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ABSTRACT
This paper describes the use of a decision-based fusion frame-
work to infer emotion from audiovisual feeds, and investi-
gates the effect of noise on the fusion system. Facial expres-
sion features are constructed from linear binary patterns,
and are processed independently of the prosodic features.
A linear support vector machine is used for the fusion of
the two channels. The results show that the recognition
accuracy of the bimodal system improves on the individual
channels; moreover, the system maintains a reasonably good
performance in the presence of noise.

1. INTRODUCTION
Recent studies indicate that there is a fundamental inter-
dependence between emotion and cognition, that is, emo-
tion can influence both the process of thinking (how we
deal with information) and the content of thinking and be-
haviour (what we think and do) [2]. Therefore, with human-
computer interaction (HCI) researchers seeking to make sys-
tems efficient, more user-friendly and receptive to users’
needs, it follows that emotion can no longer be excluded
from the research.

It has been shown that emotion can be inferred from facial
expressions, body posture, speech utterances and physio-
logical signs, for example, the pulse, heart rate and skin
conductance [7]. The motive for multimodal research can
be found in how the human brain recognizes emotion. It
has been found that the brain bases its decision on inte-
grated information emanating from multiple sensors. Ac-
cording to Campanella [1] there is clear empirical evidence
that the brain integrates information from face and voice.
Campanella further states that it is advantageous for the
brain to integrate these two sources of information for the
following reasons: (i) by exploiting redundancies between
the face and voice, it increases the reliability of sensory es-
timates, (ii) by combining non-redundant, complementary
cues it maximizes information gathered from the two modal-
ities.

The work presented in this paper is based on the same
database used by Haq et al. [5] who investigated the fu-
sion of the audio and video channels at feature and decision
levels. The faces of the actors used in the evaluation were
painted with markers (see Figure 1 for sample image). The
authors extracted the facial features by manually labelling
the first frame of each video sequence, and then using a
marker tracker to track the x and y positions of the painted
markers. These positions together with audio features were
passed through a feature selection algorithm, after which
linear transformation techniques were applied for feature re-
duction. The audio and video features were combined using
Gaussian classifiers at different fusion levels. The algorithm
yielded a 98% emotion classification rate based on the audio-
visual features, 53% for audio features and 98% for visual
features.

We adopt a decision-based fusion approach which integrates
decision outputs from the facial expression and vocal affect
analysis subsystems. The facial expression analysis subsys-
tem encodes each image in the video sequence as linear bi-
nary patterns from which feature vectors are constructed.
Classification is achieved through Random Forests. The au-
dio analysis system extracts prosodic features such as the
pitch and speech rate to characterize emotions, and classi-
fies them using pairwise support vector machines. Classifier
fusion is employed for the integration of the two channels.
This work is discussed in section 3.2.1.

We extend the study to investigate the effect of noise on the
emotion recognition system. Although most of the audio-
visual recordings used are made under quiet, laboratory con-
ditions, the target applications will typically be deployed in
environments with cluttered backgrounds and various levels
of ambient noise. It is therefore important to study noise
effects to determine if noise-reduction mechanisms should
be considered in the design of emotion recognition systems.
However, very little research has been conducted in this area.
The few works that analyze noise effects in emotion recogni-
tion have been limited to the speech signal. Schuller et al [8]
investigated emotion estimation from noisy speech (additive
white noise and noise resulting from different audio captur-
ing techniques) and showed how different acoustic feature
sets adapt to the noisy conditions. You et al [10] proposed an
enhanced Lipschitz embedding algorithm for emotion anal-
ysis and classification, and compared it with other dimen-
sionality reduction methods. Their results show how the
proposed method consistently outperfomed other methods



even when the speech signal was infused with white noise at
various signal-to-noise ratio (SNR) levels. We differ in that
we analyze the effect of a corrupt video signal on affect esti-
mation. Our observations are summarized in section 3.2.2.

2. METHODOLOGY
2.1 Database
The analysis in this paper is based on the Surrey Audio-
Visual Expressed Emotion (SAVEE) database [5]. The database
consists of four actors of ages 27 to 31 depicting the widely-
used six basic emotions (anger, disgust, fear, happiness,
sadness and surprise), plus the neutral state. The record-
ings consist of 15 phonetically-balanced TIMIT sentences
per emotion (with 15 additional sentences for neutral state)
resulting in a corpus of 480 British English utterances. The
actors’ frontal face are painted with 60 markers as means for
facial feature extraction for the work presented in [5]. This
study will however not make use of the facial marker infor-
mation, and will instead prove that simple appearance-based
techniques can achieve similar (comparable) results.

2.2 Facial Expression Recognition
The facial expression recognition component makes use of
the NevenVision FaceTracker for facial feature point track-
ing, and produces 22 feature points as shown in the first
sub-image of Figure 1. These points are used to locate
the face, which is then cropped and normalized for accu-
rate comparison. We adopt linear binary patterns (LBP)
for the extraction and representation of facial expressions as
they have been shown to be effective and efficient for emo-
tion recognition, and also perform stably and robustly when
fed compressed low-resolution video sequences [4]. The LBP
operator assigns a code to every pixel of an image by thresh-
olding the 3x3-neighbourhood of each pixel with the centre
pixel value and considering the result as a binary number.
This is represented by the equation below.

The local binary code for each pixel p in image I is

LBPp =

N−1∑
n=0

s(gn − gp)2n, s(x) =

{
1 x >= 0
0 x < 0

(1)

where n represents the neighbouring pixels (N = 8), gn
greyscale value of the neighbour pixel and gp, greyscale value
of centre pixel.

Once each pixel has been assigned a code, the image is di-
vided into regions of 10x10 pixels to capture micro-patterns,
such as edges and flat areas, that could help discriminate be-
tween the different facial expressions. Six-bin histograms of
the LBP codes are computed for each region, and concate-
nated to form a feature vector which offers a concise repre-
sentation of the face image (this method allows for spatial
information to be retained).

For classification, the algorithm loops through a video se-
quence and obtains a feature vector for each frame. The
feature vector is fed into Random Forests (with tree count
of 100) from which average probabilities are calculated for
every emotion. The probabilities are integrated over the
time span of the video sequence to determine the most likely
emotion.

2.3 Vocal Affect Analysis
Emotion can be detected from speech by analysing the char-
acteristics of speech utterance waveforms. Voice cues such as
the pitch, voice quality, intensity (perceived loudness) and
temporal aspects of the speech indicate the nature of the
tone or emotion behind an utterance. We employ an algo-
rithm described in [6] which uses the OpenSMILE library
[3] to extract low-level prosodic features such as the Mel-
frequency cepstral coefficients, signal energy, and those men-
tioned above. Descriptive statistics (e.g. min, max, mean,
percentiles, peaks, etc.) are computed and form part of the
acoustic feature vector. The vector is then passed onto a
correlation-based feature selection method to reduce dimen-
sionality.

The classification task is achieved by training pairwise support-
vector machines with radial basis function (RBF) kernels.
The pairwise comparisons are combined through a voting
mechanism; the output probabilities and the count of pair-
wise wins for each emotion are recorded for fusion purposes.

Figure 2: The pairwise framework for the inference
of emotion from speech.

2.4 Multimodal Fusion
In Sharma’s extensive introduction to fusion of multiple sen-
sors [9], three distinct levels of integrating data are high-
lighted, namely, data, feature and decision fusion methods.
Data fusion is automatically excluded from the consideration
as it applies to observations of the same type (for example,
two video camera recordings taken at different angles). Fea-
ture fusion is applied when the raw observations have been
transformed into feature representations and is ideal for syn-
chronized feeds. Decision fusion, also called late fusion, deals
with the fusion of decisions computed independently by the
respective components.

We have chosen decision fusion given its robust architecture
and resistance to sensor failure. Although it has been noted
that this approach loses information of mutual correlation
between the audio and video modalities, it will nevertheless
be sufficient for the database used in this study.

A linear SVM is used to combine the audio and video feeds.
The probability estimates for each class obtained from the
facial expression and vocal affect recognition components
are combined to form a feature vector, which is fed into the
SVM for classification.

3. EXPERIMENT & RESULTS
3.1 Experimental Setup
Two experiments with the following objectives were setup:
(a) to compare the two modalities separately and integrated,
(b) to study the effect of a corrupt signal on the overall
performance of the system.



Figure 1: The extraction of linear binary patterns from an image to construct features for video emotion
classification.

Table 1: Emotion classification accuracy (%) based
on a five-fold cross validation

Emotion
Video Audio Bimodal

classifier classifier classifier
Anger 100 83 98
Disgust 82 77 93
Fear 92 68 97
Happiness 98 70 98
Neutral 100 96 100
Sadness 95 72 100
Surprise 95 71 95
Weighted Average 95 79 98

The motive behind the second experiment is to synthesize
a noisy environment as a step towards making HCI applica-
tions conform to our natural settings. The increasing trend
of mobile computing highlights the necessity of HCI appli-
cations that will work with signals of poor quality. The
experiment therefore aims to investigate the robustness of
the fusion system when it is fed a corrupt or low resolution
signal.

The first experiment was conducted using the five-fold cross-
validation methodology. This resulted in each fold contain-
ing 96 files for testing and 380 files for training. The Face-
Tracker failed on two of the files which were then excluded
from the experiments. One of the folds from the five parti-
tions was used for analysis in the second experiment.

3.2 Results
3.2.1 Fusion Analysis

Table 1 lists average classification rates for the unimodal and
bimodal classifiers over five folds. With the exception of the
class anger, the audio-visual fusion model outperformed the
individual modalities. These results are congruent with the
findings presented in the Related Works section.

Table 2 shows a confusion matrix for the audio-visual fusion
classifier. According to the results, surprise was misclassi-
fied with happiness three times. This could be explained
by the common characteristics of the two emotions, that
is, both having large mouth movements and being open ex-
pressions. The anger, disgust and fear emotions also have
similar characteristics such as the wrinkling of the glabella
and the nose region.

As mentioned earlier, the results above are discussed in rela-

Table 2: Confusion matrix of the bimodal classifier
Predicted A D F H N Sa Su
Actual [#]
Anger 59 1 0 0 0 0 0
Disgust 1 56 2 0 1 0 0
Fear 0 0 57 0 0 2 0
Happiness 0 0 0 59 1 0 0
Neutral 0 0 0 0 120 0 0
Sadness 0 0 0 0 0 60 0
Surprise 0 0 0 3 0 0 56

tion with the work of Haq et al. The video-only classification
rate reported was 98.3% and the fusion-classifier yielded a
98.3% recognition rate. The values obtained in our study,
95.2% and 98.0% for the respective categories, are compa-
rable having relied solely on appearance-based methods.

The high video classification accuracy could be a reflection
of the weak database chosen and not necessarily the strength
of the LBP algorithm. The scarcity of fully-labelled, public
audio-visual databases remains a problem in the field, espe-
cially those related to categorical emotions.The performance
could also be attributed to the nature of the emotion set.
Basic emotions are noted for carrying signature expressions
(for example, nose wrinkle for disgust and brow furrows for
anger) which make it easy for template matching.

3.2.2 Noise Analysis
A subset of videos were corrupted by adding white Gaussian
noise. Figure 3 shows the result of the noise infusion at
different noise variances. An increase in noise variance leads
to difficulty in deciphering the images. These videos were
passed through the emotion recognition system, with the
sound untainted. The effect of the image noise on the system
is depicted in Figure 4.

The figure shows the performance of the three classifiers as
the Gaussian noise variance is increased from 0 to 0.005. The
recognition capability of the facial expression subsystem de-
creases as the noise is increased, with the classification rate
reaching 39.6% for a variance of 0.005. Although the fusion
classification rate decreases with the variance, it does so at a
significantly lower rate than that of the video classifier, and
maintains an average that is greater than 80%.

This experiment proves that multimodal systems (and in
particular decision-based fusion systems) are able to with-



Figure 3: Samples of images corrupted with different
variance levels of white Gaussian noise.

Figure 4: The peformance of the three classifiers
under varying levels of white Gaussian noise.

stand sensor failures and are therefore ideal for environments
which are susceptible to noise, and ideal for hardware with
quality problems.

4. CONCLUSIONS
We investigated the fusion of video and audio channel for
emotion recognition and the effect of image noise on the
performance of the system. We found that the bimodal ap-
proach yields higher classification accuracies (97.7% com-
pared to 95.25% and 79.1% for video-only and audio-only
classifiers respectively) as a result of the complementary cues
found in the different input channels.

Corrupting the video signal with noise showed that despite

the poor performance of the video-only classifier (classifica-
tion rate of 39.6%), the bimodal classifier was able to assign
more weight to the audio classifier and therefore maintain a
good overall classification rate. This confirmed the premise
that decision-based multimodal systems are not compro-
mised by sensor failures, and that they can be deployed in
environments which are highly susceptible to noise.

Future work includes extending the multimodal fusion ap-
proach to a naturally-elicited complex emotion set consisting
of mental states such as thinking and concentrating. This a
good step towards designing for scenarios that are likely to
happen in normal human-computer interactions. We plan
to study the effect of noise on both the video and audio sig-
nals while moving toward realistic noisy conditions, such as
varying lighting conditions and ambient sounds. This work
will be applied to both early and late fusion techniques for
a comparative analysis.
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