
Self Calibrating Clocks for
Globally Asynchronous Locally Synchronous Systems

S.W. Moore, G.S. Taylor, P.A. Cunningham, R.D. Mullins and P.Robinson
University of Cambridge, Computer Laboratory,

New Museums Site, Pembroke Street,
Cambridge CB2 3QG, U.K.
Simon.Moore@cl.cam.ac.uk

Abstract

We present a local clocking mechanism based on a
tunable delay line which calibrates itself from a low
frequency global clock. After initial tuning, the local clock
remains calibrated when environmental conditions change.
Each module of a large system on a chip can use one of
these clock generators running at the optimal frequency for
the module.

Communication between locally synchronous blocks is
provided by a globally asynchronous interconnect. Reliable
low latency communication between the asynchronous
interconnect and a local clock domain is made possible by
stretching the local clock if a metastable condition could be
encountered. Stretching the clock just requires the rising
clock edge to be prevented from entering the tuned delay
line. Similarly, a sleep state can be entered by stopping the
clock and wakeup is almost instantaneous. Fine grained
sleeping is possible by sleeping whenever there is no work
to be undertaken and waking up as soon as new data
appears over the asynchronous interconnect.

1. Introduction

Globally Asynchronous, Locally Synchronous (GALS)
systems offer a high performance and low power solution
for system on a chip implementors [4]. Clocked building
blocks can be integrated onto one chip with independent
clocks for each block and an asynchronous interconnect
between them.

Synchronising to asynchronous data is a well known
problem which can be crudely resolved by latching the
data at least twice to allow time for metastability in the
latches to resolve. This does not prevent metastability
from propagating though the chance is small [5]. A more
pressing concern is the latency that is introduced by this
scheme.

An alternative strategy is to stretch the clock when there

is a risk of metastability [1, 9, 10]. These schemes rely
on generating the clock from a delay line because such a
clock is simple to stop by gating the clock pulse. Inevitably
the performance of a simple delay line is dependent on
manufacturing tolerances and environmental conditions.
Our experience shows that for most CMOS processes an
error of at least 10% can be expected.

In order to provide a far more accurate delay line
we propose a run-time calibration mechanism. A low
frequency clock (e.g. a 32kHz watch crystal) is used as a
reference source and a measurement is made of the number
of high frequency clock cycles per low frequency period.
The delay line is then adjusted to ensure that it is within
1% of the desired frequency.

2. Overview

An abstraction of the calibratable delay line with GALS
interface is shown in Figure 1. An oscillator is formed
from a loop consisting of an inverter, arbiter and delay
line. The delay line is tuned by a clock calibration circuit
— a synchronous finite state machine driven from the low
frequency reference clock.

Asynchronous input data arrives in bundled data form,
i.e. for each data bus there is an associated request
signal which indicates when the data is valid. Bundled
data communication structures can provide a reliable
asynchronous interconnect between independently clocked
synchronous domains. This communications structure is
in contrast to Q-modules [7] which sample input signals
at regular intervals regardless of whether or not they are
changing.

The GALS control block derives data enable signals in
response to new data from the asynchronous interfaces.
These enables are timed via the clock pause block to
ensure that asynchronous data is only sampled when setup
violations will not occur. Thus the clock pause block
must make a decision about when the next clock edge is
likely to occur and prevent data enables from being set



32.768kHz referenceR A

E E E

0 0

0 1 n

32.768kHz referenceR A

E E E

0 0

0 1 n

GALS
control

R A1 1R A1 1 R An nR An n

control
signals

(cclk,cdir,cmax,cmin,
fclk,fmode,fmax,fmin,
fastmode)

din dout

sleep

idle

docalib

C

clkallowed

clk

clk

dclk
eclk

clock
pause

...

...

tunable delay

calibration control

Figure 1. Delay Line with GALS Interface

too close to the clock edge. This circuit relies on Seitz
arbiters [8] which may take an unbounded time to resolve
if an internal metastable state arises. Fortunately it is easy
to delay the clock edge to allow the arbiters time to resolve
by keeping clkallowed (clock allowed) low. However,
during typical operation metastability will not impact on
performance as long as the clkallowed signal arrives
ahead of the dclk. The clock pause circuit described in
Section 5 achieves this.

3. Tunable delay line

Each cell in the delay line is split into two parts, the delay
and completion section, shown in Figure 2, and the control
section shown in Figure 3. The control section is further
sub-divided providing coarse and fine adjustment of the
tunable delay. The number of delay cells required depends
on the range of clock frequencies desired, the length of
each delay element, the expected range of environmental
conditions and the implementation technology.

Operation can be described by considering a transition
on the delay input din. The transition is delayed by

�
or

by
�����

depending on fout. Typically
�

is small, for
example,

�����
	
. The transition is then directed either to

1

0
mux

tap
orout

orin

din dout

fout cout

d

D

Completion

Delay

Figure 2. Abstraction of the delay cell

the next delay cell, via dout, or into a chain of OR gates,
via tap, depending on cout. The number of delay cells
through which the transition passes, encoded in inverse
unary on array of cout signals, is the coarse setting.
Likewise an array of fout signals determines the fine
setting. The tap signals from each cell are ORed together
to produce the delay line output. A linear structure is used
which delays the signal by an amount proportional to the
tunable delay length. Other OR structures are possible but
might incur large discontinuities in the tunable delay.

Although two separate delay elements and a multiplexer
are shown, the real implementation is technology specific.
In a CMOS implementation with standard cells, the delay
can be obtained by one or more complex (slow) gates
(Figure 4). Fast/slow selection can obtained by altering
an input which affects drive strength thus alters the
input-output delay. The corresponding full custom CMOS
implementation is a NAND with variable drive strength
(Figure 5). The delay of each cell should be such that
enough cells are in use to permit the fine control range to
be at least that of one coarse step, otherwise there will be
gaps in the range of delays possible.

Note that only delay cells which are actually required
are active, enabling many extra cells to be added to take
care of extreme environmental conditions (such as low
temperature) without increasing the power consumption
during normal operation. The number of delay cells could
be reduced by adding a constant, non-tunable, offset delay
at the start of the delay line. Other schemes are also
possible, for example having a fixed number of delay cells
and only the fine control mechanism, or using inverters
with capacitive loading controlled by a shift register [2].

The control section forms two bidirectional shift
registers. The upper shift register provides coarse control.
Zeros are shifted in from the left and ones from the
right under control of cdir and cclk. Minimum and

m
u
x0

1

m
u
x

11
10
01
00

cinl

cinr

finl

1

cout

finr

fout

fclk
fmode

cdir
cclk

fine

coarse

fmaxin
fmaxout

QD

QD

Figure 3. Control section of a delay cell



dout

orin

din

cout

fout

orout

Completion

Delay

Figure 4. Standard cell delay cell

fout

dout

din

cout

fout

Figure 5. Full custom delay cell

maximum is indicated by the state of the left and right most
cells. The lower shift register, controlled by fmode and
fclk provides fine control. Minimum is indicated by the
state of the left most cell. Maximum occurs when all of
the cells from the left up to and including the cell at which
the delay is tapped are at their slow setting and is detected
by a second OR structure. The fine setting can be reset
to minimum (all 1s) or set to maximum (copied from the
coarse shift register).

Adjusting the delay length is a two step process. First
consider the case of decreasing the delay. If the fine setting
is not at minimum the fine setting can simply be decreased.
However, if the fine setting is already at minimum, first the
fine setting must be set to maximum and then the coarse
setting can be decreased. This mechanism stays “on the safe
side”; if the coarse setting were to be decreased first, the
clock period might become too short until the fine setting
is later re-adjusted. Likewise when increasing the delay,
the coarse setting is incremented before the fine setting is
decreased.

Normally this adjustment process would occur once per
second, frequently enough to track normal environmental
changes. However, at initialisation, or during rapid
environmental changes it is desirable to calibrate more
quickly. A fastmode signal, not shown in the diagram,

is generated which indicates when the last few adjustments
have been in the same direction (increase or decrease) and
thus calibration can take place more quickly.

Depending on the delay cell implementation, some
assumptions may need to be made to ensure that glitches
are not generated and propagated through the delay
line when the shift-registers are adjusted. For example,
whilst changing the delay selection multiplexer when
a transition is travelling through the delay line. In the
test implementation, such glitches are too short to be
propagated. An alternative solution might use a more
complex control structure permitting a new delay length to
be selected before the previous one is de-selected.

4. Calibration control

The calibration control module is shown in Figure 6.
Calibration is performed by counting how many periods of
clk occur during one 32kHz reference clock period and
then adjusting the tunable delay by one step. Calibration
is performed once per second except when fast-mode is
active, in which case counting and adjustment takes place
repeatedly until calibration is complete.

A synchronous state-machine, shown in Figure 7,
clocked from the 32kHz reference forms the basis of the
control module. The state machine is one-hot encoded to
ensure that the state outputs, some of which are used to
clock other flip-flops, are glitch free. A divider, consisting
of a chain of toggle flip-flops, informs the state machine
when a calibration is due. The 1Hz signal is synchronised
with the 32kHz clock falling to ensure proper timing. A
ripple counter (10 bits in the test implementation) is used
to count how many clk periods occur during the reference
period.

The state-machine drives some logic which controls the
delay line. Ssetup samples the comparator result, Sclka
and Sclkb trigger the two stages of the adjustment process.

Operation is as follows. Initially the state-machine is in
state SwaitHz waiting for the 1Hz signal, upon which
the next state Sclear clears the counter. The next state
Scount enables counting, via the arbiter discussed below.
The counter counts the number of positive clk edges,
until the next state Swait reasserts the upper request
input to the arbiter. The Swait state provides time for the
counter and the comparator to stabilize before the Ssetup
state samples the comparison result and other signals
inside the delay line. The comparator result determines if
the tunable delay should be increased or decreased. The
following Sclka and Sclkb states then perform the two
step adjustment process. Finally another calibration is
performed immediately if fastmode is set, or if not the
state machine waits for the next 1Hz signal. There are
several standard synchronous timing assumptions which



divider D Q

arbiter

32.768kHz

1Hz

Scount

clk
docalib

one-hot encoded
state machine

synchronous

Sclear

Sclka

Sclkb

Ssetup

logic

fastmode

clear

ripple
counter

calibration
value

com
parator

inc ...

control signals
to/from

delay line

Figure 6. Calibration control module

Scount

1Hz

!1Hz

!1Hz1Hz

fastmode

!fastmode

SwaitHz

SclearSwaitHz0

Swait

Ssetup

Sclka

Sclkb

Figure 7. One-hot encoded state machine

are easily met with the low clock period of �������� s.
An arbiter with only one output connected is used. If

the arbiter (and input inverter) were replaced with a simple
AND gate it would be possible for the counter to receive
a runt clock pulse, perhaps resulting in metastability on
the comparator output. Although one �������� s clock period
would be available for the metastability to resolve before
the comparator output would be sampled. The arbiter was
added to ensure that the counter always receives a proper
clock. There is no safe way for the clocked state-machine
to wait for the arbiter so the other output is not connected.
It is assumed that the arbiter completes within a ��������� s
period. Note that it is necessary to enable/disable clk from
reaching the counter rather than relying on docalib as
clk might already be running at request of the user.

5. GALS Interface
The GALS interface consists of a GALS control block

per asynchronous interface, and one clock pause block.
The clock pause block in Figure 8 consists of a number
of arbiters, one per GALS control block. Each GALS
control block may request that they may present new data
to the clocked system by raising RC � . The arbiter will only

arb arb

RC AC RC AC

arb

sleep in_sleep
0 0 nn

eclk

clkallowed

Figure 8. Clock Pause Block

S

R

Q

circuit
Synchronous

Rsafe Asafe

New_data

C
Consumed

+

clk
en

clk

Data
Asynchronous

Figure 9. GALS Control Block

acknowledge this request (raises AC � ) when eclk is low.
If eclk and RC � rise simultaneously then the arbiter may
go metastable internally, but will safely choose one of the
requests over the other.

The eclk signal predicts when the positive dclk signal
(from Figure 1) is near and thus when the next positive clock
edge needs to be produced. In this example eclk predicts
that the clock is likely to go high if it is currently low. When
eclk is high it locks out all of the GALS interfaces by
forcing the arbiters to grant in its favour.

When eclk is low, it releases its hold on the arbiters
giving the GALS control blocks a window of opportunity
to supply new data to the synchronous system. The timing
of this window can be adjusted by delaying eclk so that
the window of opportunity is near (but not too close to)
the rising clock edge (clk). However, if clk is to be
rarely delayed by the arbitration process then the window
of opportunity must not be too close to the rising edge of
dclk.

A GALS control block is shown in Figure 9. When new
data arrives (New data+)1 a request is made (Rsafe+) to
the clock pause block which acknowledges with Asafe+
when it is safe to supply the synchronous circuit with new

1New data+ means that New data is going high.



data. When Asafe+ is received it sets the RS flip-flop and
enables the D-latches so that the new data can be latched on
the next clock edge. Shortly after the RS flip-flop is set, the
Rsafe- transition will release the arbiter in the clock pause
circuit. It is important that Rsafe is high for as short a
period as possible in order to minimise the risk of delaying
the system clock.

When the synchronous circuit consumes the data on the
rising edge of clk, the Consumed signal is raised which
lowers the enable to the data-latches. Consumed going
high also allows the asynchronous interface to respond by
lowering New data which results in Consumed going
low, all ready to receive some more data.

6. Analysis of the GALS interface

To ensure that it is unlikely that the New data signal
will delay the clock we need to test the critical path
from New data followed by eclk going high to the
clockallowed signal going high, i.e. how long the
GALS interface can delay the clockallowed signal.
SPICE simulation of a 0.35 � m CMOS implementation
indicates that this critical path is 0.98ns provided eclk+ is
sufficiently after New data+ that the arbiter does not go
metastable. If metastability does occur then the resolution
time depends on the exact timing of the input signals, their
rise time and the gain inside the arbiter.

If the tuned delay line were set at 2.5ns (to generate a
200MHz clock) then the GALS interface would be allowed
to produce data when the clk is high (for 2.5ns). When
clk goes low, arbitration begins, which we know will take
0.98ns. Even if metastability resolution takes no more than
1.5ns, the clock (clk) will not be delayed. In the best case
it will take around 0.5 clock cycles to transfer data from
the asynchronous interface to the synchronous system, and
in the worst case 1.5 clock cycles. If the asynchronous
interface is eager (e.g. it is supplying data buffered in a
FIFO) then it is able to supply new data every clock cycle.

Metastability can, none the less, cause the tunable delay
line to stall from time to time which can interfere with the
calibration process. A margin for error may be added to the
target delay length to compensate, or two delay lines may
be used, one being calibrated whilst the other is in use [3].

The GALS control block is an asynchronous finite state
machine. Various internal delay assumptions are made but
the external signals are delay insensitive. Analysis of the
internal delays (using our in house tool) reveals that all
assumptions satisfy the rule “any two gate delays takes
longer than any one gate delay”. The most critical delay
is the D-latch enable signal which must be set before the
clock can go high. If necessary an additional delay margin
may be added to the feedback from the RS flip-flop to delay
Rsafe-.

7. Testing the tunable delay line

A test implementation of the tunable delay line was
created for a Xilinx XC4000 FPGA device to see how
it would respond to changing environmental conditions.
The delay and completion section of each delay cell is
implemented by a single CLB. The delay is formed from
the CLB and the routing between cells. Fine delay control
is achieved by selecting the path the signal takes inside the
CLB. The CLB part of the delay is either an H-block or an
F-block and H-block in series, the delay input is routed to
both F and H blocks. The route to the two blocks is chosen
such that the difference between the two delay options is
as small as possible. A delay line length of 25 cells was
chosen with a target delay of 120ns, which was found to
require about 12 delay cells. Note that additional delay
exists in the routing outside of the delay line. One simple
floor-planning restriction was made to ensure the delay
line was in a straight line and thus did not suffer any large
jumps between successive steps.

A component not available in the Xilinx architecture
is the arbiter. Initially a circuit similar to that in [6] was
used. Whilst sufficient for a test implementation, a CMOS
implementation would obviously use the cleaner, and
faster, Seitz arbiter [8]. However, it was found that the
internal clock delay of the Xilinx arbiter circuit added jitter
to the clk period. To obtain measurements indicating
the accuracy that might be obtained from a CMOS
implementation, the arbiter was replaced by an AND gate.

8. Test results

The ability of the delay line to adapt to a changing
environment was tested. It is unwise to vary the supply
voltage to a Xilinx FPGA because this can corrupt its
configuration. Instead the temperature was varied using a
hot air gun and freezer spray. The temperature range was
approximately -35 � C to 60 � C. Initially a calibration rate of
1Hz was chosen but this was found to be too infrequent to
give good accuracy when under attack by a can of freezer
spray and so 4Hz was used. A rate of 1Hz or less should be
more than sufficient within a more realistic environment.

Figure 10 shows the results obtained. The graph divides
into four chronological sections, initial reset whilst at a
maximum temperature, application of freezer spray, no
heating or cooling and finally re-heating. As expected at
each re-calibration the period is either too long or too short,
hence the stepped appearance. The interval between coarse
and fine adjustment when coarse adjustment occurs is not
exposed in the graph because measurements are only taken
preceding calibration. Note the scale of the vertical axis;
the error is approximately � 1%.



118

120

122

124

0 10 20 30 40 50 60 70 80

pe
rio

d 
(n

s)

time (s)

reset, hot (60C)

freeze (-30C) reheat

1%
 jitter

Figure 10. Measured period vs time

9. Analysis of the CMOS tunable delay line

The test results from the Xilinx implementation of
the delay line indicate excellent stability despite this
implementation being none ideal. Results from SPICE
simulation of the 0.35 � m CMOS versions (3.3V at 27 � C)
of the delay cells are given in the table below. The main
advantage of the full custom cell is that the course step
size can be reduced if a higher frequency clock is required
whilst still being able to control the delay to within 2%.
None the less, the standard cell variant performs well and
is appropriate for some applications.

fine step size coarse step size
standard cell 0.065ns 0.865ns
full custom 0.059ns 0.604ns

10. Conclusion

This paper has presented a tunable delay line design
which can be used to provide local clocks in a globally
asynchronous locally synchronous (GALS) environment.
Experimental and simulation results indicate that the
tunable delay line can provide a highly stable clock
(jitter is around 1% after initial calibration) despite
environmental changes. Stability is similar to many PLL
designs but the tunable delay line is fully digital and can
be constructed from standard cells. Furthermore, the
tunable delay line can the stopped within one clock period
and restarted instantaneously which ideal if one wishes
to sleep to save power whenever possible. For example,
when the synchronous system is waiting for data from the
asynchronous interconnect it is trivial to stop the clock and
restart it when data arrives.

The paper also presented a GALS design to interface
an asynchronous interconnect to the locally synchronous
environment. Clock stretching is used to prevent
metastability when the synchronous system samples data
from the asynchronous interconnect. However, unlike other
designs in the literature, our GALS interface is capable

of granting many asynchronous data requests in parallel.
Furthermore, arbitration between the asynchronous and the
synchronous sides is undertaken in advance of the next
positive clock edge. This ensures that the clock is almost
never delayed so the synchronous system runs at its full
rate.

References

[1] David S. Bormann and Peter Y. K. Cheung. Asynchronous
wrapper for heterogeneous systems. In Proc. International
Conf. Computer Design (ICCD), October 1997.

[2] G. Geannopoulos and X. Dai. An adaptive digital deskewing
circuit for clock distribution networks. In International Solid
State Circuits Conference, 1998.

[3] George Taylor, Simon Moore, Steev Wilcox and Peter
Robinson. An on-chip dynamically recalibrated delay line
for embedded self-timed systems. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits
and Systems, April 2000.

[4] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson,
P. Nilsson, J. Öberg, P. Ellervee, and D. Lundqvist. Lowering
power consumption in clock by using globally asynchronous,
locally synchronous design style. In Proc. ACM/IEEE
Design Automation Conference, 1999.

[5] Howard W. Johnson and Martin Graham. High-Speed
Digital Design — A Handbook of Black Magic. Prentice
Hall, 1993.

[6] Simon W. Moore and Peter Robinson. Rapid prototyping of
self-timed circuits. In Proc. International Conf. Computer
Design (ICCD), October 1998.

[7] Fred U. Rosenberger, Charles E. Molnar, Thomas J.
Chaney, and Ting-Pien Fang. Q-modules: Internally
clocked delay-insensitive modules. IEEE Transactions on
Computers, C-37(9):1005–1018, September 1988.

[8] Charles L. Seitz. System timing. In Carver A. Mead and
Lynn A. Conway, editors, Introduction to VLSI Systems,
chapter 7. Addison-Wesley, 1980.

[9] Allen E. Sjogren and Chris J. Myers. Interfacing
synchronous and asynchronous modules within a high-speed
pipeline. In Advanced Research in VLSI, pages 47–61,
September 1997.

[10] K.Y. Yun and A. E. Dooply. Pausible clocking based
heterogeneous systems. IEEE Transactions on VLSI Systems,
7(4):482–487, December 1999.

Acknowledgements
The authors would like to acknowledge the support of EPSRC

grant GR/L86326, Cambridge Consultants Ltd and AT&T Labs
Cambridge.


