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ABSTRACT
One of the main factors that limit the accuracy of facial
analysis systems is hand occlusion. As the face becomes
occluded, facial features are either lost, corrupted or erro-
neously detected. Hand-over-face occlusions are considered
not only very common but also very challenging to handle.
Moreover, there is empirical evidence that some of these
hand-over-face gestures serve as cues for recognition of cog-
nitive mental states. In this paper, we detect hand-over-face
occlusions and classify hand-over-face gesture descriptors in
videos of natural expressions using multi-modal fusion of dif-
ferent state-of-the-art spatial and spatio-temporal features.
We show experimentally that we can successfully detect face
occlusions with an accuracy of 83%. We also demonstrate
that we can classify gesture descriptors (hand shape, hand
action and facial region occluded) significantly higher than
a näıve baseline. To our knowledge, this work is the first
attempt to automatically detect and classify hand-over-face
gestures in natural expressions.

Categories and Subject Descriptors
I.2.10 [Vision and Scene Understanding]: Video analy-
sis

Keywords
Hand-over-face occlusions; Hand cues; Facial landmarks; His-
tograms of oriented gradient; Space-time interest points

1. INTRODUCTION
Over the past few years, there has been an increased inter-

est in machine understanding and recognition of people’s af-
fective and cognitive mental states, especially based on facial
expression analysis. One of the major factors that limits the
accuracy of facial analysis systems is hand occlusion. People
often hold their hands near their faces as a gesture in natural
conversation. As many facial analysis systems are based on
geometric or appearance based facial features, such features
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are either lost, corrupted or erroneously detected during oc-
clusion. This results in an incorrect analysis of the person’s
facial expression. Although face touches are very common,
they are under researched, mostly because segmenting of
the hand on the face is very challenging, as face and hand
usually have similar colour and texture. Detection of hand-
over-face occlusion can significantly improve facial landmark
detection and facial expression inference systems.

Moreover, hand-over-face occlusions are not just noise that
needs to be removed. Recent studies show that body move-
ments and gestures are significant visual cues that comple-
ment facial expressions [8] and they can be utilised in auto-
matic detection of human internal states [2, 4]. Specifically,
hand-over-face gestures can serve as an additional valuable
channel for multi-modal affect inference [22]. These studies
emphasise the need not only for an occlusion detection sys-
tem, but also for a way to describe the gesture in terms of
a set of quantitative descriptors that can be automatically
detected. Moreover, automatic detection of these gesture
descriptors can provide tools for experimental psychologists
who study gesture - especially face touches - to automatically
quantify and detect these gestures, instead of the common
practice of manual coding. To date, there is no available
automatic detection system that serves these purposes.

In this paper, we present an analysis of hand-over-face
gestures in a naturalistic video corpus of complex mental
states. We define three hand-over-face gesture descriptors,
namely hand shape, hand action and facial region occluded
and propose a methodology for automatic detection of face
occlusions in videos of natural expressions.

We treat the problem as two separate tasks: detection of
hand occlusion; and classification of hand gesture descrip-
tors. The main contributions of this paper are:

1. Proposing a mutli-modal fusion approach to detect
hand-over-face gestures in videos of natural expres-
sions, based on state-of-the-art spatial and spatio-temporal
appearance features.

2. Proposing the first approach to automatically code
and classify hand-over-face gesture descriptors, namely
hand shape, hand action and facial region occluded.

3. Demonstrating that multi-modal fusion of spatial and
spatio-temporal features outperforms single modalities
in all of our classification tasks.

We start by discussing the related work in Section 2. We
present the details of gesture coding and dataset used in Sec-
tion 3. We then present our proposed approach (illustrated



Figure 1: Overview Diagram shows the main steps in our approach.

in Figure 1), starting by the feature extraction in Section 4
followed by the experimental evaluation in Section 5. Con-
clusions and future directions are presented in Section 6.

2. RELATED WORK
There have been several previous attempts to detect and

deal with occlusion in face area. Two such examples come
from work done by Yu et al. [30] and Burgos-Artizzu et
al. [3]. In both pieces of work the authors concentrated on
building a facial landmark detector that is robust to vari-
ous occlusions. They achieved this by explicitly recognising
occluded landmarks of the face and using that information
to detect the visible landmarks more robustly. Both pieces
of work concentrated on facial occlusion in general and not
specifically on hand-over-face occlusion. Furthermore, the
authors were interested in detecting occluded facial land-
marks, which are not necessarily semantically meaningful.
Both of the approaches lead to better landmark alignment
in the presence of occlusion. Another notable example is the
work done by Hotta [15], that proposes a method for more
robust face detection in presence of partial occlusion by us-
ing SVM with local kernels. However, none of the above
mentioned authors distinguish between types of occlusion
and make no special analysis of hand-over-face occlusions.

There have been a few attempts [26, 21] to detect the
hand when it occludes the face. Gonzalez et al. [12] use
colour and edge information to track and segment the hand
during hand over face occlusion in sign language. Grafsgaard
et al. [13] use depth images to detect two hand-to-face ges-
tures (one hand touching face and two hands touching face)

in a computer-mediated tutoring environment. In contrast
to previous work, our work presents a more detailed and
different classification of hand-over-face gesture descriptors.

3. CODING OF HAND-OVER-FACE
GESTURES

Serving as a first step in automatic classification, we coded
hand-over-face gestures using a set of descriptors. In this
section, we describe the choice of the dataset, the coding
schema, the labelling, annotation assessment and how we
generate the ground truth labels that are used in our ma-
chine learning experiments.

3.1 Dataset
The first challenge was to find a corpus of videos of nat-

ural expressions. Since most of the work on affect analysis
focuses on the face, most of the publicly available natural
datasets also focus on faces with limited or no occlusion.
Since we are interested in the temporal aspect of the hand
gesture as well, still photograph corpora did not satisfy our
criteria. The publicly available Cam3D [20] has natural ex-
pressions and does not restrict the video collection to faces.
It includes upper body videos that have hand-over-face oc-
clusions in around 25% of the videos. The expressions in
Cam3D are elicited as part of an emotion elicitation exper-
iment, which implies that the hand gestures expressed are
most likely to be part of expression of emotion. We are in-
terested in detecting such potentially informative gestures.

In Cam3D, segmentation is event-based, so each video seg-
ment contains a single action. The dataset has 192 video seg-



ments that contain hand-over face occlusions. These videos
come from 9 participants with mean duration of the video
being 6 seconds. We used all of the occluded videos. For bal-
ance, we also randomly selected another 173 video segments
from the Cam3D dataset that do not contain face occlusions.
The chosen no-occlusion videos were selected containing the
same 9 participants while keeping the number of samples
per each participant as balanced as possible. This led to a
set of 365 videos in total.

3.2 Labelling
In order to proceed to automatic detection, we needed to

code the hand-over-face occlusions present in the dataset.
The goal was to code hand gestures in terms of certain de-
scriptors that can describe the gesture. Inspired by the cod-
ing schema provided by Mahmoud et al. [22], we coded the
gestures in terms of hand shape, hand action and facial re-
gion occluded.

Labelling was carried out using Elan video annotation
tool [19]. Two expert coders (researchers in our research
group) were instructed to label the videos given the follow-
ing instructions :

• Hand Action: coded as one label for the whole video
according to the action observed in the majority of
the frames. Labels are: 1) Touching - If the hand is
static while touching the face. 2) Stroking/tapping
- repetitive motion of the hand on the face. 3) Sliding
- any other hand motion that is not repetitive.

• Hand Shape: coded as one label per frame. It de-
scribes the shape of the hand on the face in a specific
frame. Labels are mutually exclusive, i.e. one label is
permitted per frame. Labels are: 1)Fingers or any
separate fingers. 2) OpenHand(s) or palm(s). 3)
ClosedHand(s) or a fist shape. 4)HandsTogether
- tangled hands.

• Facial Region Occluded: coded as one - or multiple -
labels per frame (labels are not mutually exclusive).
It describes the face area covered - or partially cov-
ered - by the hand during occlusion. Labels are: 1)
Forehead. 2)Eye(s). 3)Nose. 4)Cheek(s). 5)Lips.
6)Chin. 7)Hair/ear.

3.3 Coding assessment & refinement
To assess the coding schema and gain confidence in the la-

bels obtained, we calculated inter-rater agreement between
the two expert annotators using time-slice Krippendorff’s
alpha [16], which is widely used for this type of coding as-
sessment because of its independence of the number of asses-
sors and its robustness against imperfect data [14]. We got
a Krippendorff’s alpha coefficient of 0.92 for hand action,
0.67 for hand shape and an average alpha coefficient of 0.56
for facial region occluded (forehead 0.69, eye(s) 0.27, Nose
0.45, cheeks 0.65, lips 0.73, chin 0.83, hair/ear 0.25). All
the classes had moderate agreement or above except for the
facial regions: eyes, nose and hair/ear. When we explored
the reason of the disagreement in these categories, this was
mostly because of the very few samples available of these
categories in the dataset, for example: eyes, forehead and
hair/ear regions had only 25, 100 and 10 frame samples re-
spectively, i.e. less than 0.2% of the total number of frames
in total. We decided to exclude these categories (mostly up-
per face area) in the machine learning step, as it was unfair

Figure 2: Sample frames from videos in the dataset
Cam3D showing examples of face touches present
in the dataset [20]. Note the challenging - close to
natural - recording settings like inconsistent lighting
conditions and strong head rotations.

to try to automatically learn and classify these categories
when the human annotators failed to agree.

Due to the nature of our unbalanced dataset, some labels
had very few samples. In the classification stage, we decided
to aggregate some of the groups together. The nose region
was combined with the cheek region as one descriptor of the
middle face region. For the hand action descriptor, we com-
bined sliding, stroking and tapping in one group representing
non-static hand gesture, i.e. any type of motion.

4. FEATURE EXTRACTION
The first building block of our approach is feature ex-

traction. We chose features that can effectively represent
hand gesture descriptors that we want to detect. Therefore,
we extract spatial features, namely: Histograms of Oriented
Gradients (HOG) and facial landmark alignment likelihood.
Moreover, having the detection of hand action in mind, we
also extract Space Time Interest Points (STIP) that com-
bine spatial and temporal information. For HOG and STIP
features, dimensionality reduction of features is then applied
to obtain a more compact feature representation.

4.1 Space Time Features
Local space-time features [17, 18, 9] have become popu-

lar motion descriptors for action recognition [24]. Recently,
they have been used by Song et al. [27] to encode facial and
body microexpressions for emotion detection. They were
particularly successful in learning the emotion valence di-
mension as they are sensitive to global motion in the video.
Our methodology for space time interest points feature ex-
traction and representation is based on the approach pro-
posed by Song et al. [27].

Space Time Interest Points (STIP) capture salient visual
patterns in a space-time image volume by extending the local
spatial image descriptor to the space-time domain. Obtain-
ing local space-time features is a two step process: spatio-
temporal interest point (STIP) detection followed by feature
extraction. Wang et al. [28] reports that using the Harris3D
interest point detector followed by a combination of the His-
tograms of Oriented Gradient (HOG) and the Histogram of
Optical Flow (HOF) feature descriptors provide good perfor-
mance. Thus, we use the Harris3D detector with HOG/HOF
feature descriptors to extract local sparse-time features. As
we are interested in the face area, we use the face alignment



input to crop the STIP features and discard any extracted
points outside the face region.

The STIP box in the overview diagram in Figure 1 shows
how the hand motion is captured by the space-time features
(denoted by the yellow circles in the diagram).

The local space-time features extracted are dense as they
capture micro-expressions. Since we are interested in more
semantic feature representation, we use sparse coding to rep-
resent them so that only few salient features are recovered,
i.e. features that appear most frequently in the data. Thus,
we learn a codebook of features and use it to encode the
extracted features in a sparse manner.

The goal of sparse coding is to obtain a compact represen-
tation of an input signal using an over-complete codebook,
i.e. the number of codebook entries is larger than the dimen-
sion of input signal so that only a small number of codebook
entries are used to represent the input signal. Given an in-
put signal x ∈ RN and over-complete codebook D ∈ RN×K,
K� N, we find a sparse signal α ∈ RK that minimises the
reconstruction error,

min
α∈RK

1

2
||x−Dα||22 + λ||α||1, (1)

where the first term in this equation measures reconstruc-
tion error and the second term is the L1 regularisation that
encourages the sparsity of vector α. λ controls the relative
importance of the two terms so that we have α containing
few non-zero linear coefficients compared to the codebook
D, which leads to the best approximation of x.

In our work, we learn the codebook D from our data, i.e.
the extracted space-time features {x1,x2, ...,xM}

min
D

1

M

M∑
i=1

min
αi

1

2
||xi −Dαi||22 + λ||αi||1. (2)

The optimisation problem is convex in D with A = [α1, α2,
... , αM ] fixed and in A with D fixed, but not in both at the
same time [23]. Thus, it can be solved using online learn-
ing [23] by alternating the two convex optimisation prob-
lems. Once the codebook is learned, we can use it to encode
each space-time feature x into α by solving Equation 2.

From each frame we obtain different number of local space-
time features (and corresponding sparse codes). These fea-
tures need to be aggregated to obtain a vector of a fixed
dimension to be suitable for our classification step. Averag-
ing or max pooling are typical ways of doing this. In our
work, we use max pooling as it provides better representa-
tion that is invariant to image transformations and noise [29,
27]. The max-pooling operation is defined as:

z = [ max
i=1...Mv

|αi,1|, max
i=1...Mv

|αi,2|, ..., max
i=1...Mv

|αi,K|], (3)

where Mv is the number of sparse codes associated with a
given space-time volume v.

To obtain a more compact representation of the features
and to speed up processing time, we aggregate the space
time features (and their corresponding sparse codes) over a
window w=10 frames. This step is explained in Section 5.1.

4.2 Facial Landmark Detection - Likelihood
Facial landmark detection plays a large role in face anal-

ysis systems. In our case it is important to know where the
face is in order to compute HOG appearance features around
the facial region and to remove irrelevant STIP features.

Figure 3: An example of patch expert responses in
presence of occlusion. Green shows high likelihood
values, while red means low likelihoods.

We employ a Constrained Local Neural Field (CLNF) [1]
facial landmark detector and tracker to allow us to analyse
the facial region for hand over face gestures. CLNF is an
instance of a Constrained Local Model (CLM) [6], that uses
more advanced patch experts and optimisation function. We
use the publicly available CLNF implementation [1].

The CLM model we use can be described by parame-
ters p = [s,R,p, t] that can be varied to acquire various
instances of the model: the scale factor s; object rotation R
(first two rows of a 3D rotation matrix); 2D translation t; a
vector describing non-rigid variation of shape p. The point
distribution model (PDM) is:

xi = s ·R(xi + Φip) + t. (4)

Here xi = (x, y) denotes the 2D location of the ith feature
point in an image, xi = (X,Y, Z) is the mean value of the
ith element of the PDM in the 3D reference frame, and the
vector Φi is the ith eigenvector obtained from the training
set that describes the linear variations of non-rigid shape of
this feature point, and the vector Ψi is the ith eigenvector
that describes the linear variations of non-rigid shape.

In CLM (and CLNF) we estimate the maximum a poste-
riori probability (MAP) of the face model parameters p:

p(p|{li=1}ni=1, I) ∝ p(p)

n∏
i=1

p(li=1|xi, I), (5)

where li ∈ {1,−1} is a discrete random variable indicating
if the ith feature point is aligned or misaligned, p(p) is the
prior probability of the model parameters p, and

∏n
i=1 p(li =

1|xi, I) is the joint probability of the feature points x being
aligned at a particular point xi, given an intensity image I
(see Section 4.2.1).

We employ a common two step CLM fitting strategy [6,
25]; performing an exhaustive local search around the cur-
rent estimate of feature points leading to a response map
around every feature point, and then iteratively updating
the model parameters to maximise Equation 5 until a con-
vergence metric is reached. For fitting we use Non Uniform
Regularised Landmark Mean-Shift [1].

As CLNF is a local optimisation approach it relies on ini-
tial face detection. However, few face detectors are suitable
for the task in the presence of occlusion. In our work we
used a Deformable Parts Model (DPM) based Zhu and Ra-
manan [31] face detector to initialise landmark detection and
tracking. The subsequent frames were initialised using the
previous frames estimate, only requiring to run the DPM de-
tector multiple times in a video: to initialise; to reinitialise
when tracking fails. It would have been possible to use the
DPM to detect landmarks in every video frame, however it



is not as accurate as dedicated landmark detectors such as
CLNF [1], and is too slow to be used for video analysis.

4.2.1 Likelihood
In CLM patch experts are used to calculate p(li = 1|xi, I),

which is the probability of a feature being aligned at point
xi (Equation 4). As a probabilistic patch expert we use
a Continuous Conditional Neural Field regressor [1], which
given a local n × n image patch centered around current
landmark estimate predicts the alignment likelihood.

The likelihood response from the patch expert will be low
when it is either not aligned or the landmark is occluded,
as they are trained on non-occluded examples of particular
landmarks. This makes them useful as predictors of hand-
over-face gesture descriptors. An example of patch expert
responses in presence of occlusion can be seen in Figure 3.

4.3 HOG
Histograms of Oriented Gradients (HOG) [7] are a popu-

lar feature for describing appearance that has been success-
fully used for pedestrian detection [7], and facial landmark
detection [31] amongst others.

HOG descriptor counts the number of oriented gradient
occurrences in a dense grid of uniformly spaced cells. These
occurrences are represented as a histogram for each cell nor-
malised in a larger block area. HOG features capture both
appearance and shape information making them suitable for
a number of computer vision tasks.

5. EXPERIMENTAL EVALUATION
For our classification tasks, we used the labelled subset of

Cam3D described in Section 3.1 to evaluate our approach. It
has a total of 365 videos of ∼ 2190 seconds, which contains
∼ 65700 frames (∼ 6570 data samples - one data sample per
processing window w = 10).

5.1 Methodology
As a pre-processing step, we performed face alignment on

all of our videos. Face detection was done using Zhu and
Ramanan’s [31] face detector followed by refinement and
tracking using CLNF landmark detector [1]. After land-
mark detection, the face was normalised using a similarity
transform to account for scaling and in-plane rotation. This
led to a 160 × 120 pixel image - as seen in Figure 1. The
output of the facial landmark detection stage was passed to
the three feature extraction sub-systems.

The face detector did not manage to initialise in the first
frame in all of the videos. To cope with this, we performed
backwards tracking alongside forwards tracking from initial
detection, leading to more robust landmark detection.

Even with these advanced tracking techniques, our analy-
sis excluded 16 videos, as face detection on them was unsuc-
cessful. Those videos included either extreme head rotation
or extreme hand occlusion covering most of the face area
that continued throughout the video, thus preventing the
tracker from finding a non-occluded frame to recover (Fig-
ure 4 shows some examples).

Space time features were extracted at the original video
frame rate (30 frames per second) using the implementation
provided by Laptev et al. [18]. We removed the features
not in the facial region by using the results from the land-
mark detector. For sparse coding, we used the implemen-
tation provided by Mairal et al. [23] to learn a codebook

Figure 4: Sample frames from videos that were
badly tracked. Note the extreme occlusion and/or
head rotations.

of size 750 for each training set. The size of the codebook
was obtained by trying out different sizes (200, 500, 750)
and cross validating across all the videos to obtain the best
parameter that produced the minimum data reconstruction
error. A user-independent cross validation was utilised for
this task. Space time features were aggregated using max
pooling across a window w = 10 frames.

For our task, we extracted HOG features from a similarity
normalised 160 × 120 pixel image of a face. We used 8 × 8
pixel cells with 18 gradient orientations and block size of
2× 2 cells. This led to a 9576 dimensional HOG descriptor.
We reduced its dimensionality using Principal Component
Analysis and keeping 90% of explained variance, leading to
1035 dimensions vector per frame. We aggregated the HOG
features in a temporal manner by taking the mean value in
a window w = 10 frames.

As a final feature, we used the landmark alignment like-
lihoods for each of the 68 landmarks. This was aggregated
over a 10 frame window as well by taking its mean.

For classification, our experiments consisted of uni-modal
and multi-modal early fusion of extracted features. We used
a linear SVM classifier using Liblinear [10] library. We also
evaluated an RBF kernel SVM classifier to check if this leads
to any improvement in performance [5].

The optimal parameters for the SVM were automatically
obtained using a leave-one-out cross validation, by holding
all videos of one participant out for testing at each iteration.
To ensure that our results are generalizable, all experiments
were performed in a user-independent approach, as none of
the participants in the test set are used for validation or
training (both in the classifiers and the dimensionality re-
duction techniques).

To obtain the ground truth for each classification task,
we aggregated the annotations provided by experts (As de-
scribed in Section 3) for every window w = 10 frames. We
obtained the ground truth by taking the majority vote across
the window of size w = 10 frames from the two annotators
and assigning the value of the most common label. In case
of a tie (disagreement between the labellers) the window w
was discarded from further analysis – as this implied that
these frames were ambiguous. The total number of frames
discarded at this step were less than 10% of the total number
of frames in all of the categories.

Besides speeding up the computation time of our approach,
the choice of the aggregation window size stemmed from
our interest in coding and detecting hand gestures that are
semantically higher than frame-level micro-expressions. In
other words, we did not expect a change in hand gesture in
less than one third of a second.

For all our experiments, we compared our approach per-
formance with chance baseline and a näıve majority vote
classifier baseline and evaluated the statistical significance
using a Related Samples Friedman’s ANOVA, with a fol-



Hand occlusion Majority vote Uni-modal classification - Linear SVM Multi-modal classification
detection performance baseline Likelihood HOG STIP Linear SVM Non-linear SVM
F1 score 0.69 0.66 0.82 0.68 0.83 0.80
Accuracy 0.56 0.67 0.83 0.56 0.83 0.80

Table 1: Hand detection classification results comparing uni-modal and multi-modal feature fusion. Multi-
modal fusion of features using a linear SVM classifier had the best detection rate (shown in bold), significantly
higher than a näıve baseline.

low up post-hoc tests with a Bonferroni correction to p val-
ues [11]. This was chosen as we wanted to perform pair-wise
comparisons and the data distribution cannot be assumed
to follow a normal distribution.

5.2 Hand Occlusion Detection
The first task in our experiments was hand-over-face oc-

clusion detection. The face was considered to be occluded
if one or many facial regions are labelled as occluded. For
this task, we used a binary classifier to detect if the face is
occluded or not. We trained a linear SVM classifier using
single modalities and feature-level fusion. Table 1 shows the
classification results (accuracy and F1 score) of uni-modal
features and multi-modal fusion. We found that the best
performance is obtained from the multi-modal linear classi-
fier (Accuracy 0.83, F1 score 0.83), which is higher than a
näıve majority vote classifier (Accuracy 0.56, F1 score 0.69)
or chance (Accuracy 0.5). To check the significance of the
improved results, statistical tests showed that our classifier
yielded significant improvement over chance (p = 0.001).

We also tested the muti-modal fusion in a non-linear SVM,
which did not produce better results (Accuracy 0.80, F1
score 0.80). This may be because using a complex kernel
has little - if any- impact on the classification performance
if we are fusing different features of different representations.

If we look at single modality results, we notice that the
feature that had the highest uni-modal classification results
is HOG, which indicates that appearance features can differ-
entiate well between occluded and non-occluded faces, even
in the challenging conditions of hand occlusion.

5.3 Classification of Hand-over-Face
gesture descriptors

After occlusion detection, the second task was to classify
hand-over-face gesture descriptors (hand shape, hand action
and facial region occluded). We treated each descriptor as
a separate classification task. Hand shape and facial region
occluded classifications were performed per window w, while
hand action classification was done per video.

Facial region occluded descriptor’s values are not mutually
exclusive, i.e. we can have occlusion in more than one face
region at any window w. That is why we used three binary
classifiers, one for each face region. In each experiment, we
used a linear SVM classifier using single features then fused
the features in a multi-modal classifier. Table 2 shows the
classification results using these different approaches, high-
lighting the best obtained result for each classification task.

Taking a closer look at the data distribution of different
descriptors’ values, we found that the data was mostly un-
balanced. This is expected for this type of problems because
we are analysing gestures in natural expressions with high
variance in individual differences so we do not expect to see
all the descriptors’ values appearing with the same frequency
in all the occlusion videos. This was particularly extreme in

the chin region as we had hand covering chin in 92% of the
occlusion videos. This is not a surprise as the hand would
cover the chin in most of the face occlusion gestures as it
comes from below the face. To remove the unbalanced ef-
fect for the chin classifier, we added more negative samples
that were randomly selected from Cam3D dataset to the
pool of videos used for chin training and classification. Dif-
ferent distribution of the descriptors’ values among different
participants also presented a challenge in the classification.
Since our experiments are user-independent, unbalanced dis-
tribution of cues presented a challenge to the classifiers.

5.3.1 Facial region occluded
Table 2 shows the classification results for facial region

occluded descriptor using the uni-modal and multi-modal
classification approaches, highlighting the approach that has
the best performance for each task. For chin occlusion de-
tection, multi-modal fusion of features in a non-linear SVM
classifier had the best performance (Accuracy 0.87, F1 score
0.84), just slightly higher than mutli-modal linear classifi-
cation (Accuracy 0.85, F1 score 0.83). For lips occlusion
detection, multi-modal linear SVM classifier had the best
performance (Accuracy 0.90, F1 score 0.94). For middle face
area occlusion detection (cheeks and nose), multi-modal lin-
ear SVM classifier had the best performance (Accuracy 0.78,
F1 score 0.86). This confirms that multi-modal fusion of
the feature performed better in all the facial region occluded
classification tasks. Our detection results proved to be sta-
tistically significantly higher than a näıve chance baseline for
the chin, lips and middle face areas (with p=0.003, p=0.001
and p=0.014 respectively).

5.3.2 Hand Shape
Classification of hand shape was implemented as a 4 class

classification problem (one against all), as shape descriptor’s
values are mutually exclusive per processing window w. The
classifier categorised the hand shape as one of four classes:
fingers, open hand, closed hand and hands together (tan-
gled). As shown in Table 3, Multi-modal fusion of features
outperforms single modalities with an accuracy of 0.36 that
is significantly higher than the majority vote classification
baseline (Accuracy 0.14) (p = 0.001) and chance baseline
(Accuracy 0.25).

5.3.3 Hand Action
For Hand action, the data was labelled as one label per

video, describing the hand action as static or dynamic in
the majority of the video frames. Therefore, we aggregated
the features to obtain one feature set per video. Space time
features (STIP) were aggregated using max pooling in the
same way described in Section 4.1, this allowed us to capture
the salient features in the sparse codes. For HOG and likeli-
hood features, we calculated means and standard deviations
to capture the changes in the features across the video.



Facial Majority vote Uni-modal classification - Linear SVM Multi-modal classification
region baseline Likelihood HOG STIP Linear SVM Non-linear SVM

Chin F1 score 0.68 0.84 0.68 0.68 0.83 0.84
Accuracy 0.56 0.69 0.85 0.56 0.85 0.87

Lips F1 score 0.78 0.88 0.92 0.90 0.94 0.93
Accuracy 0.56 0.82 0.88 0.83 0.90 0.89

Middle face area F1 score 0.73 0.86 0.85 0.87 0.86 0.86
(cheek/nose) Accuracy 0.61 0.77 0.76 0.77 0.78 0.77

Table 2: Classification results of facial region occluded descriptor comparing uni-modal and multi-modal
feature fusion. Occlusion of each face area is treated as a separate binary classification problem. Multi-modal
fusion of features outperforms single modalities in all the classification tasks.

Hand shape Majority vote Uni-modal classification - Linear SVM Multi-modal classification
classification results baseline Likelihood HOG STIP Linear SVM Non-linear SVM
Accuracy 0.14 0.31 0.35 0.19 0.36 0.36

Table 3: Classification results of hand shape descriptor comparing uni-modal and multi-modal feature fusion
as a 4 class classification problem. The four classes are: fingers, closed hand, open hand and hands together.
Multi-modal fusion of features outperforms single modalities with an accuracy that is significantly higher
than the majority vote baseline.

We used a binary classification approach to categorise the
hand action as dynamic or static. As shown in Table 4, SVM
linear classification did not perform well on this descriptor,
with classification accuracies swinging around the majority
vote baseline accuracy, which is 0.7 (which is already high
due to unbalanced data distribution). Multi-modal classifi-
cation using a non-linear SVM classifier achieved the high-
est results (Accuracy 0.76, F1 score 0.83) which is higher
than the majority vote and significantly higher than chance
(p=0.007) . Unbalanced dataset and initial video segmenta-
tion criteria in Cam3D dataset can explain the low increase
of the classification results of this descriptor compared to a
näıve majority vote classifier, for example: some video seg-
ments have one part of the video with hand motion and the
rest without motion, which indeed introduced confusion fac-
tor to the classifier. Re-segmenting the videos into shorter
segments based on the hand motion would improve the clas-
sification accuracy, but we leave this part to future work.

5.4 Discussion
Figure 5 summarises our classification results for hand

detection and classification obtained for for the six classi-
fication tasks. The results display mostly binary classifiers
except for hand shape where we employed a 4 class classifier,
hence the lower classification values. Our multi-modal fu-
sion approach showed a statistically significant improvement
over a naive classifier for all of our classification experiments.

For the challenging nature and novelty of the gesture clas-
sification task, we consider these results satisfactory, consid-
ering the nature of the unbalanced dataset we are dealing
with (few training samples for some categories). Unbalanced
distribution of the descriptors’ values among different par-
ticipants presented a challenge in the classification as well.
Since our experiments are user-independent, unbalanced dis-
tribution of cues presented a challenge to the classifiers.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented the first automatic approach

to tackle the challenging problem of detection and classifi-
cation of hand-over-face gestures. We treat the problem as

Figure 5: Classification results summary for all the
classification tasks. All are binary classifiers except
for (hand shape) where we employ a 4 class classi-
fier, hence the lower classification values. Our multi-
modal fusion approach showed statistically signifi-
cant improvement over naive classifier baselines for
all of our hand detection and classification tasks. (*
p<0.05,** p<0.01)

two tasks: hand occlusion detection, then classification of
hand gesture cues, namely - hand shape, hand action and
facial region occluded . We extract a set of spatial and
spatio-temporal features (Histograms of Oriented Gradients
(HOG), facial landmark detection likelihood, and space-time
interest points (STIP) features). We use feature-specific di-
mensionality reduction techniques and aggregation over a
window of frames to obtain a compact representation of our
features. Using a muti-modal classifier of the three features,
we can detect hand-over-face occlusions and classify hand
shape, hand action and facial region occluded significantly
better than the majority vote and chance baselines. We also
demonstrate that mutli-modal fusion of the features proved
to outperform single modality classification results.

We believe that adding more temporal features and im-
proving the segmentation of the videos would improve the
hand action detection results but we are leaving this to fu-



Hand action Majority Uni-modal - Linear SVM Uni-modal - non-Linear SVM Multi-modal classification
classification vote Likelihood HOG STIP Likelihood HOG STIP Linear SVM Non-linear SVM
F1 score 0.81 0.81 0.81 0.81 0.80 0.82 0.81 0.80 0.83
Accuracy 0.70 0.70 0.70 0.70 0.70 0.73 0.70 0.67 0.76

Table 4: Classification results of hand action descriptor comparing uni-modal and multi-modal feature fusion.
Classification performance remained very close to the majority vote baseline, with the multi-modal fusion
of features using a non-linear SVM classifier having the best results. Note that the unbalanced dataset and
initial video segmentation criteria in Cam3D dataset influenced the performance of classifying this descriptor.

ture work. Future work also includes testing our multimodal
features using more complex classifiers that incorporate tem-
poral features. The coding schema can also be improved to
include more hand articulations.
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