
Student Proof Exercises using MathsTiles and Isabelle/HOL

in an Intelligent Book

William Billingsley (wbillingsley@cantab.net) and Peter
Robinson (peter.robinson@cl.cam.ac.uk)
University of Cambridge

Abstract.
The Intelligent Book project aims to improve online education by designing

materials that can model the subject matter they teach, in the manner of a Reac-
tive Learning Environment. In this paper, we investigate using an automated proof
assistant, particularly Isabelle/HOL, as the model supporting first year undergrad-
uate exercises in which students write proofs in number theory. Automated proof
assistants are generally considered to be difficult for novices to learn. We examine
whether, by providing a very specialised interface, it is possible to build something
that is usable enough to be of educational value. To ensure students cannot “game
the system” the exercise avoids tactic-choosing interaction styles, but asks the
student to write out the proof. Proofs are written using MathsTiles: composable
tiles that resemble written mathematics. Unlike traditional syntax-directed editors,
MathsTiles allow students to keep many answer fragments on the canvas at the same
time, and do not constrain the order in which an answer is written. Also, the tile
syntax does not need to match the underlying Isar syntax exactly, and different tiles
can be used for different questions. The exercises take place within the context of an
Intelligent Book. We performed a user study and qualitative analysis of the system.
Some users were able to complete proofs with much less training than is usual for
the automated proof assistant itself, but there remain significant usability issues to
overcome.

Keywords: Intelligent Book, MathsTiles, Isabelle

c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 22/03/2007; 22:44; p.1



paper.tex; 22/03/2007; 22:44; p.2



3

1. Introduction

The Intelligent Book project aims to improve online education by de-
signing materials that can model the subject matter they teach. For
example, a question we designed for electronics asks students to choose
current, voltage, and component values for a transistor amplifier, in or-
der to meet a set of specifications [12, 35]. The question is backed by an
AI model of the circuit based on a constraint propagator [39]. Whenever
a student sets a value in the circuit, this constraint propagator uses the
rules of electronics to deduce what other values in the circuit need to be.
If a student’s choices are inconsistent or do not meet the specifications,
the question can play back the sequence of deductions in the model, to
explain to the student exactly what the problem with his or her choices
is.

It is important to note that unlike intelligent tutoring systems such
as Andes [18] and intelligent learning environments such as ActiveMath
[30], our exercises generally do not keep a student model measuring the
students’ understanding of particular domain rules or the solution steps
they should take to answer a question. This is because as a research
objective we wish to support questions where students are not taught
the exact process used to answer the question (for example higher
mental process questions), and questions where there may not be a
general process that solves all problems in the domain. In these cases,
there are no known solution steps to model students against, and it is
not the students’ knowledge of basic domain rules that is being tested.
Instead, our questions are designed as reactive learning environments
[15]. They give students the freedom and opportunity to try out their
ideas, and use the AI model of the material to explain any consequences
or problems with their answers.

The question arises, what kind of model could be used to support
proof exercises for a first year undergraduate discrete mathematics
course, covering introductory number theory? One possible choice, that
we have chosen to investigate in this paper, is an automated proof
assistant. These have been developed over many years to model and
support the proofs of researchers and professionals. However, they are
generally regarded to be difficult for novices to learn to use. From their
experiences teaching postgraduates how to use the HOL system, Slind
et al [37] found interactive proof assistants to be “powerful but be-
wildering”. They identified general reasons for this, including: “simply
managing to formulate correct statements can be difficult”; “finding the
correct tool to use at any point can be hard”; and “even remembering
how to look for existing theorems to use can be hard”. Isabelle/HOL
[34], the proof assistant we use in this paper, is similarly complex. The

paper.tex; 22/03/2007; 22:44; p.3



4

two shortest introduction courses to Isabelle/HOL [33, 6], presented
to research audiences, each take four sessions of 90 minutes and each
include more than 300 slides. We asked informally on the Isabelle/HOL
users’ mailing list how long it might take a first year undergraduate to
learn to use the system well enough to answer induction or case proofs
on the Fibonacci sequence (using an example from our evaluation study
in this paper). The rough estimate we received from an experienced user
was that if we offered a taught course in how to use the system then
students “could do simple things within ten weeks” and “it might take
as long as twenty weeks for an average student to become proficient
at the level you are suggesting”. We were also warned that if students
could not already write a proof for a theorem on paper, they would
not be able to prove it in Isabelle/HOL. In our design-stage discussions
with experienced users of HOL and Isabelle/HOL, we were also warned
that the reasoning output of most proof assistants is very low level and
would be difficult for students to follow.

Our hypothesis in this paper, however, is that by using a very spe-
cialised interface to the proof exercises we can provide something of
educational value that students can learn to use much more quickly
and with much less training. We have three reasons for believing that
this might be the case:

− The interfaces of proof assistants appear, by and large, to have
been optimised for experienced users who work with the system
regularly, rather than for novice users. There are many techniques
in human computer interaction research that can reduce the learn-
ing barrier for first time users – for example structured editing
[40, 3] can help novices to work with a new syntax, but can be
cumbersome for more experienced users [24].

− Answering a homework proof exercise is a different situation from
attempting a proof in professional practice, because in a home-
work exercise the proof has been set by a teacher. The teacher
has the opportunity to look at the question in advance and make
alterations to ensure that an answer is achievable by students.

− Our experience with the electronics question, described earlier,
suggested it is possible to relate AI-generated reasoning to a stu-
dent’s level of detail. In the electronics questions, initially the
constraint propagator output explanations that (anecdotally) were
too detailed and low level for students to understand. We found
that a successful approach to solving this was to define the cir-
cuit diagram students would interact with separately from the AI
model of the circuit. The explanations were then automatically

paper.tex; 22/03/2007; 22:44; p.4



5

pruned so that only steps involving variables that were marked
on the diagram were included. The principle here is that if the
user interface is designed to represent the student’s model of the
question, then by mapping the reasoning onto that interface we
are mapping it to a student’s level of detail.

We constructed a set of six proof exercises that take place within
the context of an Intelligent Book. This is a web-based textbook that as
well as containing AI-supported exercises also contains extensible and
adaptive content (students can add content to the book, and different
explanations can be shown to different students for the same topic). The
students’ proofs are checked using the Isabelle/HOL system, but are
written with our own specialised interface. We performed a qualitative
evaluation on the exercises in two ways: by asking students and oth-
ers with no automated proof experience to attempt the exercises, and
by using one of the foremost analytical techniqes in human computer
interaction.

There are two contributions in this paper. First, although we find
there are many usability issues still to overcome, the exercises do repre-
sent an advance in enabling untrained students to write verifiable proofs
in a system where the student must write the lines of proof (rather than
asking the automated proof assistant to apply tactics to manipulate
goal statements). There are many systems that ask students to write
simple proofs in simpler domains such as predicate logic [28, 29], but
this is the first web-based learning environment to ask students to write
proofs in this manner for number theory. The second contribution is
the results from the qualitative usability study we conducted. This
study revealed a number of issues that are relevant for future design of
educational proof interfaces.

The paper is organised as follows. Section 2 describes a number of
design constraints on the exercises. From these we explain how the
major design decisions in our exercises were made. Section 3 provides
a summary of the architecture of Intelligent Book questions. Section
4 describes MathsTiles, which is a configurable structured interaction
language we designed, and which we use as the proof language. Section 5
describes precisely how MathsTiles is used as a proof language. Section
6 walks through an example exercise. Section 7 describes how we have
evaluated the system and presents the results of that evaluation. Section
8 suggests a number of avenues for future research. Section 9 describes
related work by other researchers. Finally, Section 10 concludes the
paper.

paper.tex; 22/03/2007; 22:44; p.5



6

2. Design Goals

In this section, we describe three design goals of the exercises, and
how those drove our design decisions. During development we made
compromises on the second and third goals, as described in Sections 5
and 7, but nonetheless they were important to the design.

2.1. The exercises take place within an Intelligent Book

The first goal is part of our wider research aim, which is to develop
an Intelligent Book. The concept of an Intelligent Book is a web-based
textbook that contains both AI-supported exercises and content. Stu-
dents can add content to the book and alter existing content within it,
and the advice from the exercise AI systems can refer to that content.
The proof exercises in this paper are designed as Intelligent Book ex-
ercises. While the architecture of the Intelligent Book is not a focus of
this paper, relevant aspects of it are summarised in Section 3.

2.2. The student, not the system, should write the proof

Many proof assistants do not ask the user to write each line of the
proof. Instead the user works by asking the assistant to apply tactics
to statements on a goal stack. These tactics eliminate goals or produce
new goal statements, until all the goals have been proved. It would be
tempting, from a human computer interaction perspective, to use a sim-
ilar mechanism in the exercises. This way the student would not have to
learn the prover’s expression syntax (not even for the overall proof goal,
which would be set by the question) but could focus on applying the
appropriate tactics. However, this would also enable students to “game
the system” by rapidly trying each tactic in turn, rather than actively
thinking about the problem. This behaviour has been observed in a
number of educational settings and correlates strongly with reduced
learning outcomes [5].

Instead we decided students should the write the statements and ex-
pressions for each line of their proofs, as they do when answering proof
exercises on paper, rather than have them generated by the system.
This means that to use a tactic, the student has to think about what it
will produce. So, the students’ investment at each step is much greater
and there is less scope for gaming the system.

For this reason, we chose Isabelle/HOL to act as the model. It’s Isar
proof language [42, 32] supports “declarative” proofs that are somewhat
similar to written proofs, rather than only supporting tactic scripts.

paper.tex; 22/03/2007; 22:44; p.6



7

2.3. Proofs should resemble what students write on paper

While structured and menu-based editors have been known to reduce
the learning burden of a new syntax (keywords and syntax rules can
be recognised rather than recalled), this alone is unlikely to make
Isabelle/HOL approachable for students with no experience of pro-
gramming or proof. Isabelle/HOL contains both an inner HOL syntax
and an outer Isar syntax. The outer Isar syntax contains keywords that
appear similar in meaning but have very different effects. Fox example,
the difference between the keywords hence, thus, then, also, and
moreover is not readily apparant from the words themselves. There
are also occasions where the same concept can be applied either at the
Isabelle level or at the HOL level, for example whether the mathemat-
ical declaration for all is made using !! or ALL, and this decision will
affect later proof commands.

Also, as described in the introduction, we would like the user inter-
face to represent a “students’ model” of the question rather than the
AI model. In this case, we decided that the statements students make
in questions should more closely resemble statements they might make
on paper, rather than mimicking the Isar language exactly. (That is
not to say, however, that they will look identical to written proofs.)

A related point is that when students write proofs on paper, they
do not always take the strictly top-down approach that traditional
structured editors encourage. We do not want the interface to force
them into that approach. As an example, it would be very unusual for
a student writing an algebraic expression on paper to write the symbols
in the hierarchical order of the expression’s syntax tree. Students may
wish to start in the middle of the expression, or may wish to sketch out
parts of the expression and then link them up. The interface should
make some attempt to support this.

3. Intelligent Book Architecture

In this section, we describe the parts of the Intelligent Book’s question
architecture and content model that are relevant to the proof exercises.

3.1. Question Architecture

When students are working on questions in an Intelligent Book, they
should be able to use the appropriate diagrams and notational forms
for the subject matter. For example, students working on an electronics
question may need to work with a circuit diagram. However, other
questions in the same book might involve timing diagrams or state

paper.tex; 22/03/2007; 22:44; p.7



8

charts. The Intelligent Book question architecture is designed to sup-
port questions with different diagram and notational forms, different
models, and different teaching pedagogies, in the same overall structure.
Figure 1 shows the architecture of an Intelligent Book exercise.

Figure 1. The architecture of an Intelligent Book question.

Question document. Because we want the server to be able to com-
ment on the student’s work progressively, we consider the student
to be working on a remote document on the server, rather than
preparing an answer on the client that will be sent to the server
when a submit button is pressed. The question document describes
the question – the initial state of the students’ documents. When
students begin work, they get their own copy of this document,
and the actions they take to answer the question make modifica-
tions to it. Question documents are written in XML; the schema
varies according to the diagram format. By convention, question
documents are modular in that they can include other documents.
For example a circuit diagram document may include a library
document that describes what resistors should look like and what
properties they have; the student’s document would then describe
particular instances of resistors on the page. (It is possible to have
more than one diagram in a question, but the proof exercises do
not do so.)

paper.tex; 22/03/2007; 22:44; p.8



9

Web page. The exercises take place within a web page. Although
it is impractical to implement the diagrams that students work
with in HTML, when the system makes text comments about the
diagram or links to related content, we prefer to use the full HTML
capabilities of the browser rather than a limited HTML component
included in an applet. To support this, the HTML on the page is
dynamically updated from the server. Some of the links on the page
call functions on the server. For example, in the proof exercises,
the check proof link calls a function on the server. The system can
also place Javascript-backed controls on the page that when used
will make alterations to the student’s document at both the client
and the server. (For example, the server can make a suggestion of
how to fix a mistake and offer a link that will make the change
automatically.)

Content applets support diagrams. They allow graphical interaction
with the student’s document. Their internal datamodel is a doc-
ument object model of the student’s XML document. Content
applets are usually built around a common internal architecture
that makes them easy to construct [11]. Whenever the student
makes a change to the document, they report this to the server.
They also support a common set of API functions that allows the
server to alter the document at the client. Usually, however, the
server does not alter the document itself but highlights or anno-
tates elements in the document, and provides Javascript links that
when clicked will call the API to alter the document. (Users might
find it frustrating if the server made an alteration unexpectedly.)
Content applets can also expose any other methods they wish,
and these are immediately callable from the teaching script on the
server without changes to any of the components in between.

XML-RPC applet. Communication between the client and the server
happens over XML-RPC [45] via the XML-RPC Applet. All calls
are initiated from the client. However, calls to the server expect
the returned data to be the set of method calls the server would
like to make to the client in response (a list of calls, marked up in
XML-RPC’s XML schema). The XML-RPC applet also contains
a set of methods that, when called, can make alterations to the
HTML of the web page on behalf of the server.

Teaching script. Each question in an Intelligent Book is supported
by a teaching script that describes how to respond to the student.
The XML-RPC calls the client makes are all to the teaching script.
Teaching scripts are Java classes, which means they support inher-

paper.tex; 22/03/2007; 22:44; p.9



10

itance. A superclass provides the implementation for updating the
student’s question document, managing conversion scripts, stor-
ing annotations from the external AI, and support for adaptive
advice functions as described in Section 3.2. It also provides hooks
to analyse the student’s document and the change the student
is making both before and after the change is applied. Teaching
scripts can also include any other methods they wish, and these
are immediately callable from the web page or the content applet
without changes to any of the components in between. Usually a
subclass is defined for a particular kind of question, for example
proof exercises, and that is subclassed again to provide the teaching
scripts for particular questions.

Conversion scripts are responsible for processing the student’s doc-
ument and inputting it to the external AI, via the broker. Like
XSLT [16] (the most common conversion technology applied to
XML documents), the conversion scripts work by associating pat-
terns with templates. The pattern matches a part of the source
document, and the template describes what to produce for that
pattern. However, while XSLT is primarily designed to transform
an XML document into another XML document, in an Intelligent
Book we generally need to transform an XML document into a
set of procedural actions. So, our conversion scripts, rather than
being written in an XML dialect, are written in Groovy (a scripting
language that interoperates well with Java) and the template is
a Groovy closure of actions to perform. Conversion scripts are
modular, in that they can include and extend other conversion
scripts.

Broker. A broker is needed where the external AI is a process rather
than a module. The broker keeps a pool of processes ready to
handle requests. In the proof exercises, where Isabelle/HOL is the
external AI, the conversion scripts make frequent calls to write to
PGIP-formatted [4] proof commands to the broker’s buffer. When
asked, the broker writes the contents of the buffer to Isabelle/HOL
and collects the responses. This happens regularly throughout the
document, rather than only at the end. The responses are post-
processed in the broker, and passed back to the Conversion Script
as annotations. Once the conversion script has finished, that Is-
abelle/HOL process is reset for the next request rather than kept
in its current state. This means that if Isabelle/HOL identifies
an error, the conversion script should take action to collect any
context information it needs before it exits. (Otherwise when the
student asks for advice, the teaching script will need to re-run

paper.tex; 22/03/2007; 22:44; p.10



11

the conversion process in order to analyse Isabelle/HOL’s state
any further.) The collected annotations are stored along with the
student’s document, so later calls to the teaching script can refer
to them.

If content applets and brokers are written well, then content applets,
brokers, and external AIs can often be reused across different kinds of
question. For example, Figure 2 shows a question that uses informal
modelling rather than Isabelle/HOL. This uses a different conversion
script (that includes its own modelling), but the same content applet
as the exercises in this paper. Figure 3 shows a proof exercise that uses
Isabelle/HOL’s native syntax. This uses a different content applet and
conversion script, but the same broker and external AI as the proof
exercises in this paper.

Figure 2. An informally modelled question that uses MathsTiles but does not use
Isabelle/HOL

In practice, the different conversion scripts tend to have a broadly
similar structure (and brokers, teaching scripts, and content applets
similarly have their own common structures), so writing a new kind of
question can be less effort than it might appear from Figure 1.

The electronics question mentioned in the introduction used the
same question architecture at the client, but predates the server archi-
tecture.

paper.tex; 22/03/2007; 22:44; p.11



12

Figure 3. A proof exercise that uses a native Isar Content Applet, but that uses the
same Broker to talk to Isabelle/HOL.

3.2. Content Model

A number of online textbook systems [30, 8] take a strict ontological or
semantic approach to content, such as OMDoc [26]. However, a strict
ontology could pose a barrier to students wishing to add or edit content
within the book. They would need to know the ontology in detail in
order to fit their entry within it, and as students they presumably do not
have this expertise. The approach we have taken is to use an informal
topic model that lets readers add alternative entries for topics, or even
alternative chapters, more easily, but that still allows the automated
advice from the teaching scripts to link to the content.

Content in an Intelligent Book is classified by topic and by the
type of entry. For example, a student could ask for an introduction to
mathematical induction and then ask for an example. Figure 5 shows
part of the alphabetical topic index of a book. There may be more than
one induction example in the book, in which case server scripts choose
an appropriate one to show.

Figure 4 shows a page of content within the book. Using the controls
above the content, students can navigate between different types of
content for the same topic. They can also recommend the current entry
for the topic, ask for a different entry for this topic instead (a list of all
the available pages for that topic are shown), add an entry they have
found on the web, or write their own wiki entry for the topic. The wiki
stores more than one page per topic, so more than one student can
write a wiki entry, but users can still edit each others’.

paper.tex; 22/03/2007; 22:44; p.12



13

The topmost toolbar in Figure 4 is an ordered list of subtopics.
A chapter is defined by including its structure in a hidden field on
its contents page. Theoretically, this makes it possible for students to
write alternative chapters in the wiki as well as alternative pages, but
we have not so far allowed students to write chapter structures in the
wiki markup interface.

Figure 4. A content toolbar allows students to navigate between different types of
entry for a topic, to recommend an entry, choose an alternate entry, add or write their
own entry, or comment on the existing entries. A chapter toolbar allows students to
navigate the topics of a chapter in an ordered manner.

The entry types allowed in the book are limited so that students
cannot add so many different types of entry for a topic as to be un-
navigable. The currently allowed types are: Introduction, Summary,
Example, Exercise, Exercise Advice, Chapter, and Search.

Figure 5. Pages in an Intelligent Book are classified by topic and type. This is the
alphabetical index page, and lists the topics and the available page types for each
of those topics; there may be more one entry per topic-type combination, in which
case selection scripts choose which one to show.

When students ask for help with a topic, they are not always asking
for content. They may be stuck with a particular error in their exercise
and be asking for analytical help examining how to get past it. It
can sometimes be useful to include very ad hoc analysis that relies on
knowing how students are expected to answer the question. However,
it is not always possible for the teacher to know whether this will be
useful at the time the advice is written.

paper.tex; 22/03/2007; 22:44; p.13



14

To support this, we allow advice functions to be associated with
topic keys in questions’ teaching scripts. They are also associated with
a relevance function. When the student asks, the teaching script will
attempt to choose an advice function for the topic that is relevant to
the current situation. If there is more than one relevant advice function,
then the teaching script chooses a function based on which have been
found to be useful in the past. (When the advice is presented, the
student is asked to say whether or not it was helpful.) There is no
restriction on what these relevance functions can do.

4. MathsTiles

4.1. Overview

MathsTiles is an interface for students to edit structured content, such
as mathematical equations and proofs, within web pages. The syntax
is not fixed but is configurable from question to question. This means
that MathsTiles is not itself a formal or semantic language for math-
ematics, but is a structured interaction language designed so that the
constructed mathematics can easily be transformed into other represen-
tations (including formal and semantic representations). For example in
the proof exercises, tiles gain a semantic meaning on the server because
they are transformed into Isabelle/HOL’s modelling language.

MathsTiles is designed around the following goals:

1. Resemblance to maths.
The notation used to enter and manipulate maths should look like
the maths students are expected to write on the exam paper. If the
notation were very different, for example a text-based formula lan-
guage, then this would add a learning burden which is not directly
related to the material being taught.

2. Ease of alteration.
We expect students to enter incorrect expressions and proofs most
of the time – if they already knew the material they wouldn’t be
students. So, it is important that students can make changes to
their expressions easily.

3. No forced order.
The interface should not force students to write syntax in a particu-
lar chronological order. While there are occasions where we do want
to teach students to use a particular methodology, this should be
enforced in the explicit teaching feedback, rather than as an implicit

paper.tex; 22/03/2007; 22:44; p.14



15

by-product of the interface design. So for example, students should
be able to build the middle parts of an expression before the outer
parts if they want to.

4. Low commitment.
It needs to be possible for students to write and play around with
fragments of answers without being committed to them. The inter-
face should allow students to construct as many answer fragments
as they like in parallel.

5. Progressive evaluation.
Sometimes, students might know what part of the proof or ex-
pression needs to look like, but get stuck on how to complete the
structure. They should be able to ask for feedback from the tutor
on an incomplete answer fragment.

6. Ease of authoring.
Because it is not possible to identify in advance all the mathemat-
ical structures and notations that questions will need to include, it
needs to be simple for question authors to implement new pieces of
mathematics.

7. Reasonable size for the web.
While fast broadband connections are becoming more common,
performance over slower or more congested networks still should be
reasonable. This means that both the code size of the client applet
and the size of the MathsTiles documents need to be reasonably
small.

Tiles containing arbitrary pieces of maths can be added to the can-
vas, dragged around and dropped into sockets in other tiles to build
up the structure of an expression or proof by containment. In this way,
the notation is kept closely mapped to handwritten mathematics, but
the students are exposed to the hierarchical nature of the expressions
they are building. A simple example of some tiles is shown in Figure 6.

Figure 6. Some maths tiles, loose and combined

paper.tex; 22/03/2007; 22:44; p.15



16

Tiles can be pulled out of and dropped into sockets by holding the
Ctrl key when pressing or releasing the mouse over the tile or socket,
so the effort required to change a structure is low. When a student
drops a tile into a socket in another tile, the border of the contained
tile is removed so that the appearance of the constructed maths is
not interrupted. However, the tile border reappears when the mouse is
moved over the tile, giving the student a clear sense of the structure of
the tile.

The fact that tiles and groups of tiles can sit on the canvas without
being combined into the student’s answer means that students are able
to write parts of their answers without being committed to them. New
parts of an expression or proof can be plugged in without discarding
the old parts. Also, because the tiles can be combined as easily in an
outside-in or inside-out order, the student is not constrained to working
in a top-down or bottom-up manner.

4.2. Document Structure

As described in Section 3.1, the student’s document is an XML file and
its document object model is updated in real-time on both the client
and the server as the student works on it.

tile definition="maths:mod" 

socket name="var1"

tile definition="maths:sum"

socket name="upper_limit"

socket name="lower_limit"

socket name="to_sum"

tile name="maths:dot"

socket name="var1"

variable name="i"

socket name="var2"

variable name="10"

socket name="var2"

Figure 7. The combined tiles from Figure 6, together with the XML of the structure,
shown as a tree. The sockets of the mod tile have been labelled on the diagram.

Figure 7 shows the combined tiles from Figure 6 together with
their XML structure. The outermost tile element has its definition
attribute set to maths:mod. Most tiles in a document, like this one,
are defined tiles. Their appearance and structure is not fixed in the
MathsTiles program, but are described by tile definitions. Here, the
tile is defined by the mod tile definition in a separate tile document
called maths.

paper.tex; 22/03/2007; 22:44; p.16



17

Within the tile element are two socket elements which are the
two sockets of the mod tile. The socket called var2 (the right socket)
is empty, while the socket called var1 (the left socket) contains a sum
tile. This sum tile in turn contains sockets, some of which contain other
tiles. Note that the socket names are local to the tile – if there was
a second mod tile on the page, its left and right sockets would also be
named var1 and var2.

tileDefinition name="sum" layout="InstructionLayout" 

socketDefinition name="to_sum" width="100" height="20"

text name="sum_sign" font−name="Math" font−size="20"

socketDefinition name="upper_limit" width="10" height="20"

socketDefinition name="lower_limit" width="10" height="20"

layout

move c1="sum_sign" e1="North" by="5" c2="upper_limit" e2="South"

move c1="to_sum" e1="West" by=">5" c2="sum_sign" e2="East"

move c1="to_sum" e1="v_middle" by="0" c2="sum_sign" e2="v_middle"

move c1="lower_limit" e1="North" by="5" c2="sum_sign" e2="South"

move c1="lower_limit" e1="h_middle" by="0" c2="sum_sign" e2="h_middle"

move c1="upper_limit" e1="h_middle" by="0" c2="sum_sign" e2="h_middle"

Figure 8. The definition and layout of a Sum tile. “Component” and “Edge” have
been abbreviated to “c” and “e” in this figure. The horizontal middle, vertical
middle, and text baseline are also edges that can be used in alignment operations.

Figure 8 shows the tile definition for the sum tile from Figures 6 and
7. Within the tileDefinition element, there are three socketDefinition
elements that define the three sockets in sum tiles. The names of the
tile’s sockets in Figure 7 match the names of the socket definitions in
Figure 8. Here, the socket definitions have specified the sockets’ widths
and heights. There is also a text element that defines the sum symbol
that appears on the tile.

The layout element corresponds to the fact that the tile definition’s
layout attribute is set to InstructionLayout. This layout element
contains a sequence of move and pull elements that describe opera-
tions that will arrange the sockets and text on the tile appropriately.
Alternatively, if the layout attribute was set to BaselineFlowLayout,
then all the components of the tile would be arranged left to right,
vertically aligned by the baselines of any text that appears on them.
(The baseline of a tile laid out using InstructionLayout is the baseline
of the first element in its tile definition.)

A tile is loosely coupled to its definition, so the visual appearance of
a MathsTiles document can be changed by loading it with a different
set of tile definitions. This is not as flexible as a stylesheet, however,

paper.tex; 22/03/2007; 22:44; p.17



18

because changing a tile definition always changes the appearance of
every tile in the document referring to it.

4.3. Definable Tile Components

Tile definitions can include the following components:

Text. The text that appears on a tile is specified by text elements in
the tile definition. By setting the visible attribute to an XPath
[17] expression, a piece of text can be made to appear only if the
expression evaluates to true. This can be used, for example, to
make brackets appear on a plus tile when it is placed in a socket
in a times or power tile.

Symbols. Symbols can be defined using the using the Scalable Vector
Graphics (SVG) path syntax, and given a name. Once defined, a
symbol can be placed on a tile by including a symbol element in
the tile’s definition. As with text, each symbol on a tile can be
given a visibility that depends on an expression.

Sockets. Each socket is defined by a socketDefinition element in the
tile definition. Background text can be set to appear on the socket
when it is empty. The colour, height, and width of the socket can
also be specified. The tagName attribute provides a rudimentary
way of setting what kinds of tile can be inserted into the socket.
If it is set then only tiles whose element tag (for non-defined tiles)
or definition (for defined tiles) appears in the list of names in the
tagName attribute will be accepted into the socket. When a tile is
being moved and the Ctrl key is pressed, the socket underneath
the tile that the student might want to drop it into will outline
itself in green or red depending on whether it would accept the tile
or not.

Socket lists. Horizontally or vertically arranged lists of sockets can
also be placed on a tile. Socket lists can have a specified number
of sockets, or they can be set to expand automatically so that
there is always an empty socket in the list. Expanding socket lists
place an ellipsis (‘...’) at the end of the list to show that it will
expand. A socketDefiniton within the socketListDefinition
defines what the sockets in the list should look like.

Three attributes of tiles are also worth noting. Selectable (default
yes) sets whether or not the user can select this tile. Unselectable tiles
are effectively stuck on the canvas or in their sockets. If they are stuck
within sockets then the socket border will not highlight when the mouse

paper.tex; 22/03/2007; 22:44; p.18



19

moves over the tile, and the unselectable tile will appear to be an
integral part of its parent tile. Delible (default yes) sets whether or
not the tile can be deleted. Background sets the background colour of
the tile.

4.4. Non-Defined Tiles

In addition to defined tiles, MathsTiles also provides four hardcoded
kinds of tile for convenience with mathematics:

Variable. A variable is a simple tile containing text that matches its
name tag. It is also useful for representing numbers.

Function. A function contains text that matches its name tag, and
sockets for its parameters. The sockets are surrounded by paren-
theses. Functions can take a configurable number of parameters,
or can be set to automatically expand. A separator character can
also be configured.

Labelled statement. A labelled statement is a tile that contains a
socket for the statement, and text for the label. The label is set
using the id attribute.

Statement reference. A statement reference is a simple tile contain-
ing text that matches the label of the statement it references
(defined by the id attribute).

4.5. Tile Trays

The set of buttons and controls that the student can use to add tiles to
the proof (called a tile tray) is also defined in XML. It can form part of
the student’s proof document, or it can be part of a separate document
in the same way that the tile library documents are.

Tile button. Inserts a tile, as specified by the definition referred to
by the definition attribute.

Xml button. Rather than inserting a single tile, an XML button in-
serts tiles to match a defined XML structure. This is useful for
commonly-used expressions (such as the expression contained in
the theorem to be proved), and also where we wish to insert a nest
of tiles but treat it as a single tile. By marking the contained tiles
in the nest as unselectable in the XML, we can prevent them from
being pulled out of their parent tile.

paper.tex; 22/03/2007; 22:44; p.19



20

Variable button. Inserts a variable. The name is specified by typing
it into an edit box set into the button.

Statement button. Inserts a statement label or a statement refer-
ence. If the text typed into the edit box (within the button) is
already the label of a statement on the canvas, then a statement
reference is added. If not, then a statement label is added. If the
edit box is left blank, then the button automatically generates a
new label.

Tabbed pane. Holds a set of tabs.

Tab A labelled tab group that can hold a set of buttons. (May or may
not be within a tabbed pane.)

Expression button. Parses an expression typed or pasted in by the
user, and produces a tile structure to match that expression. Its
primary purpose is that if a hint message or a response from the
prover contains an expression, the user should be able to paste
that expression into the proof. It is also included, however, because
simple one-dimensional expressions such as 3 + 4 are much faster
to type than to construct with the mouse. (See Section 4.6.)

Tile search button. This takes advantage of the dynamic nature of
the tile tray. The tile tray, like the proof document, can be altered
at run-time by scripting calls from the server. This means that
not all of the buttons the student will use for the question need
to be in the tile tray at the start. The TileSearchButton sends
the student’s search query to a function in the question’s teaching
script, which usually responds by adding found tile buttons to a
“search results” tab in the tile tray.

4.6. Closing Note

In this section we discuss two limitations in MathsTiles that were
known at design time.

Despite the fact that being able to type is known to be useful in
structured editors, it is not possible to edit in MathsTiles by typing.
The only expression control provided uses a parser that only accepts
a few formats (XML, Isabelle/HOL expressions, and basic arithmetic),
although it is reasonably forgiving of errors. The reasons for this limi-
tation become clear when you consider that MathsTiles does not have
a fixed syntax, but a changeable syntax from question to question.
It is also technically possible for new tile definitions to be introduced

paper.tex; 22/03/2007; 22:44; p.20



21

during questions. Furthermore, many of the tiles use a two-dimensional
syntax ordered by layout rules. It is not obvious what is the most usable
technique to convert from a one-dimensional syntax (text) to an ad hoc
two-dimensional syntax. So, this is left for future work.

It would be useful if parts of a tile or socket definition could depend
upon an attribute of the tile or socket. For example, if a piece of text
that appears on a defined tile could be set to match the name attribute
of the tile, then it would not have been necessary to hardcode variable
and function tiles. As a second example, if a socket could be defined to
only accept tiles where an expression such as “socketDefinition.type =
tile.type” was true then this would allow question authors, if they
wished, to prevent students from inserting tiles into unsuitable sockets.
Currently the tagName attribute provides only rudimentary support for
this. However, MathsTiles was designed to work with version 5.0 of the
Java Runtime Environment, which includes an expression parser for
XPath but not for any more general purpose languages. XPath expres-
sions cannot bridge documents and we usually keep the tile definitions
in library documents that are separate from the question document. So,
we would need to include our own general purpose expression language
for tiles, which we decided would make the applet size too large. Java
version 6.0 does include general purpose languages that we can use for
this purpose in future versions.

5. MathsTiles as a Proof Language

5.1. Proof tiles

One use for definable tiles is to expose to students what they need to
do to fully answer an exam question. For example, what is needed to
complete an induction proof, or how to show that a set relation is an
equivalence relation. Tiles can be defined that include sockets for each
part that students need to complete. A tile for natural induction that
we use in a worked example later in this paper is shown in Figure 9,
along with its Isar translation. It is implemented as a nest of tiles, but
some of them are marked as unselectable (and so cannot be taken out
of the parent tile), so to the user it appears to be a single tile. The
tile contains a socket for the student to fill in the induction variable.
Beneath that is a section for the base case. This contains an expanding
socket list for the proof steps the student will take to show the base
case. The final goal step has already been filled in, and in this case
the tile uses the shortcut “this case” tile for the goal statement. The
reason for this is described in Section 5.5. A second section in the tile
is provided for the inductive step case.

paper.tex; 22/03/2007; 22:44; p.21



22

This is not, in fact, the only induction tile we use. For example,
Figure 12 uses a different induction tile.

proof (induct variable rule: altInduct)
case base
proof commands
with prems show ?case by simp
next
case (step variable)
proof commands
with prems show ?case by simp
qed

Figure 9. A tile for natural induction that is used in Section 6, and its Isar
translation.

It is important to note, however, that socketed tiles are not proof
sketches. Proof sketches [27, 44] are proofs with some of the low level
reasoning omitted to make the essence of the proof more readable.
The main reasoning steps are shown in full in a proof sketch. Proof
tiles, meanwhile, are syntax templates that do not contain any of the
statements in the proof until the student fills them in.

In the Isar code of Figure 9, notice the text “rule: altInduct”.
This is not represented anywhere on the tile. This is a small example
of how we can hide code that is specific to the question in the Isar
conversion of tiles. In this case it is simply that Isabelle/HOL’s default
induction rules use the successor function and consider cases 0 and
Suc(n), whereas for this question we wanted to reason with cases 0 and
n+1. We therefore hid an alternative induction rule in the Conversion
Script for the question, and set the induction tile to use it.

paper.tex; 22/03/2007; 22:44; p.22



23

5.2. Colour Coding

Although MathsTiles does not support a formal type system, we can
provide the user with a few hints. In the proof exercises, we colour code
the sockets of tiles, and colour code the background of sections of the
tile tray to match. This is illustrated in Figure 10.

Figure 10. A tile containing a coloured socket with background text, indicating what
kind of tile should be dropped into it. The buttons with the same background colour
produce the right kind of tile for the socket

There are four different socket colours used. The pink sockets are
for expressions. These correspond to the inner HOL syntax in Isabelle,
whereas the other three colours all correspond to aspects of the outer
Isar syntax. As Isabelle/HOL works through the proof, its Isar virtual
machine [43] moves between two modes that describe what kind of
operation is expected next. In the proof(state) mode, the proof is ex-
pected to state new assumptions, goals, and intermediate results. The
blue sockets and buttons are “proof commands” that correspond to
this mode. In the proof(prove) mode, the proof is expected to justify a
goal or result that it has just stated. The yellow sockets and buttons
are “proof methods” that correspond to this mode. (The Isar VM has
a third mode, proof(chain), that the proof exercises do not use.) The
khaki sockets and buttons are for statement labels and rule names.

Dark green, meanwhile, has been used as a colour code for the
question tile – the unselectable and indelible tile that describes the
statement to be proved and contains an empty socket waiting for the
proof.

paper.tex; 22/03/2007; 22:44; p.23



24

5.3. Reasoning Step Size

Answering a proof exercise is a very different situation from professional
or research use of a theorem prover. In professional use, users should
be able to use advanced automated proof-finding techiques to make
their work easier. In a proof exercise, however, we need to limit the
automated proof-finding techniques that students can use because the
students are supposed to answer the question, not the prover. We want
to limit the prover to only being able to take “obvious steps”.

The approach we have taken is to limit the student to only using
simp, which is Isabelle’s simplifier. The simplifier can handle many
simple steps, such as algebraic rearrangements, but cannot automati-
cally solve the proofs we wish to set. It allows us to have a “configurable
notion of triviality”. Rules can be added or removed from the simplifier.
This can be used to force students to state steps we consider important.

5.4. Annotations

processor.matcher(MATHSTILES_NAMESPACE, "tile",
{it.getAttribute("definition")=="proofs:inductionNatManual"},
{
output.append("<proofstep>proof (induct ");
processor.process(it, "mt:socket[@name=’variable’]);
output.append(" rule: altInduct)</proofstep>");

processor.talk(it);

processor.process(it, "mt:socketList[@name=’step list’]");
processor.process(it, "mt:socket[@name=’show’]");

output.append("<proofstep>qed</proofstep>");

processor.talk(it);
});

Figure 11. A “matcher” (pattern + template) for one kind of induction tile. The
second (large) code closure describes the procedural actions to take for these tiles.
it refers to the document element that has been matched: the tile. The base case
and step assumption are implemented as unselectable tiles contained within the the
step list. Consequently, their Isar code is not produced by this matcher but by
their own separate matchers.

As described in Section 3, when proofs are executed in Isabelle/HOL,
the responses are collected as annotations to make on the student’s
proof document. Figure 11 shows a matcher from one of the conversion

paper.tex; 22/03/2007; 22:44; p.24



25

scripts. The output.append(...) calls append PGIP-formatted Isar
commands to the broker’s buffer. The processor.talk(...) calls then
tell the broker to write its buffer out to Isabelle/HOL and collect the
responses as annotations. The annotations are associated with the tile
that is passed into processor.talk(...). Usually, this is “it”, which
is the tile the matcher is processing. So, by choosing which matchers
should call processor.talk(it), we select where the annotations will
appear.

The annotations are first shown to the student as small icons on
the tiles. These annotations are the reason why the induction tile in
Figure 9 is implemented as an inseparable nest of tiles: although the
nest behaves to the user like a single tile, the annotations need to be
marked against the commands that caused them. For example, the
proof state in the base case is different from the proof state in the
inductive step. The annotation types are:

Proof state – these annotations let the user see what goals need to
be proved at this stage of the proof, and what premises are being
used.
Comment – non-error comments, such as saying that a goal has
been successfully shown.
Error – faults Isabelle/HOL has found with the proof, or errors in
syntax.

Clicking on an icon causes more details about the annotations on
that tile to be shown in a separate pane, as shown in Figure 12.

The responses from the prover are post-processed in the broker in
order to make the messages more understandable to the student. They
are also assigned topic keys, which refer to the content model described
in Section 3.2. The “What does this mean?” link in the annotation pane
looks up a the associated topic in the book. Error annotations have a
“Suggest a fix” link underneath them. Clicking this link calls an advice
function in the teaching script for the error’s topic.

The teaching script superclass for proof questions contains some
advice functions for common errors topics. For example, it includes a
helper function for the “Proof command failed” error message that will
try a number of different values for variables to try to find a counter-
example that would show the proof line was untrue rather than just
unproven. This finds the relevant state annotation that contains the
premises and goals of the failed command and parses each goal and
premise. It attempts to find numbers which match the premises but
do not match the goal statement. An advantage it has over just using
Isabelle/HOL’s in-built mechanism for finding counter examples is that
the teaching script can use a different definition of a function. For

paper.tex; 22/03/2007; 22:44; p.25



26

Figure 12. The responses from Isabelle/HOL are marked on the proof tiles as an-
notation icons; these annotations can then be shown in full in the annotation pane
by clicking on their icons. (Since the user has already placed the tiles, and so knows
what they are, the fact that the icons can obscure some of the text on the tile is less
of a problem than it might appear from the picture.)

example, using the equation for the nth Fibonacci number instead of
the recursive definition of the sequence.

5.5. Two Design Compromises

In Section 2, we described design goals that the student should have to
write the statements in a proof and that the proof should resemble what
students write on paper. In this section, we describe two compromises
we made in this area.

5.5.1. The student does not always have to write the goal statements.
Referring back to the induction tile in Figure 9, the goal statements for
the base case and inductive step are simply the shortcut “this case”.
The student has not been forced to write them.

The reason we sometimes use this shortcut is that when we tell Is-
abelle/HOL that we are using induction or proof by cases, Isabelle/HOL
automatically works out what the goals need to be for each of the cases.
Students, if they were allowed to write in the goal, might write it in a
way that a human would consider equivalent but that is very slightly
different to the goal Isabelle/HOL calculated. This would then cause
the goal statement to fail. Isabelle/HOL expects the goal statement
to be shown exactly as calculated, and will not allow something to be
shown that is a few steps of logic away instead.

paper.tex; 22/03/2007; 22:44; p.26



27

A possible workaround for this would be for the tile not to use
the show command for the user’s goal, but to treat it as just another
have command and then hide a command to show the real goal by
simplification in the conversion script. This would allow the user to
put in a goal that was “trivially close” to the goal and the proof would
succeed. Unfortunately, for goals that Isabelle/HOL’s simplifier can
prove from the definition, such as

∑
0..0 = 0, this would also allow the

user to write in a true but irrelevant statement, such as 1 = 1, as the
goal and the hidden proof command would still prove the real goal. The
human notion of a “trivial step” is different from the notion of whether
a statement is equivalent to the goal.

Instead, we provide, the “this case” shortcut for questions where the
student might find it awkward to write the goal statement exactly. In
other cases, a “Proposition for . . . ” tile is provided. Inserting 0, 1 or
n + 1 into this tile usually forms the correct goal for a base case or an
inductive step.

5.5.2. The proof is checked linearly.
The student is free to write the proof in any order using MathsTiles.
However, because the proof is translated into Isar, an error in the proof
is likely to cause every following line of proof to fail. These follow-on
errors could be an unhelpful distraction from the original (causative)
error, so when the proof is checked, the broker stops collecting annota-
tions after the first error. This means that the student gets no feedback
on correctness for the lines after the first error. While the interface does
not prevent the student from constructing the proof in any order, the
system provides much stronger support for starting at the beginning of
the proof and working towards the end.

6. A Worked Example

This example is part of a question from the 2004 written exam sat by
first year undergraduates in the computer science tripos. The student
is given a definition of the Fibonacci sequence and is asked to prove
by induction that f(m + n) = f(m− 1)× f(n) + f(m)× f(n + 1) for
all m > 0, where f(n) corresponds to the nth element of the Fibonacci
sequence. Initially, the question appears as shown in Figure 13. The tiles
on the page at the start of a question are fixed in place and coloured
green; these need to be filled out to complete the proof.

The text “Call this the Proposition for n” on the green question
tile corresponds to Isar’s (is "PROP ?P n") syntax. This allows the

paper.tex; 22/03/2007; 22:44; p.27



28

Figure 13. An induction proof question waiting to be filled in. Because this question
is specifically set as an induction proof, no other proof methods are available.

“Proposition for . . . ” tile to be used as a shorthand for the entire
statement to be proved.

The only socket available in the answer asks for a proof method.
In the tile tray, there is only one button in the section marked “proof
methods”: induction. The induction tile is the same as from Figure 9
and has a number of sockets to fill. Let us assume the student inducts
on n, and also uses n as the name of the particular value he has assumed
the proposition is true for in the inductive step. The goals for the base
case and the inductive step have been set to the short-cut statement
“this case” for this form of the induction tile (a different induction tile
used in other questions asks us to set them ourselves). Clicking “Check
Proof ”, it seems that the base case can be solved automatically by
the simplifier but the inductive step cannot. This is shown in Figure
14. The base case must have succeeded because its goal has comment
annotations but no error annotation. (One of the comment annotations
states that the goal has been proved.) The reason there is still an empty
socket in the base case is because it contains an expanding socket list
– the list will always expand to keep an empty socket available.

paper.tex; 22/03/2007; 22:44; p.28



29

Figure 14. The base case can be solved automatically with the simplifier, but the
inductive step is marked with an error icon because it still needs some work. (The
reason there is still an empty socket in the base case is because the proof command
socket list is set to automatically expand.)

To see what happens with errors, let’s try dropping a “∴ we have ...
by simplification” tile into the proof, and check it without inserting an
expression (Figure 15). We could, of course, enter an incorrect expres-
sion or put the wrong kind of tile into the expression box to generate
our error instead.

Figure 15. An incomplete command in the proof, and its error annotation.

Clicking the “What does this mean?” link underneath the error an-
notation brings up a topic entry from the book explaining the error in
more detail, as shown in Figure 16.

paper.tex; 22/03/2007; 22:44; p.29



30

Figure 16. A content entry explaining an error from the proof assistant. In this case
it happens to tell us what the original Isabelle/HOL message was.

Clicking the “Suggest a fix” link asks the teaching script for advice
on how to get past this error. The advice appears on the HTML page
just below the MathsTiles applet, as shown in Figure 17. In this case,
the suggestion is fairly simple – the script tells us about our empty
expression socket and highlights it in red.

Figure 17. A piece of advice from the teaching script, shown in response to the
student clicking the “Suggest a fix” link underneath an error annotation.

We’ll now return to trying to complete the proof. If the student is
stuck at this point, there is a hint in the teaching script which says
“If you have assumed the proposition is true for some n and any m,
it must also be true for the same n and any m + 1. What you want to
do is to show it is true for n + 1 and any m”. The student needs to
rewrite the step assumption with m + 1 instead of m.

However, in this version of the induction tile, the expression for the
step assumption is not stated explicitly by the student but is automati-

paper.tex; 22/03/2007; 22:44; p.30



31

cally inferred and indicated by the text “Assume the proposition is true
for some value ...” on the tile. We usually use a different induction tile
in which the step has to be stated by the student, as seen in Figure 12,
but for this question our usual induction tile kept striking a bug in the
particular version of Isabelle/HOL we were using. So, in order to label
the step assumption, the student must write out a proof line containing
it, as in Figure 18. Because the expression in statement A0 is identical
to the step assumption, it is obviously true by simplification.

with prems have A0:
"!!m::nat. m>0=⇒f(m+n) =f(m-1)×f(n) + f(m)×f(n+1)"
by simp
with prems A0[of "m+1"] have A1:
"f(m+1+n) = f(m)×f(n) + f(m+1)×f(n+1)" by simp

Figure 18. Labelling a statement and rewriting it for a new expression, in tiles and
in Isar.

At this point, the simplifier still cannot get the rest of the way to
proving the step case because it does not include particular rules it
needs for particular steps. The student therefore has to write these
steps in more detail, bringing the rules in using “With . . . we have . . . ”
tiles until we reach the finished proof in Figure 19. The rules to use are
available in the “rules” section of the tile tray.

A final point to note about the question is that while m is universally
quantified in the question statement, n is not. The reason for this is that
when we univesally quantified n as well, the proof failed on the induc-
tion tile. The reason is because Isabelle/HOL, in the version we used,
could no longer work out the induction scheme for the goal statement.
There are other potential workarounds, but only universally quantifying
m was the simplest to implement. The point we are illustrating with
this, and with the change of induction tile, is that where a proof is
technically difficult in Isar, the question author can work through the
proof ahead of time and adjust the tiles and the conversion script so
that the students’ proofs progress more smoothly. We understand that
more recent versions of Isabelle/HOL have an improved induction tactic
and would not require this particular workaround.

paper.tex; 22/03/2007; 22:44; p.31



32

Figure 19. The last few steps in the question involve bringing rules in one by
one using “With . . . we have . . . ” tiles, to rearrange the expression until we reach
something that simplifies to the goal.

7. Evaluation

7.1. Overview

Our goal in the evaluating the system is twofold. By asking students
and others who have no experience of automated proof to attempt the
exercises, we wish to see whether novices can make progress with the
exercises with a bare minimum of training. More importantly, however,
since this is a complex and unusual interface, we wish to understand the
usability issues that arise from the system so we can see whether they
are insurmountable and a different approach is required, or whether
they suggest fruitful avenues of further inquiry.

To this end, we performed a user trial and qualitative usability
study using the cognitive dimensions of notations (CDs) framework
[21, 13]. CDs provide a formalised vocabulary for discussing usability
issues, with sixteen “dimensions” that can affect usability. An example
of a cognitive dimension is “viscocity”, which is the question of how
difficult it is to make changes to previous work using the interface.
The CDs framework also provides means for considering secondary
notations, helper devices, and redefinition devices, but in this study
we only examined the primary notation: the MathsTiles proofs.

Two methods were used to collect usability issues:

1. A server with an introduction to the system and six proof exercises
was made publically available, and its use over three weeks in July
2006 was examined. A range of users were asked to try the system,

paper.tex; 22/03/2007; 22:44; p.32



33

including Cambridge undergraduate students, undergraduate stu-
dents from other universities, postgraduate tutors of discrete math-
ematics, and other interested parties. The proof exercises we made
available were about the greatest common denominator GCD(a, b)
and the Fibonacci series f(n). The exercises were:

a) Prove that 2 ×
∑

0..n = n × (n + 1), by induction on the
natural numbers. This was the introductory example for which
a walkthrough was given.

b) Prove that GCD(f(n), f(n + 1)) = 1, by induction on the
Natural numbers.

c) Prove that n > 0 =⇒ GCD(n × k + m,n) = GCD(m,n), by
assuming the left hand side of the implies is true and showing
the right hand side must follow.

d) Prove that f(n + k + 1) = f(k + 1) × f(n + 1) + f(k) × f(n),
by induction using a different induction rule.

e) Prove that ∀m.m > 0 =⇒ f(m+n) = f(m−1)×f(n)+f(m)×
f(n + 1), by induction on the Natural numbers.

f) Prove that GCD(f(n + m), f(m)) = GCD(f(n), f(m)), by
considering cases on m.

Three kinds of training item were provided. Two Flash videos,
totalling just over three minutes in length, showed how to use the
MathsTiles interface. An “introductory chapter” to the exercises,
three pages long, explained similar material to the videos (for par-
ticipants who might not have had the Flash plugin installed). A
walkthrough described how to solve the first and simplest question,
with screenshots.

The comments, feedback, and requests for help from users were
coded against the CDs Framework by two researchers.

2. Additionally, to identify issues that novice participants might be
prone to miss or unable to articulate, two researchers analysed the
system using a cognitive dimensions of notations questionnaire [14].
This analysis was carried out both by the primary developer of the
system and also by an undergraduate intern who worked with the
system for two months.

paper.tex; 22/03/2007; 22:44; p.33



34

Table I. The number of participants reaching each stage of the
exercises.

Participants Stage

83 Accessed the server and read about the system

19 Accessed the introductory question

8 Completed the introductory question

13 Accessed question two

8 Made a serious attempt at question two

5 Completed question two

3 Completed five of the six proofs

7.2. Numerical Results

The numerical results from the trials are shown in Table I.
While very few participants indicated whether or not they were

students, from examining their email addresses and how they became
involved with the trials we have confidently identified 44 of the par-
ticipants as students. Of the five participants who completed question
two, three were students. One of the participants who completed five
proofs was a student; the other two were tutors of students but had no
prior experience with Isabelle/HOL.

The five participants who accessed question two but were judged
“not to have made a serious attempt” put fewer than six tiles on the
canvas, placed all their tiles on the canvas very quickly, and did not
attempt to construct any expressions or place a proof method into the
answer tile. From this we concluded that they played briefly with the
interface, but did not attempt the proof.

On the one hand, the results are encouraging. In the Introduction
we noted that the shortest training course in Isabelle/HOL was four
sessions of ninety minutes, with 300 slides, and we were given an
(unscientific) estimate that students might take 10 weeks to be able
to do simple things using the prover. In our trial, some novice users
and students have been able to complete proof exercises despite their
training being barely three minutes of videos, three explanatory web
pages, and a walkthrough of a single proof. On the other hand, however,
there is a very large attrition from 83 initial participants down to three
who completed five proofs, and only one of those was a student. This
suggests there are still some major issues to overcome.

We cannot, of course, determine the reason for the attrition from
83 participants down to 8 who made a serious attempt at a proof

paper.tex; 22/03/2007; 22:44; p.34



35

without a walkthrough. Many of these participants may simply have
been interested in looking at a new interface, but not interested in
attempting a mathematical proof. On the other hand they may have
been scared away by the complexity of the system. We have, however,
determined that the three participants who failed question two had
became stuck.

7.3. Qualitative Results

In the user study, we asked participants to fill in a feedback question-
naire. However, we found that many of the participants were reluctant
to fill in a questionnaire form, but were more than happy to contact us
informally to give us their feedback. Consequently, feeback was received
by email, instant messenger, and discussions with users who came to
our office or phoned us to tell us their thoughts and demonstrate the
issues they were having. While this meant that feedback was received in
a less controlled manner, we found it had the advantage of immediacy
– we were able to examine the participants’ question documents when
the issues were reported to see the issues in practice and ensure we had
not misunderstood them.

After the user feedback had been received, we then conducted an
analysis using the cognitive dimensions questionnaire.

For discussion purposes, we have classified the 30 qualitative state-
ments produced by the studies into five categories, three of which we
discuss in detail:

Non-problems: Statements 10, 18, 21, 24, and 26.
These are the positive and non-negative remarks. Since they obvi-
ously do not represent a usability issue to be overcome, they are
not discussed in detail.

MathsTiles UI (simple): Statements 2, 5, 6, 7, 8, 9, 11, 12, 15, 16,
17, 22, 27, and 30.
These are usability issues we regard as straightforward enhance-
ments to make to the MathsTiles or Intelligent Book user interface
– bug fixes and simple feature requests that do not impact on the
approach. Because of this we do not believe they are academically
very interesting to discuss.

MathsTiles UI (complex): Statements 13, 28, and 29.
These are usability issues with the MathsTiles and Intelligent Book
interface we regard as more complex or interesting. They are dis-
cussed in Section 7.4.

paper.tex; 22/03/2007; 22:44; p.35



36

Proof language: Statements 4 and 14.
These are usability issues that specifically relate to using Maths-
Tiles as a proof language that translates to Isar. They are discussed
in Section 7.5.

Domain-specific (here number theory): Statements 1, 3, 19, 20,
23, and 25.
These are usability issues we regard as inherent to the problem of
freely-written student proofs in “difficult” domains such as number
theory. They are discussed in Section 7.6.

7.4. MathsTiles UI (Complex)

Statements 13 and 28: Limitations with the expression control
Statement 13 is an issue that to an extent has already been discussed in
Section 4.6. A user has seen that it is possible to type expressions, and
has assumed that any text that appears on a tile can be typed into the
expression control and recognised as a valid expression. Unfortunately,
the MathsTiles applet in its current version uses a traditional generated
LL(k) parser with a fixed grammar. So, it is incapable of adding the
defined tiles for a question to its expression grammar.

Statement 28 is another case where the fixed LL(k) parsing is insuf-
ficient, but for a different reason. The design assumption had been that
users would wish to type complete algebraic expressions into the box
to save the effort of composing them from tiles, or would cut and paste
expressions into the box from annotations. However it turns out that
very often users only want to add the few tiles they need to alter an
existing expression, but they still type them into the expression control.
These few tiles are necessarily an incomplete expression fragment, and
might or might not be parsable with the current parser. One possible
solution to this would be to support placeholders in expressions (or
effectively to have a syntax element for an empty socket). For example,
the expression “3+ ” could represent an addition where the right socket
is left empty.

An interesting observation we made was that the users who became
confused by the expression box and reported Statement 28 were trying
to use the expression control in the first exercise. After it was reported,
we removed the control from this exercise. The user who expressed
praise for the expression control was a user who, because of its removal
from question one, only met the Expression button in question two.
This might just be an individual difference in the users of course, but
it might suggest that as users gain even a little more experience of an

paper.tex; 22/03/2007; 22:44; p.36



37

interface, they become much readier to work around the limitations of
newly introduced components.

Statement 29: Missing entry in the book
In Statement 29, a user was surprised by the Intelligent Book defaulting
to a web search when it found it did not have an entry for a topic.
While we ensured that participants saw an introduction to the maths
problems, we did not ensure that they saw an explanation of how the
book’s content features work. (There was a low-key link on the instruc-
tions page, but we deliberately did not draw attention to it.) We left
this particular entry out of the book to see whether or not participants
would add an entry when they discovered the feature, even though they
had not been explicitly taught how to. They did not.

7.5. Proof Language

Statement 4: Universal quantification and the rewrite tile
In Statement 4, a student is unaware that a statement must include a
universally quantified variable before it can be rewritten with a different
expression substituted for that variable. This appears to reflect that
either students do not yet understand the difference between a variable
that has and has not been universally quantified, or they assume that
all the variables in the statement are implicitly universally quantified.
Unfortunately, we also found from experience of writing questions that
proofs run into fewer technical problems in Isabelle/HOL when the
variables in the expression are not universally quantified.

Statement 14: Labelling of prior statements
Statement 14 perhaps represents a difference between the way people
informally view proofs and the way formal proof languages do. The
students were surprised that the prover appeared to “forget” statements
that were only two lines back in the proof. When we write English
language arguments, we expect the reader to remember the context of
the text so far without labelling the earlier sentences we refer to. The
“∴ we have ... by simplification” tiles that students were using in their
questions, however, translate to the Isar structure “with prems have
... by simp”. This uses only the previous line and the assumptions
to justify the new line of proof. If any earlier lines of the proof need
are needed, they must be labelled and referenced explicitly. On the
other hand, forcing students to state which previous lines they are using
seems like a good thing educationally – it forces students to think about
the structure of their proofs.

Perhaps a suitable approach would be to make referencing ear-
lier statements much easier, by automatically labelling every proof

paper.tex; 22/03/2007; 22:44; p.37



38

line, and to add some kind of a visual hint to show that by default
proof statements only use the immediately prior statement and the
assumtions.

7.6. Domain Specific Issues (here Number Theory)

Statement 1: Tiles were only provided for one solution
In Statement 1, the problem is that not enough tiles have been provided
to allow the student to solve the problem by a different proof strategy
than the author intended. In terms of cognitive dimensions of notations,
there is a trade-off between visibility and premature commitment here –
by providing more tiles it becomes slightly harder to identify which ones
you need. In this particular case, the extra tile is a different induction
tile, and providing it would be unlikely to make the tiles too hard to
find. However, in cases where you need to provide extra rules to support
alternate strategies, this loss of visibility could become a much greater
problem.

The set of rules that the simplifier includes, and so do not need to be
mentioned explicitly, is called the simpset. In the second question, the
simpset included some 1,570 rules. While students do not need to know
what rules are in the simpset, they need to be able to ascertain what
rules are not in the simpset. How else could they know know they need
to state them? The set of rules in the tile tray gives a strong visual cue
as to which rules have to be stated. However, the more rules there are
in the tile tray, the harder it is to spot each rule. Taking the rules off
the screen (and using a query mechanism for them) does not appear
to be a viable option. Students would only be able to articulate what
rules are necessary for a step if the step size was very small.

Allowing students to use more complex automated methods, rather
than just the simplifier, would be one possible way of resolving this
issue. However, there is the danger that students might abuse the
automated methods to solve the question by trial and error. There
appears to be an interesting trade-off between allowing students to
“game the system” and making it easier for them to explore the proof.

Statement 3: Proofs are fragile
Statement 3 describes how changing an early line of the proof can
cause later lines to fail. Even a trivial re-ordering of additive terms in
an equation can cause a rewrite rule to fail – the terms are equivalent
to the student but not to the prover. There are two aspects to this.
On the one hand, perhaps the system should remember which lines it
has already proved, and be more reluctant to mark those lines as no
longer proved. On the other hand, this could give an inaccurate proof

paper.tex; 22/03/2007; 22:44; p.38



39

document, where lines of proof purport to have come from one chain of
reasoning, but actually come from another. Another potential solution
might be to use a less rigorous theorem prover that treats “equivalence”
in a manner more similar to what the student expects.

Statements 19 and 20: Students could only take small proof steps
Statements 19 and 20 describe how the steps students can make at
each line of a proof in an exercise are very small. In the proof exer-
cises, this relates to the fact that we only allow students to use the
simplifier, and we only allow them to invoke one non-trivial rule at a
time. However, even if these restrictions were relaxed it is questionable
whether students would be able to take steps as large as they would
like. The reasoning steps that automated methods can make do not
easily and naturally correspond to the steps that a human can make.
So, just as humans can take reasoning steps that are hard to verify
automatically, automated methods can also take steps that a human
would find hard to follow. If we rely purely on automated reasoning
to provide the model for a question, then we can only support smaller
steps that both automated methods and humans can follow.

Statement 23: Students could not recognise a bug from a mistake
Statement 23 describes how a bug in the tile translation caused an
error in some proofs, but students could not tell that this was due to a
bug and assumed their proofs were wong. This is perhaps an inherent
problem with a teaching system in a difficult domain – because students
are inexperienced with the material and the system, they find it difficult
to think critically about whether the system is operating as expected.
This means that very careful testing and debugging of proof questions
is necessary before they are made available to students.

Statement 25: Insufficient measure of progress
Statement 25 describes how the only visible measure of how far a stu-
dent has progressed through a proof is the number of rule tiles that
have been provided but not used yet. It would be possible to provide a
more direct measurement of progress by comparing the student’s proof
to a pre-written proof, but as with Statement 1, this would raise the
issue that unexpected solutions could not be supported in this way.
Practically it might be appropriate for exercises to provide guidance
and support for a number of pre-planned proofs, but allow unexpected
proofs also to be constructed even though only limited assistance could
be provided for them.

paper.tex; 22/03/2007; 22:44; p.39



40

8. Future Work

This paper has not looked at the issue of how students can define
lemmas in their documents. The reason why we did not consider it here
is that proof exercises are often set in a number of stages. Parts (a), (b),
and (c) might ask the student to prove particular useful lemmas, and
then part (d) might ask the student to use those lemmas to derive an
important result. In the exercises, each of these parts could be set as a
separate exercise. (And indeed the final question in the study did draw
together the lemmas proved in the previous questions.) However, not
all questions on paper are set in this broken-down style, and if we are
building a reactive learning environment to let students try out their
ideas, then it is important that they should be able to take their own
approaches to solving the proofs.

Performing a direct translation from MathsTiles to Isar is a fairly
näıve approach to the problem. It would be prefectly reasonable instead
for the broker, when examining a line of proof, to set all of the previous
statements as lemmas, define the proof line as a goal theorem, and see
whether an automated tactic can prove it or not. There would need
to be some careful consideration of what theorems should be given to
the tactic, however, so this would move much of the problem into the
configuration of the proof tool. However, it could allow the MathsTiles
proofs to resemble Isar much less – there would not need to be a
straightforward translation to Isar.

The question of how to support text-based editing of tile docu-
ments, despite the two-dimensional dynamic nature of the syntax, has
been raised but not addressed in this paper. A possiblity is to in-
clude a boolean parser in the system, and allow the tile definitions
to specify one-dimensional (text) grammar rules as well as defining the
appearance and structure of the tiles.

Writing proofs using tiles is currently a one-directional activity,
where the student writes the proof and the system comments on it.
However, where there are dependencies between elements in the proof,
it may be helpful to allow the system to write or adjust parts of the
proof, or to allow parts of tiles to be calculated from their surroundings
rather than strictly defined in the XML. For example, if an early proof
line is changed that breaks later lines of proof, perhaps the system
should attempt to automatically adjust the later lines so they are no
longer broken. This might also be a suitable approach for dealing with
meta-variables.

Some of the usability issues raised suggest that proving is more
like programming than we had assumed. For example, the need for
automatic labelling of proof statements is similar to line numbering.

paper.tex; 22/03/2007; 22:44; p.40



41

The annotations appearing on the tiles were found to be problematic
because they could be obscured by other tiles or the edge of the win-
dow, and so a more traditional gutter seems appropriate. However,
there are also aspects of the proof exercises that may be applicable
to programming environments. For example, it has been observed that
programmers frequently find themselves substituting blocks of code be-
tween a set of alternatives [25]. Being able to extract syntactic sections
of code and leave them on the page but not in the code might be helpful.

It may be helpful educationally to be able to have a configurable level
of formality in the prover. For example, we observed that students did
not appear to understand the issues around universal quantification.
What if the model could be made to temporarily forget those issues
until the student was due to learn them? A common technique through
school education is first teach something that is not quite correct but
is easier to understand, and teach the harder truth later.

9. Related Work

9.1. Teaching Systems for Proof

The EPGY theorem proving environment [38] is a stand-alone proof en-
vironment used in a number of courses at Stanford University. Students
begin with a set of given statements and a proof goal. A menu based
system allows the student to apply built-in strategies and inference
rules to goals in order to build up a proof — this aspect of the system
is intended to encourage “structured theorem proving”. Additionally,
students can enter their own intermediate goals using a formula editor,
and the proving environment will attempt to verify these goals using
the Otter automated theorem prover.

The Dialog project [10, 9] is an ongoing project developing a sys-
tem that can discuss proofs with students in natural language. The
principles behind their philosophy are similar to those behind Auto-
Tutor [19]. Human-to-human tutorials have frequently been found to
be an effective teaching technique, so they wish to carry the pedagogy
from those human tutorials across to automated tutorials. The proof
domain the project has most examined is näıve set theory.

A number of educational systems have been designed for proposi-
tional (or sentential) logic. The Carnegie Mellon Proof Tutor (CPT)
[36], the P-Logic Tutor [29], and Logic-ITA [28] are all examples of
intelligent tutors designed to teach propositional logic. CPT uses a
combination of Fitch diagrams and a goal tree to describe the proof
being developed. Logic-ITA represents proofs fairly simply — as a

paper.tex; 22/03/2007; 22:44; p.41



42

sequence of proof lines in a table — and focusses instead on detailed
and effective modelling and assessment of the student. It assesses the
validity of proof steps as the student works on them, and once the
proof is complete returns to assess the usefulness of each of the steps.
P-Logic Tutor doubles both as a tutor and as a research environment for
tracking student learning and exploring the cognitive issues involved.
ETPS [2] assists students in writing and checking formal proofs in
propositional logic. The student asks ETPS to apply particular rules of
inference, and ETPS handles writing the mathematics. Ehrensberger’s
and Zinn’s DiaLog system [20] treats propositional logic as a game
between a proponent and an opponent. Proving a thesis is correct
involves demonstrating that the proponent has a winning strategy that
can successfully defend against any possible attack from an opponent.
The user plays the part of the proponent, while DiaLog ensures that
all possible alternatives of the opponent are considered. Hyperproof [7]
teaches students the principles of analytical reasoning and propositional
logic in the blocks world of Tarski’s World.

Tutch [1] is a tutorial proof checker that does away with proof envi-
ronments completely and requires the proof to be written in a human-
readable text-only syntax. In its goal to provide a human readable
formal proof syntax, it is similar to the Isar language that the Maths-
Tiles proofs in our system are translated to, but designed specifically
for education.

There appear to be a wide variety of educational proof systems
for domains where artificial intelligence can reasonably be expected to
find an answer automatically without human intervention, for example
propositional logic. There are comparatively fewer systems for “harder”
domains, such as number theory. The EPGY theorem proving environ-
ment is the most similar to our system in that regard. The obvious
difference is that EPGY permits students to complete the proof by
applying tactics from a menu, which we were concerned might lead to
students gaming the system. (We are not aware of any studies that
have investigated “gaming” of EPGY to verify whether this occurs.)
It has the advantage, however, of making the interface much more
straightforward.

9.2. Web-based Textbooks

Deploying texbooks and exercises on the web has been an active area
of research recently. Two recent projects in this area, both of which
have looked at builting web-based textbooks for mathematics, are par-
ticularly of note.

paper.tex; 22/03/2007; 22:44; p.42



43

The Living Book [8] project has developed an online adaptive book
for teaching logic to computer scientists. Its content model is based on
semi-automatically dividing documents into slices that can represent
a piece of information about a topic. These slices are reassembled in
different levels of detail depending on the student’s level of knowledge
and the scenario the book is being used for. The mathematical exercises
in the living book use a text entry language that is converted to PDF
for display. It interfaces to the Otter theorem prover, producing output
as proof trees.

ActiveMath [30] is a web based learning environment based on a
detailed semantic model of mathematics (OMDoc [26]). Additionally a
detailed model of each student is kept, modelling against competencies
as well as knowledge. Using these detailed models of the content and
the student, it is able to generate appropriate personalised courses for
individual students.

As described in Section 3.2, these systems have a much more for-
malised content ontology and do not permit students to add new topics
and content into the book. In the case of ActiveMath, it is also an open
question as to how proof questions like ours could fit within the system.
ActiveMath expects its exercises to be able to update the student model
very precisely with details of which rules and which process steps the
student understands, and which competencies he or she has shown.
We suspect that the cognitive process of finding a proof is not yet
well enough understood to be able to model the skills of an individual
student.

9.3. Structured Editing

Structure-based (or syntax-directed) editing has a long history as a
technique. As early as the 1970s, systems such as EMILY [22] and the
Cornell Program Synthesizer [40] allowed programs to be constructed
by choosing syntactic templates in a top-down manner, rather than by
typing text to be parsed. Recently, GNU TeXMacs [41] has applied the
technique for WYSIWYG editing of mathematical and TEXdocuments.

Syntax-directed editing has been found to be a useful technique
to help novices to work with an unfamiliar programming syntax – the
novice is guided by menus of legal operations, and syntax errors become
impossible to make. The Carnegie Mellon programming environments
[31] pioneered this use for the technique in the 1980s, and the Alice2
programming environment [23] is a more recent example.

However, MathsTiles is different in three ways. Firstly, it allows
multiple code fragments to be scattered across the canvas, which means
it does not have the restriction that “if it is on the page, it is in

paper.tex; 22/03/2007; 22:44; p.43



44

the code” that is common to other structured editors. Secondly, it
is a structured editor for informally defined languages that translate
to formal language, rather than for languages with formally defined
syntaxes (and it allows students to make mistakes). Thirdly, it allows
the interaction behaviour to be altered for individual pieces of syntax
at run-time. For example, the green question tiles are individually set
to be unselectable and indelible. A change message from the server,
however, can remove that restriction, or make any other tile on the
page unselectable. Another change message could introduce a new tile
with a new tile definition, effectively altering the syntax of the language.

10. Conclusions

The exercises appear to have enabled a few users in the study to com-
plete formally verifiable proofs with a surprisingly small amount of
training. The usability issues raised with the interface during the study
do not appear to be insurmountable, although there remain a number
of significant challenges these proof exercises have not addressed. For
example, each of the exercises only provided the right tiles for a solution
that had already been carefully checked by the teacher. This means
that although students are theoretically free to “try out their ideas” in
a reactive learning environment, in practice they can only succeed with
ideas the teacher has thought of for them.

Two participants commented informally after the study that through
attempting the exercises they felt they had learnt a little more about
automated proof assistants, and felt braver to try using Isabelle/HOL,
where before they thought Isabelle/HOL would be too difficult to learn.

Some challenging user interface issues arise where the student’s ex-
pectation of how something should work is different from the goals
of formal proof. For example, students appeared to hope that all the
statements they have made so far in the proof would be remembered,
and the checker would automatically determine which ones should be
used to demonstrate the next statement; formal proofs, meanwhile,
attempt to be explicit about their structure and which statements are
involved in which steps.

Another challenge is developing automated systems that are simple
enough for a student to understand roughly how they work, but that
can make the same kind of steps that humans do when reasoning about
a proof. The system needs to be able to verify human reasoning steps
so that automated proof exercises do not have to differ too much from
paper proofs. Students must be able to understand roughly how the
reasoning system works because there are often proof steps that a

paper.tex; 22/03/2007; 22:44; p.44



45

reasoning system cannot verify and cannot disprove. Students need
a mental model of why the system cannot verify a step, so they can
change the step accordingly. Making the reasoning system understand-
able is especially challenging. In the proof exercises described in this
paper, we use a very simple model of “triviality”: there is a set of trivial
rules. But even with this simple model, the sheer number of rules means
that it is difficult for a student to know whether or not a proof step
requires a non-trivial rule. With a more complex notion of triviality, it
might become very difficult indeed for a user to understand why a step
is not trivial to the reasoning system.

Structure based editing is a fairly long-standing technique for pro-
gramming interfaces. However, MathsTiles is somewhat unusual in that
the syntax of the interface does not directly match the syntax of the
underlying language, and the syntax can vary from question to question
(or even during the life of the question). Allowing tiles to be scattered
on the canvas makes it simpler to work in a bottom-up manner than
it is in many structure based editors, and allows sketching out of parts
of answers. Whereas in most programming languages, code needs to be
commented out or cut and paste into a notepad to detach it from the
program without deleting it, a MathsTiles can simply be unplugged
from its parent and left on the page.

Acknowledgements

Our research has been supported by the Cambridge-MIT Institute and
the Cambridge Commonwealth Trust. The authors acknowledge the
advice and assistance of their project partners Hal Abelson, Gerald
Sussman and Chris Hanson from the Massachusetts Institute of Tech-
nology, and of Mark Ashdown, Kasim Rehman and Sparsh Gupta from
the University of Cambridge.

We also thank the reviewers for the extensive and detailed feedback
that they provided. This feedback was invaluable and helped us to
improve the paper greatly.

References

1. Abel, A., B. Chang, and F. Pfenning: 2001, ‘Human-readable machine-
verifiable proofs for teaching constructive logic’. In: U. Egly, A. Fiedler,
H. Horacek, and S. Schmitt (eds.): Proceedings of the Workshop on Proof
Transformations, Proof Presentations and Complexity of Proofs (PTP01).

paper.tex; 22/03/2007; 22:44; p.45



46

2. Andrews, P. B., C. E. Brown, F. Pfenning, M. Bishop, S. Issar, and H. Xi:
2004, ‘ETPS: A System to Help Students Write Formal Proofs’. Journal of
Automated Reasoning 32, 75–92.

3. Arefi, F., C. E. Hughes, and D. A. Workman: 1990, ‘Automatically generating
visual syntax-directed editors’. Commun. ACM 33(3), 349–360.

4. Aspinall, D., C. Lüth, and D. Winterstein: 2005, ‘Parsing, Editing, Proving:
The PGIP Display Protocol.’. In: International Workshop on User Interfaces
for Theorem Provers 2005 (UITP’05).

5. Baker, R. S., A. T. Corbett, K. R. Koedinger, and A. Wagner: 2004, ‘Off-task
behavior in the cognitive tutor classroom: when students ”game the system”’.
In: E. Dykstra-Erickson and M. Tscheligi (eds.): Proceedings of ACM CHI 2004
Conference on Human Factors in Computing Systems. pp. 383–390.

6. Ballarin, C. and G. Klein: 2004, ‘Introduction to the Isabelle Proof Assistant’.
In: Second International Joint Conference on Automated Reasoning. Available
from http://isabelle.in.tum.de/coursematerial/IJCAR04/index.html. Accessed
24 February 2007.

7. Barwise, J. and J. Etchemendy: 1994, Hyperproof. Stanford, California: CSLI
Publications.

8. Baumgartner, P., U. Furbach, M. Groß-Hardt, and A. Sinner: 2004, ‘Living
Book - Deduction, Slicing, and Interaction.’. Journal of Automated Reasoning
32(3), 259–286.

9. Benzmüller, C., H. Horacek, I. Kruijff-Korbayová, M. Pinkal, J. Siekmann,
and M. Wolska: 2007, ‘Natural Language Dialog with a Tutor System for
Mathematical Proofs’. Journal of Computer Science and Technology. To
appear.

10. Benzmüller, C., H. Horacek, H. Lesourd, I. Kruijff-Korbayova, M. Schiller, and
M. Wolska: 2006, ‘A corpus of tutorial dialogs on theorem proving; the influence
of the presentation of the study-material’. In: Proceedings of International Con-
ference on Language Resources and Evaluation (LREC 2006). Genova, Italy.
To appear.

11. Billingsley, W. and J. Billingsley: 2004, ‘The Animation of Simulations and
Tutorial Clients for Online Teaching’. In: Proceedings of the 15th Annual
Conference for the Australasian Association for Engineering Education and
the 10th Australasian Women in Engineering Forum, Toowoomba, Australia.
pp. 532 – 540.

12. Billingsley, W., P. Robinson, M. Ashdown, and C. Hanson: 2004, ‘Intelligent
tutoring and supervised problem solving in the browser’. In: Proceedings of
the IADIS International Conference WWW/Internet 2004, Madrid, Spain. pp.
806 – 811.

13. Blackwell, A. and T. Green: 2003, ‘Notational systems - the Cognitive Dimen-
sions of Notations framework’. In: J. M. Carroll (ed.): HCI Models, Theories
and Frameworks. Amsterdam, pp. 103 – 133.

14. Blackwell, A. and T. Green: 2007, ‘A Cognitive Di-
mensions Questionnaire’. Available online from
http://www.cl.cam.ac.uk/ afb21/CognitiveDimensions/CDquestionnaire.pdf.
Accessed 25 February 2007.

15. Brown, J. S., R. R. Burton, and A. G. Bell: 1975, ‘SOPHIE: A Step towards a
reactive learning environment’. International Journal of Man-Machine Studies
7, 675–696.

paper.tex; 22/03/2007; 22:44; p.46



47

16. Clark, J. (ed.): 1999, XSL Transformations (XSLT) Version 1.0.
World Wide Web Consortium. Accessed 13 August 2006 from
http://www.w3.org/TR/1999/REC-xslt-19991116.

17. Clark, J. and S. DeRose (eds.): 1999, XML Path Language (XPath) Ver-
sion 1.0. World Wide Web Consortium. Accessed 30 January 2005 from
http://www.w3.org/TR/1999/REC-xpath-19991116.

18. Conati, C., A. S. Gertner, and K. VanLehn: 2002, ‘Using Bayesian networks to
manage uncertainty in student modeling’. User Modelling and User-Adapted
Interaction 12(4), 371–417.

19. Craig, S. D., X. Hu, B. Gholson, W. Marks, A. C. Graesser, and T. T. R. Group:
2000, ‘AutoTutor: A human tutoring simulation with an animated pedagogical
interface’. In: P. Hamberger (ed.): Proceedings of the International Society for
Optical Engineering: Integrated Command Environments.

20. Ehrensburger, J. and C. Zinn: 1997, ‘DiaLog: A System for Dialogue Logic’.
In: Conference on Automated Deduction. pp. 446–460.

21. Green, T. R. G. and M. Petre: 1996, ‘Usability Analysis of Visual Programming
Environments’. Journal of Visual Languages and Computing 7.

22. Hansen, W. J.: 1971, ‘Creation of Hierarchic Text with a Computer Display’.
Technical report, Argonne National Laboratories.

23. Kelleher, C., D. Cosgrove, D. Culyba, C. Forlines, J. Pratt, and R. Pausch:
2002, ‘Alice2: Programming without Syntax Errors’. In: User Interface
Software and Technology.

24. Khwaja, A. A. and J. E. Urban: 1993, ‘Syntax-directed editing environments:
issues and features’. In: SAC ’93: Proceedings of the 1993 ACM/SIGAPP
symposium on Applied computing. New York, NY, USA, pp. 230–237.

25. Ko, A. J., H. Aung, and B. A. Myers: 2005, ‘Eliciting Design Requirements for
Maintenance-Oriented IDEs: A Detailed Study of Corrective and Perfective
Maintenance Tasks’. In: International Conference on Software Engineering.

26. Kohlhase, M.: 2000, ‘OMDoc: Towards an Internet Standard for the Admin-
istration, Distribution and Teaching of Mathematical Knowledge’. In: AISC
2000 Artificial Intelligence and Symbolic Computation Theory. pp. 32–52.

27. Lamport, L.: 1995, ‘How to Write a Proof’. The American Mathematical
Monthly 102(7), 600–608.

28. Lesa, L. and K. Yacef: 2002, ‘An Intelligent Teaching System for Logic’. In: In-
telligent Tutoring Systems : 6th International Conference, ITS 2002, Biarritz,
France and San Sebastian, Spain, June 2-7, 2002.

29. Lukins, S., A. Levicki, and J. Burg: 2002, ‘A Tutorial Program for Propositional
Logic with Human/Computer Interactive Learning’. In: Proceedings of the 33rd
SIGCSE Technical Symposium on Computer Science Education. pp. 381–385.

30. Melis, E., E. Andrès, J. Büdenbender, A. Frischauf, G. Goguadze, P. Libbrecht,
M. Pollet, and C. Ullrich: 2001, ‘ActiveMath: A Generic and Adaptive Web-
Based Learning Environment’. International Journal of Artificial Intelligence
in Education 12(4), 385–407.

31. Miller, P., J. Pane, G. Meter, and S. Vorthmann: 1994, ‘Evolution of
Novice Programming Environments: the Structure Editors of Carnegie Mellon
University’. Interactive Learning Environments 4(2), 140–158.

32. Nipkow, T.: 2003, ‘Structured Proofs in Isar/HOL’. In: H. Geuvers and F.
Wiedijk (eds.): Types for Proofs and Programs (TYPES 2002). pp. 259 –
278. Also available online from http://www4.informatik.tu-muenchen.de/ nip-
kow/pubs/types02.pdf accessed 10 June 2005.

paper.tex; 22/03/2007; 22:44; p.47



48

33. Nipkow, T.: 2006, ‘A Compact Introduction to Isabelle/HOL’. Available from
http://isabelle.in.tum.de/coursematerial/Shanghai06/index.html. Accessed 24
February 2007.

34. Nipkow, T., L. C. Paulson, and M. Wenzel: 2002, Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, Vol. 2283 of LNCS. Springer.

35. Rehman, K., W. Billingsley, and P. Robinson: 2006, ‘Writing questions for an
Intelligent Book using external AI’. In: Proceedings of the Sixth International
Conference on Advanced Learning Technologies (ICALT2006). pp. 1089 – 1091.

36. Scheines, R. and W. Sieg: 1994, ‘Computer Environments for Proof Construc-
tion’. Interactive Learning Environments 4(2), 159–169.

37. Slind, K., S. Barrus, S. Choe, C. Condrat, J. Duan, S. Gopalakrishnan, A.
Knoll, H. Kuwahara, G. Li, S. Little, L. Liu, S. Moore, R. Palmer, C. Tuttle,
S. Walton, Y. Yang, and J. Zhang: 2005, ‘Teaching a HOL Course: Experience
Report’. In: J. Hurd, E. Smith, and A. Darbari (eds.): Theorem Proving in
Higher Order Logics: Emerging Trends Proceedings. pp. 170–179.

38. Sommer, R. and G. Nuckols: 2004, ‘A proof environment for teaching mathe-
matics’. Journal of Automated Reasoning 32, 227 – 258.

39. Stallman, R. and G. J. Sussman: 1977, ‘Forward Reasoning and Dependency-
Directed Backtracking in a System for Computer-Aided Circuit Analysis’.
Artificial Intelligence 9, 135–196.

40. Teitelbaum, T. and T. Reps: 1981, ‘The Cornell Program Synthesizer: a syntax-
directed programming environment’. Communications of the ACM 24(9), 563–
573.

41. Van Der Hoeven, J.: 2001, ‘GNU TeXmacs: a free, structured, wysiwyg and
technical text editor’. Le document au XXI-ième siècle 39–40, 39–50.

42. Wenzel, M.: 1999, ‘Isar - a Generic Interpretative Approach to Read-
able Formal Proof Documents’. In: Theorem Proving in Higher Order
Logics, 12th International Conference, TPHOLs’99. Also available online
from http://www4.in.tum.de/ wenzelm/papers/Isar-TPHOLs99.pdf accessed
10 June 2005.

43. Wenzel, M.: 2005, The Isabelle/Isar Reference Manual. TU München.
44. Wiedijk, F.: 2004, ‘Formal proof sketches’. In: Types for Proofs and Programs,

Vol. 3085/2004 of LNCS. Springer.
45. Winer, D.: 1999, XML-RPC Specification. UserLand Software. Accessed 30

January 2005 from http://www.xmlrpc.com/spec.

paper.tex; 22/03/2007; 22:44; p.48


