

but their system still requires for all the goal conjunctions to

be reached.

IV. DISCUSSION AND FUTURE WORK

To address the goal transformation problem fully, several

related challenges need to be overcome. In this section we

discuss these and our work in progress in addressing them.

A. Utility Function

Optimizing the match between the needs of the users

composite service request and the transformation capabilities

corresponds to maximizing user’s utility for a specific

request.

Our approach is based on the method presented by Poladian

et al. [22] for dynamic configuration of resource-aware

services to the problem of goal transformation. The user’s

utility is expressed by means of user preference function that

maps from multidimensional transformation space to a uni-

dimensional utility space.

Utility is a measure of user happiness with respect to the

possible outcomes, or, in other words, a formal

representation of how useful a transformed goal is relative to

the specific original task. We encode utility in the interval

[0,1] of the real numbers, where 0 utility corresponds to the

transformed goal being unacceptable for the task, and 1

corresponds to the user satisfaction, in the sense that the

increasing it may not improve user’s perception of usefulness

for the specific task. The transformation capability space is a

set of available transformations for each goal literal.

B. Goal Scheduling

Deployment of GoalMorph in the production environment

raises questions of scheduling goals that compete for

system’s resources. Given a number of disjoint goals and

their transformations, we need a mechanism to prioritize

access to system resources. We envisage a method for

prioritization of service requests (and any related goal

transformations) by different users to depend on high-level

criteria, such as the importance of goals and the subscription

class of the users. For instance, users paying the lowest

subscription fee may get a lower probability of their goal

utility requirements being met, whereas a high subscription

user with the same requirements may get a higher probability

and a faster service response.

V. SUMMARY

In this paper, we have presented GoalMorph, a framework

for context aware goal transformation to facilitate fault

tolerant, context aware, service composition, based on the

core and context goal transformations. We have introduced

ContextMesh, a multidimensional data structure for

hierarchical organization of context. It enables context

layering – process of controlling the amount of context data

used to transform the context goal. By means of an example

we demonstrated the use of our algorithm for context aware

goal transformation to generate a problem that can be solved

by the planner. We demonstrated that the performance of our

composition system is practical when context aware goal

transformation is introduced. The overhead that GoalMorph

introduces is minimal; it performs up to 240 core and context

transformations in 0.4seconds whilst randomly selecting

transformations. GoalMorph generates partially satisfied

goals, which achieve more than 60% of the original utility,

despite the increase in the goal size. Future work will

incorporate learning methods to refine goal utilities based on

user’s feedback from generated compositions, and devising a

method for prioritization of goal requests.

Acknowledgment

We would like to thank IBM Zurich Research Laboratory for

supporting this work and Evangelos Kotsovinos for

providing valuable feedback.

References

 [1] Zeng, L., Benatallah, B., Lei, H., Ngu, A., Flaxer,D.,

Chang, H.: Flexible Composition of Enterprise Web

Services. Electronic Markets – Web Services 13 (2003)

[2] McIlraith, S., Son, T.: Adapting Golog for Composition

of Semantic Web Services. In: Eighth International

Conference on Knowledge Representation and Reasoning

(KR2002), Toulouse, France (2002)

International Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 40-56

ISSN 1738-6535 © Web Services Research Foundation, Seoul, Korea

56

[3] Dale, J., Ceccaroni, L.: Pizza and a Movie: A Case Study

in AdvancedWeb-Services. (In: AAMAS 2002. Workshop on

Challenges in Open Agent Systems)

[4] Ponnekanti, S.R., Fox, A.: SWORD: A Developer Toolkit

for Web Service Composition. In: 11th World Wide Web

Conference (Web Engineering Track), Honolulu, Hawaii,

(2002)

[5] Sabou, M., Richards, D., Splunter, S.v.: An Experience

Report on Using DAML-S. In: The Twelfth

InternationalWorldWideWeb Conference,Workshop on E-

Services and the SemanticWeb (ESSW’03), Budapest,

Hungary (2003)

[6] Wu, D., Sirin, E., Hendler, J., Nau, D., Parsia, B.:

AutomaticWeb Services Composition Using SHOP2. In:

13th International Conference on Automated Planning &

Scheduling. Workshop on Planning for Web Services.,

Trento, Italy (2003)

[7] Thakkar, S., Knoblock, C.A., Ambite, J.L.: A View

Integration Approach to Dynamic Composition of Web

Services. In: 13th International Conference on Automated

Planning & Scheduling. Workshop on Planning for Web

Services., Trento, Italy (2003)

[8] Gelernter, D., Carriero, N.: Coordination Languages and

Their Significance. Communications of the ACM 35 (1992)

97–107

[9] Vukovic, M., Robinson, P.: Adaptive, Planning Based,

Web Service Composition for Context Awareness. In:

Advances in Pervasive Computing. Volume 176. (2004)

247–252

[10] Bacchus, F., Kabanza, F.: Using Temporal Logic to

Control Search in a Forward Chaining Planner. In:

Proceedings of Second International Workshop on Temporal

Repre sentation and Reasoning (TIME), Melbourne Beach,

Florida (1995)

[11] Vukovic, M., Robinson, P.: GoalMorph: Partial Goal

Satisfcation for Flexible Service Composite. In: Next

Generation Web Services Practices (NWeSP). (2005)

[12] Russell, S.J., Norvig, P.: Artificial Intelligence: A

Modern Approach. Prentice Hall, Upper Saddle River,

NJ (1995)

[13] Lei, H., Sow, D.M., Davis, II, J.S., Banavar, G., Ebling,

M.R.: The design and applications of a context service.

SIGMOBILE Mob. Comput. Commun. Rev. 6 (2002) 45–55

[14] Ghallab, M., Howe, A., Knoblock, C., McDermott, D.,

Ram, A., Veloso, M.,Weld, D.,Wilkins, D.: PDDL— The

Planning Domain Definition Language (1998)

[15] Fikes, R.E., Nilsson., N.J.: STRIPS: A New Approach

to the Application of Theorem Proving to Problem Solving.

Artifical Intelligence 2 (1971) 189–208

[16] Michael T. Cox and Manuela M. Veloso: Goal

Transformations in Continuous Planning. In: Proceedings of

the AAAI Fall Symposium on Distributed Continual

Planning, AAAI Press (1998)

[17] Haddawy, P., Hanks, S.: Utility Models for Goal-

Directed Decision Theoretic Planners. Technical Report TR-

93-06-04 (1993)

[18] Veloso, M., Carbonell, J., P’erez, M., Borrajo, D., Fink,

E., Blythe, J.: Integrating planning and learning:The prodigy

architecture. Journal of Experimental and Theoretical

Artificial Intelligence 7 (1995) 81–120

[19] Cox, M.T., Zhang, C.: Planning as a mixed-

initiativegoal manipulation process. Technical Report

WSUCS-04-02, Wright State University, Department of

Computer Science and Engineering, Dayton, Ohio (2004)

[20] Williamson, M.: Optimal planning with a goaldirected

utility model. In Hammond, K.J., ed.: Proceedingsof the

Second International Conference on AI Planning Systems,

Menlo Park, California, American Association for Artificial

Intelligence (1994) 176– 181

[21] van den Briel, M., Nigenda, R.S., Do, M.B.,

Kambhampati, S.: Effective approaches for partial

satisfaction (over-subscription) planning. In

McGuinness,D.L., Ferguson, G., eds.: AAAI, AAAI Press /

The MIT Press (2004) 562–569

[22] Poladian, V., Sousa, J.P., Garlan, D., Shaw, M.:

Dynamic configuration of resource-aware services. In:ICSE

’04: Proceedings of the 26th International Conference on

Software Engineering, Washington, DC, USA, IEEE

Computer Society (2004) 604–613

Author Biographies

Maja Vukovic is a PhD candidate at Computer Laboratory at University

of Cambridge. Her research is supported by IBM Zurich Laboratory. Maja

Vukovic obtained her B.Sc. in computer science and mathematics from the

University of Auckland in New Zealand. She received an M.Sc. degree in

computer science from the International University in Bruchsal, Germany

for her work on in-vehicle location-based systems.

Previously she worked as a Research Scientist at DaimlerChrysler

Research Lab in Palo Alto, CA, where she investigated condition

monitoring of vehicles and telediagnostics, as well as open telematic

platforms. Her interests are in the area of context aware computing and

service oriented architectures.

Peter Robinson is Professor of Computer Technology and Deputy Head

of the Computer Laboratory, University of Cambridge, working in the

Rainbow Group on computer graphics and interaction.

He is a Fellow, Praelector and Director of Studies in Computer Science

at Gonville and Caius College. He is also a Chartered Engineer and a Fellow

of the British Computer Society.

Professor Robinson has been leading work on the use of video and paper

as part of the user interface. Recent work has included desk-size projected

displays and inference of users’ mental states from video images of their

faces.

