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ABSTRACT 

In this paper we present a novel system for driver-vehicle 

interaction which combines speech recognition with facial-

expression recognition to increase intention recognition 

accuracy in the presence of engine- and road-noise. Our 

system would allow drivers to interact with in-car devices 

such as satellite navigation and other telematic or control 

systems. We describe a pilot study and experiment in which 

we tested the system, and show that multimodal fusion of 

speech and facial expression recognition provides higher 

accuracy than either would do alone. 
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INTRODUCTION 

Accurate measurement of drivers’ intentions and responses 

is an important requirement for effective human-vehicle 

interaction. Detecting user response reliably is especially 

important in interaction scenarios where feedback is 

expected in response to a question (e.g., posed by an in-car 

navigation system). So far, in-car interaction modalities 

have been restricted to traditional graphical dialog-box 

representations and speech-based input. Traditional 

graphical representations usually require interacting with 

small touch-sensitive displays, and can be distracting 

because of the visual attention required for the interaction. 

Speech-based interfaces, on the other hand, offer a more 

natural modality for interaction, although their usefulness is 

subject to a number of limitations.  

We have developed a framework for automatic analysis of 

drivers’ facial expressions with the goal of adding facial 

displays to the list of modalities available for human-

vehicle interaction. Specifically, we have investigated the 

feasibility of combining head-based displays with speech in 

order to achieve higher recognition results in the presence 

of noise. We studied the effects of noise in an interaction 

scenario that required responses to a series of “yes/no” 

questions, which are typical in interacting with a navigation 

system (e.g. “The gas is running low. Would you like 

directions to the nearest gas station?”). 

Because vehicle-noise and the willingness of the driver to 

express themselves clearly through spoken dialogue are the 

primary causes of misrecognized speech, we focused our 

investigation on intelligent fusion of head-display and 

speech information for varying noise levels and varying 

speaker volumes. Using our in-house driving simulator, we 

conducted a pilot study where we recorded a participant 

answering a series of “yes/no” questions while driving. We 

recorded separate audio and video streams that captured the 

driver’s speech and facial displays. Based on promising 

results from the pilot study, we conducted a larger 

controlled experiment with 4 further subjects (age 22–50) to 

verify our findings. 

We implemented a speech recognition application for 

processing the audio and used our own facial expression 

recognition software [5] to interpret the video stream. We 

used Support Vector Machines to fuse audio- and video-

based inference results and constructed a multimodal 

recognition engine that outperforms the individual 

modalities. 

EXPERIMENTAL SETUP 

Figure 1 shows the physical setup of our experiment. We 

had a driving simulator equipped with a digital video 

camera for recording facial displays (1). A microphone 

secured to the frame in front of the driver (2) was used to 

record audio for speech recognition. Two pairs of speakers 

Figure 1: The physical setup of our experiment 
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were used for playing audio stimuli consisting of questions 

for the driver (3), and simulated engine noise (based on 

vehicle speed and road conditions) generated by the 

STISIM driving simulator software (4). A pair of studio 

lights (5) was used to control the lighting conditions. 

During the experiment, the driver was asked a series of 

questions referring to a target shape displayed next to the 

virtual dashboard projected on a screen (6). The driver also 

wore a headset with microphone to record higher quality 

speech for further analysis (7). 

The pilot study was designed to investigate the effects of 

noise in an interaction scenario requiring responses to a 

series of “yes/no” questions. Such situations frequently 

arise while interacting with a navigation system. In order to 

elicit a verbal or non-verbal agreement/disagreement 

response, we designed a task where the user is first 

presented a geometric shape (like the red triangle as shown 

in Figure 2), and then asked a question about the shape, 

which can be answered verbally (“yes” or “no”), and non-

verbally (head-nod or head-shake). We refer to each round 

of shape presentation as a trial. In order to collect 

representative data for varying noise levels, we had a total 

of 60 trials consisting of 30 questions requiring an 

affirmative response, and 30 requiring a negative response. 

For the subsequent larger experiment, we ran 100 trials with 

each of the 4 participants. The order of trials was 

randomized. Each trial consisted of playing an audio clip 

which asked a question (e.g. "Is the shape a red triangle?"), 

displaying the target shape in a particular colour for 2 

seconds, then expecting an appropriate verbal and/or non-

verbal response from the driver. We waited 5 seconds 

between trials. 

The primary source of noise in the study was the engine 

noise generated by the STISIM driving simulator based on 

the vehicle speed and road conditions. We started the 

experiment with the noise volume set to zero, and gradually 

increased the noise level over the course of the drive. The 

loudest noise level was 75 dBA – slightly above that 

experienced by the driver of a transit van at about 60mph 

(100kph). For the final 40 trials in the large controlled 

experiment, the driver was asked to speak louder or quieter 

in order to provide additional data relating to variation in 

speaker loudness. 

The audio stream used for speech recognition was captured 

by a microphone on the dashboard (#2 in Figure 1). The 

speech was processed by a Microsoft SAPI 5 application 

customized to recognize 29 words that a driver would be 

likely to use in the context of driving including “yes,” “no,” 

and five variants (such as “yeah”, “nope”). The video used 

for recognizing head displays was captured by a digital 

camcorder positioned directly in front of the driver (#1 in 

Figure 1) and was processed by our mind-reading software 

[5] trained to recognize facial displays for agreement and 

disagreement. 

RESULTS 

Audio-Based Recognition Results 

Speech recognition events were attributed to particular 

questions by nearest-neighbour matching. Speech events in 

the audio were identified by clustering. The RMS value of 

the audio data for each cluster provided a measure of 

speaker loudness. The background noise was measured by 

averaging the absolute value of the audio signal in the time 

between the question finishing and the driver speaking. 

Figure 2: System Structure 
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Figure 3 presents speech recognition results from the pilot 

study for increasing levels of noise. As seen in this graph, 

speech recognition works reasonably well when the noise is 

low. The recognition accuracy is very poor for high noise 

levels, and there is a transitional gray zone between the 

high-noise and low-noise segments where the recognition 

results are unpredictable. The recognition accuracy based 

on speech alone was 57% in the pilot study. 

Video-Based Recognition Results 

To compute the head display hypotheses for each trial, we 

compared the average probabilities of agreement and 

disagreement for a short video segment taken briefly after 

the completion of the question. Although our facial display 

analysis software computes probability scores for 

agreement and disagreement, these do not represent actual 

probabilities in the Bayesian sense and this prohibits direct 

comparison of the values. Therefore we treat these numbers 

as scores and train a linear SVM classifier that maps a pair 

of agreement/disagreement scores to an agreement or 

disagreement decision. Figure 4 shows the video-based 

recognition results from the pilot study for increasing levels 

of noise. As seen in this graph, video recognition generally 

works well, and its accuracy does not appear to depend on 

the noise level. The recognition accuracy based on video 

alone was 78% in the pilot study. 

Multimodal Fusion Results 

Our framework for multimodal fusion is based on the 

observation that speech recognition works remarkably well 

for low-noise conditions, but performs quite badly in high 

noise conditions, while the video-based recognition 

performance is reasonably accurate regardless of the noise 

level. We fuse the audio and video information by treating 

the results of our speech and head-display analysis as inputs 

to a classifier along with the noise level of the environment. 

More specifically we consider a classification problem 

where the inputs are 3-tuples <ai, vi, ni>, which respectively 

represent the class assigned by the speech recognizers (ai: 

yes/no/other), head-display recognizers (vi: agreement/ 

disagreement), and the noise level (ni) for trial i. For the 

subsequent experiment, we also included speaker loudness. 

Although this appears to be a simple construction, the high 

dimensional space representing the decision problem is 

sufficiently complex and is not linearly separable. Although 

some of the categorical data inputs could be re-ordered to 

achieve a better space, it is highly likely that the non-

linearity would still not be avoided when more features 

(such as the complexity of the speech recognition grammar) 

were added to the input space. In order to deal with this 

non-linearity, we trained Support Vector Machines (SVMs) 

with Radial Basis Function kernels for multimodal fusion.  

We measured the performance of our SVM using 10-fold 

cross validation, and ran it 10 times while randomly 

shuffling the training and testing sets, thus performing 

bootstrapping. Representative results of one cross-validated 

run are shown in Figure 5. The average recognition rate for 

the multimodal classifier was 89% in the pilot study, with a 

standard deviation of 3.1. This is substantially higher than 

either of the individual modalities considered separately.  

Figure 3: Speech-Based Recognition Results 

Figure 4: Video-Based Recognition Results Figure 5: Multi-Modal Recognition Results 
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The results obtained in the larger controlled experiment 

(summarised in Table 1) supported those from the pilot 

study. In all cases multimodal inference outperformed each 

individual mode. Note that our system was particularly 

valuable for subject 4, for whom speech recognition alone 

was entirely inadequate. 

Subject 

Speech-Based 

Recognition 
Accuracy (%) 

Video-Based 

Recognition 
Accuracy (%) 

Multimodal 

Accuracy 
(Mean, %) 

Multimodal 

Accuracy 
(S.D.) 

1 (Pilot) 57 78 88.7 3.1 

2 46 67 72.3 2.5 

3 54 69 75.8 1.5 

4 31 65 70.4 3.4 

5 39 69 73.9 2.6 

Table 1: Controlled Experiment Recognition Results 

DISCUSSION 

These results suggest that multimodal approaches where the 

individual modalities complement each other and 

compensate for their shortcomings have the potential to 

reduce recognition errors, substantially improve driver-

vehicle interaction, and enhance the overall driving 

experience. Recognition accuracy for each individual 

system could easily be increased with further refinement, 

but it seems likely that multimodal fusion would always 

yield a better result. 

RELATED WORK 

It has long been recognised that current driver-vehicle 

interaction techniques are inadequate for safe and effective 

use of increasingly complex in-car devices. People have 

begun to investigate alternative methods, such as speech 

recognition [1]. A considerable amount of work has been 

done to tackle the problem of speech recognition in noisy 

environments [2,3], with good results. However, 

recognition accuracy always decreases as noise increases 

and there is a limit to how much it can be improved. 

Automated facial expression recognition has also been dealt 

with previously [4,5], and explicit head-nod and shake 

detection has been implemented [6]. Although this 

experiment only deals with agreement and disagreement, 

our facial expression recognition software [5] uses more 

than just nod and shake detection and is capable of 

distinguishing several more mental states. 

Several people have combined vision-based approaches 

with speech recognition - usually in the context of broader 

affective inference for emotion recognition [8,9]. Work has 

also been done on supporting speech recognition 

specifically [7] and on combining vision and speech in 

automotive environments for identification and 

authentication [10]. 

FUTURE WORK 

These results suggest that it would be worth pursuing 

further investigations of affective inference as a component 

in the dialogue between a driver and an in-car telematic 

system. 

The next step would be to move from detection of simple 

agreement and disagreement to a more elaborate dialogue 

involving a broader range of options in a larger and more 

realistic task. This could also involve understanding the 

level of the driver’s concentration so as to avoid distraction 

from more critical driving tasks. 

SUMMARY 

We have demonstrated, tested and validated a system for 

driver-vehicle interaction which uses multimodal fusion of 

speech and facial expression recognition. We have shown 

that combining these inference techniques gives a level 

accuracy unattainable when using either system on its own. 

The architecture of the inference system we built provides a 

more general framework in which new techniques can be 

tested. 
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