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Introduction

The study of facial expressions in animals started
with the work of Charles Darwin when he looked
at expressions of emotions in man and animals
(Darwin and Prodger 1998). Facial expressions
are growing in popularity as a pain assessment
tool for animals in research settings (Leach et al.
2012; Van Rysewyk 2016). Pain level assessment
is critical to the welfare of sheep as severe pain
in sheep often indicates diseases, such as foot
rot (Dolan et al. 2003) and mastitis (Dolan et al.
2000). Recognising pain is essential to the sub-
sequent treatment and pain alleviation (Flecknell
2008). Recognising and quantifying pain in sheep
is particularly difficult due to their stoical nature.
This difficulty can limit the use of pain-relieving

This chapter is based on the work described in: “Esti-
mating sheep pain level using facial action unit detec-
tion”, Yiting Lu, Marwa Mahmoud, Peter Robinson. IEEE
Conference on Automatic Face and Gesture Recognition,
Washington DC, May 2017.

M. Mahmoud (�) · Y. Lu · X. Hou · P. Robinson
Department of Computer Science and Technology,
University of Cambridge, Cambridge, UK
e-mail: marwa.mahmoud@cl.cam.ac.uk

K. McLennan
Department of Biological Sciences, University of
Chester, Chester, UK
e-mail: k.mclennan@chester.ac.uk

drugs in these species, causing suffering and
animal welfare problems (Flecknell 2008; Hux-
ley and Helen 2006; Ison and Rutherford 2014;
Lizarraga and Chambers 2012). Automating this
process will facilitate early screening of large
numbers of animals in a short period of time.
Moreover, efficient and reliable pain assessment
tools would help with early diagnosis.

The Sheep Pain Facial Expression Scale
(SPFES) (McLennan et al. 2016) has recently
been introduced as a standardised measure to
assess pain level based on facial expressions
of sheep and has been shown to identify and
quantify pain in sheep faces with high accuracy.
However, training of scorers and the scoring
process can be time-consuming, and individual
bias may lead to inconsistent scores (McLennan
et al. 2016). In this chapter, we present how we
can use computer vision techniques to automate
the analysis of facial expressions in sheep. Our
approach can improve efficiency and ensure
consistency in estimation of pain. We have
deployed techniques that are widely used in
human facial expression recognition to address
the problem of automatically assessing pain in
sheep.

The overall pipeline of our sheep pain level
estimation system is shown in Fig. 9.1. In the
following sections we present:
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Fig. 9.1 The pipeline of our automatic approach to estimate pain level in sheep

1. our taxonomy for sheep facial Action Unit
(AUs) based on the SPFES,

2. an automatic multilevel approach for estimat-
ing pain level in sheep by extending computer
vision techniques that have been widely used
in human facial expression recognition,

3. the evaluation results showing that we can
successfully classify nine facial action units
in sheep faces and can automatically estimate
pain levels. We also show that our approach
is generalisable across different datasets of
sheep faces,

4. a simple user interface that integrates the full
pipeline and can detect and analyse pain level
for every individual sheep in an image of a
large flock of sheep.

Finally, we argue that – with their pain
scales calibrated – the proposed automatic
pain level estimation approach can be gener-
alised to other animals, such as mice (Mat-
sumiya et al. 2012; Sotocinal et al. 2011),
rabbits (Keating et al. 2012) and horses (Dalla
Costa et al. 2014).

Related Work

Analysing facial expressions of animals was first
introduced by Langford et al. (2010) to facilitate
detection of pain levels in mice. This approach
has been advanced and generalised to many other
animals. Yet manual scoring is the usual practice,
and automatic assessment of pain level is still an
underdeveloped area.

Recently, a standardised sheep facial expres-
sion pain scale SPFES was developed by McLen-

nan et al. (2016). They showed that their ap-
proach is able to recognise the sheep pain face
with a high degree of accuracy. Since manual
labelling was used, they found that for differ-
ent scorers, the accuracy of the pain assessment
ranged from 60% to 75%. Their work is the basis
of our sheep AU taxonomy.

Sotocinal et al. (2011) attempted to automate
animal pain assessment. They introduced a par-
tially automated approach for pain level assess-
ment on rats. A Haar feature cascade classifier
is used for real-time eye and ear detection. The
classifier served as a prescreening tool so that
only frames detected with the key features are
kept as candidates for manual assessment. They
found such partially automated pain recognition
largely solves the labour-intensive problem of
manual scoring.

Yang et al. (2015) analysed sheep faces and
proposed a novel approach to localise sparsely
distributed facial landmarks, which uses triplet-
interpolated feature (TIF) extraction scheme un-
der the cascaded pose regression (CPR) frame-
work (Dollar et al. 2010). They applied the TIF
model on sheep and reported good results regard-
less of sheep breed, head pose, partial occlusion,
etc. However, their work assumed that the bound-
ing boxes of the sheep faces are known.

Data

Unlike human AU analysis, facial expression
recognition of sheep is still an underdeveloped
area. Very few datasets are available on sheep,
and fewer include ground truth labels of fa-
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cial expressions. In this section, we describe
our main dataset and discuss the sheep facial
AU taxonomy that is used in our experimental
evaluation.

Dataset

We have used the same dataset which has been
described by Yang et al. (2015). This dataset
consists of a total of 480 images containing sheep
faces. The face bounding boxes are given, but
there are no labels for sheep facial expressions.
Therefore, we labelled the facial expressions.
The labelling criteria are discussed in the next
section.

For the sake of our work, we divide the dataset
into two subsets:

1. The sheep from farm (SFF) dataset: this
subset includes 380 photos taken from a
farm. This set includes sheep of different
breeds, skin colour and head pose. The
photos vary in lighting conditions with their
background being either barn or fenced
grassland. The image resolution is consistent
throughout.

2. The sheep from the Internet (SFI) dataset: this
subset contains 100 images collected from the
Internet. This set is more diverse than SFF.
Sheep of different breeds, skin colour and
head pose are included. The lighting condi-
tions, background and image resolution vary
extensively.

AU Taxonomy and Labelling

Facial action units (AUs) have been widely used
in human facial expression analysis (Freitas-
Magalhes 2012; Reed et al. 2007). Human
AUs have been indexed in the Facial Action
Coding System (FACS) (Ekman and Friesen
1977), which forms the standard for automatic
analysis of human facial expression and emotion
recognition. In contrast, facial expressions in
sheep are yet to be catagorised. We first discuss

the sheep AU taxonomy and then present our
labelling approach of SFF and SFI datasets
accordingly.

The sheep facial AU taxonomy used in our
work is based on the SPFES (McLennan et al.
2016). As a preliminary AU taxonomy, only
frontal faces are considered. The key features
considered are the ears, eyes and nose. Although
cheek and lip profile are discussed in the SPFES,
they are omitted in our work because those fea-
tures can hardly be seen on a frontal face. The
main differences between the SPFES and our AU
taxonomy are illustrated as follows:

• Ears: In the SPFES, three pain levels are
defined regarding the extent of the ear rotation
with both profile and frontal faces taken into
account. In our work, we map the three pain
levels but only consider the frontal faces.

• Nose: In the SPFES, three pain levels are
defined according to the nostril shape. In our
work, we map the three pain levels as they are
described in SPFES.

• Eyes: In the SPFES, three pain levels are
defined in terms of the eye narrowing extent.
In our work, we define only two pain levels,
namely, pain and no pain, because the dataset
is strongly biased towards the no pain case.
We also define a separate class for nonclas-
sifiable pain level (AU8) when not enough
information can be drawn from the frontal face
because of head pose deviation.

Figure 9.2 shows the detailed description of
our taxonomy. Based on these rules, we labelled
the SFF and SFI datasets with AU numbers.
A mapping between AU numbers and feature-
wise pain scores was developed based on the
SPFES. Each frontal face is labelled with five
features, namely, the left ear, right ear, left eye,
right eye and nose. Although the SPFES scores
for symmetric features are expected to be the
same, our facial AU label might differ due to poor
lighting, partial occlusion or head pose deviation.
The overall pain rating was calculated from the
feature-wise pain scores using the same rule-
based approach adopted by experts.
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Fig. 9.2 Sheep facial AU taxonomy with their description and sample. The taxonomy is based on the SPFES
McLennan et al. (2016)

Methodology

In our work, we have developed a full pipeline
for automatic detection of pain level in sheep. We
first present face detection and facial landmark
localisation. We then extract appearance descrip-
tors from the normalised facial features, followed
by the AU classification. The overall pain level
is estimated based on the classification results
of facial features. This pain assessment pipeline
is not specific to sheep and can be generalised
to other animals if the proper taxonomies are
developed.

Face Detection

We experimented with two methods that have
been widely used in human face detection. The
first method is using the Viola-Jones object de-
tection framework (Viola and Jones 2001) to
implement the frontal face detection. The SSF
dataset was used to provide the ground truth.
The dataset does not contain very many ground
truth images, so we adopted a booting procedure
to achieve larger number of training samples.
Sheep faces are clipped from the ground truth
images with ears excluded, and then rotations
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and intensity deviation are applied to each sheep
face. Finally, the processed sheep faces are put
on top of some random background images. A
fixed window size of 32 × 24 is used for positive
samples. The final collection of positive images
consists of 5000 image windows boosted from
250 ground truth images. This face detector gives
an average accuracy of 71% using a tenfold cross
validation approach.

The second method we used to sheep face de-
tection is using a Dlib implementation of a DNN-
based MMOD algorithm (Van Rysewyk 2016;
Dolan et al. 2003), which was previously used
for dog face detection. The training was done
on the SSF dataset, augmented with 100 profile
face photos collected from a local farm. MMOD
is highly effective because it optimises over all
sub-windows of each image, which boosts the
performance of the face detector trained on our
relatively small dataset. This model is robust in
dealing with reasonable variations in capturing
viewpoint and other variability in sheep appear-
ance. It has a negligible false positive rate com-
pared with the first method.

Facial Landmark Detection

Our method is based on the cascaded pose re-
gression (CPR) (Dollar et al. 2010) scheme used
for the facial landmark localisation. Given the
sparsely distributed nature of sheep facial land-
marks, the TIF (Yang et al. 2015) approach was
adopted in our work. Compared with robust cas-
caded pose regression (RCPR) (Burgos-Artizzu
et al. 2013), which accesses the features on the
line segments between two landmarks by linear
interpolation, the TIF model is able to draw
features from a larger area. The shape indexed
feature location is defined as:

p(S, i, j, k, α, β) = yi + (α · −→v i,j + β · −→v i,k)

where S is the current shape; i, j and k are land-
mark indices; and αand β are randomly gener-
ated constants. With −→v i,j denoting the direction
from landmark yi to yj (−→v i,k from yi to yk), it
can be shown that any feature is accessible on

the area spanned by these two vectors. This ap-
proach is robust against large head pose deviation
and sparsely distributed facial landmarks, which
matches the sheep facial landmark localisation
problem well. However, it requires a perfectly
predefined bounding box around the sheep face
as a prerequisite.

When the Dlib approach is used for the face
detection, the resulted bounding box usually
excludes the ears. Therefore, we employ a
two-stage approach for landmark detection.
First, we detect the four central landmarks
(i.e. eyes, mouth and nostril) using a Dlib
implementation of an ensemble of regression
trees. After obtaining the coordinates of the four
central landmarks, we recenter and resize the
bounding box as follows:

xnew box centre

= xleft eye+xright eye+xmouth+xnostril

4

heightface

= |yleft eye+yright eye−ymouth−ynostril |
2

heightnew box = α · heightold box + β · heightface

widthnew box = k · heightnew box

where x is the position vector and y is the vertical
coordinate. α, β and k are estimated empirically
to 0.4, 1.3 and 1.25, respectively. Eight land-
marks are then obtained by applying TIF to the
refined bounding box.

The final localised sheep facial landmarks are
both ear tips (p1, p6), both ear roots (p2, p5),
both eyes(p3, p4), the crossing of the nostrils (p7)
and the mouth (p8). See Figs. 9.3 and 9.4 for an
illustration.

Feature-Wise Normalisation

Normalisation is commonly used in human face
recognition Brunelli (2009) to ensure faces taken
from various viewpoints are registered (Brown
1992) and comparable. In our work, feature-
wise normalisation is applied on sheep faces. The
ears, eyes and nose are extracted and normalised
separately.
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Fig. 9.3 Face detection
pipeline: (a) initial face
detection, (b) central
landmark detection using
Dlib, (c) full set of
landmarks detected, then
(d) normalisation step

Fig. 9.4 Left: final set of
landmarks detected are
both ear tips (p1, p6), both
ear roots (p2, p5), both
eyes(p3, p4), the crossing
of the nostrils (p7) and the
mouth (p8). Right: face
normalisation

Eye normalisation is achieved by rotating the
image to keep the two eyes (p3, p4) aligned
horizontally. The nostril crossing and the mouth
(p7, p8) are then automatically aligned vertically
since they are inherently at a right angle to the
eye alignment regardless of the head pose. The
scaling factor for both eyes and nose is defined as
the interpupillary distance. The feature bounding
boxes (see Fig. 9.3) can then be drawn according
to their dominant directions. The optimal box
size is determined by optimising the AU classifi-
cation accuracy. The bounding box sizes we have

used are listed as follows: eyes, 50 × 50 pixels,
and nose, 100 × 80 pixels (all are rows × cols),
with 172 pixel interpupillary distance.

Unlike human ears, sheep ears vary greatly
in size depending on their breed and are able to
show large rotations regardless of the head pose.
The dominant direction of each ear is defined as
the alignment of the ear tip and the ear root (p1
with p2 and p5 with p6). The scaling factor for
each ear is the distance between the paired-up tip
and root. The normalised bounding box size for
ears is 56 × 80 pixels.
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Feature Descriptor

Histogram of oriented gradients (HOG) (Dalal
et al. 2006) has been widely used as an appear-
ance feature descriptor for human facial expres-
sions. We used the Dlib (King 2009) implementa-
tion of HOGs to analyse facial features. As pro-
posed by Felzenswalb et al. (2010), each block
of HOG stands for a 31-dimensional vector: 4
normalisation masks are applied on top of the
9-orientational histogram, followed by PCA di-
mensional reduction (Felzenszwalb et al. 2010).
Each HOG descriptor spans (total number of

blocks) × 31 dimensions. In Fig. 9.1, HOG de-
scriptors are visualised, showing the block di-
mensions for the ear, eye and nose. It can be
seen that HOGs are able to depict the shape and
texture of each feature.

Pain Level Estimation

With HOGs extracted and AUs labelled, we use
support vector machines (SVMs) (Cortes and
Vapnik 1995) to train separate classifiers for
each facial feature. The overall pain level esti-
mation approach can be described as follows:
we first map the predicted AUs to feature-wise
pain scores. Then we average the scores for
symmetric features (i.e. eyes, ears) and average
all three feature-wise scores (ear, eye, nose) to
get the overall pain score. Finally, we define two
thresholds (0.4, 0.8) to generate the overall pain
score.

Experimental Evaluation

In this section, we evaluate the approach pre-
sented in the previous section. We compare 3-
class and 2-class AU classification approaches.
We also discuss the effect of data rebalancing as
well as the generalisability of our AU classifiers.

AU Classification Results

We first evaluated our AU detection approach
using a 3-class classifiers for each feature. The

SFF dataset was used for both training and test-
ing. Each face is given five labels (left ear, right
ear, left eye, right eye and nose), and each label
is associated with three AUs (ears, AUs 1, 2, 3;
nose, AUs 4, 5, 6; eyes, AUs 7, 8, 9). Altogether
15 SVM classifiers were trained for all 5 features
using linear kernel (LNR), radio basis function
(RBF) and sigmoid function (SIG). A tenfold
cross validation approach was used in all of our
experiments.

Table 9.1 shows the evaluation results, with
the distribution of the ground truth and the corre-
sponding majority vote classifier accuracies. The
accuracy is defined as true positives divided by
the total number of samples. With most AUs
achieving more than 60% detection rate, our ex-
perimental evaluation confirms that the presented
AU taxonomy is reasonable and that our pro-
posed AU detection approach are able to classify
AUs of sheep.

It can be seen that SVM with LNR outper-
forms RBF and SIG for most AUs (as highlighted
in Table 9.1). Moreover, the overall accuracy of
the LNR model is the highest among the three
– achieving a 67% detection rate in average. We
therefore used LNR SVM model for the rest of
our experiments due to its good performance as
well as high computation speed.

Among all three features, the ears appear to be
the strongest pain level indicator. Our approach
achieved high accuracy on ear action units: AU1
(SPFES: no pain) and AU3 (SPFES: great pain).
This is expected as AU1 and AU3 classes can be
unambiguously differentiated.

Confusion Reduction

As seen in our classification results, our chal-
lenge is to map evolutionary features into a fixed
number of AU classes.

Sheep facial expressions change gradually as
their pain level increases. In manual scoring, the
decision boundaries are inherently soft due to
human nature and can easily be recalibrated to fit
in more pain levels (tighter decision boundary)
or fewer pain levels (wider decision boundary)
assuming the human scorer knows the trend of
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the evolution. However, in computer vision, this
sense of trend is missing when those evolutionary
features are simply split into different classes and
used in a one-vs-all training approach. In this
case, the number of classes, the taxonomy and the
labelling of the training samples become crucial.

In this section, we attempt to reduce the con-
fusion by reducing the number of AUs. As a
sample feature, we focus on ear-related AUs
because the intermediate state (AU2: 61%) shows
obvious confusion compared with the AU1(82%)
and AU3 (78%).

AU Reduction by Relabelling
Training samples labelled as AU2 are relabelled
and split into AU1 and AU3. The rationale here
is that the facial symptom indicating pain would
progressively become more obvious as the pain
level deteriorates. Since there is no solid bound-
ary between two consecutive pain levels, by split-
ting up AU2 (SPFES: slight pain) into AU1
(SPFES: no pain) and AU3 (SPFES: great pain),
we are simply recalibrating the pain scale by
making each pain level cover a wider range of
facial expressions. We then train a binary clas-
sifier for each ear. The resulting accuracy (see
Table 9.2) exceeds our 3-class approach accuracy
by 6% on average.

AU Reduction by Exclusion
In this section, we change the way of AU re-
duction: we exclude the confusing AUs and the
associated samples from the classification stage.
AU2 training samples are excluded. Using this
approach, we managed to get a 15% increase
in detection rate (see Table 9.2). Such increase
indicates that by excluding the confusing inter-

Table 9.2 Comparison between the classification accu-
racies of our 2-class and 3-class classifiers for action units
AU1 and AU3 [trained on SFF, tested on SFF]

AU number AU1(L) AU1(R) AU3(L) AU3(R)

3-class 0.80 0.85 0.83 0.72

2-
class(relabelling) 0.83 0.83 0.87 0.84

2-
class(exclusion) 0.84 0.86 0.98 0.98

mediate class, a more reliable classifier can be
trained.

The results are reasonable since we are
mapping between a continuous scale of feature
changes to a set of discrete AU’s.

Training Sample Rebalancing

Some AUs perform worse than the others, such
as AUs 2, 5 and 9. We have further explored
our data to check if the exceptionally low ac-
curacies resulted from the imbalance in training
samples. In this experiment, we enforced training
sample rebalancing and investigated its effect on
accuracy. The eyes were not examined because
there are only ten samples labelled as AU9 in
SFF dataset. Three 3-class linear kernel SVM
classifiers were trained (Table 9.3). AQ1

By reducing the samples for AUs 4 and 5,
the detection rate of AU6 improves by 17% (see
Table 9.4), and the detection rates of AUs 4 and
5 increase by about 4%. Note that the accuracy
of AU5 is the lowest among AUs 4, 5 and 6
despite having a large number of samples, while
among AUs 1, 2 and 3, AU3 has the highest accu-
racy even with the smallest number of samples.
The accuracy of AU2 is about 30% lower than
AU1 and 3 in both the imbalanced and balanced
cases. These results suggest that data rebalancing
would, to some extent, improve the accuracy of
the AU with the lowest majority vote accuracy.
However, the nature of the AU definition still
takes the leading role in affecting its detection
rate.

Generalisation

We have also evaluated the generalisability of our
approach. In this experiment, we tested to see if a
classifier trained on a specific dataset is general-
isable to another dataset. Five 3-class classifiers
were trained using the SFF dataset and then
tested on the SFI dataset. The SFI dataset varies
a lot in resolution and is strongly unbalanced and
biased towards AUs 1, 5 and 7. This makes the
cross-dataset testing a challenging task.
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Table 9.3 Comparison between the classification accuracies of our 3-class linear SVM classifiers before and after
data rebalancing [trained on SFF, tested on SFF]

Feature Ear (Left) Ear (Right) Nose

AU number AU1 AU2 AU3 AU1 AU2 AU3 AU4 AU5 AU6

Sample size before rebalancing 210 80 40 200 80 50 100 160 70

Majority vote accuracy 0.64 0.24 0.12 0.61 0.24 0.15 0.30 0.48 0.21

Accuracy 0.80 0.61 0.83 0.85 0.65 0.72 0.64 0.49 0.63

Sample size after rebalancing 40 40 40 50 50 50 70 70 70

Accuracy 0.85 0.53 0.73 0.84 0.60 0.76 0.66 0.51 0.74

Table 9.4 Cross-dataset testing, showing the classification accuracy of our 3-class AU classifiers. We can see that our
approach is generalisable across different datasets [trained on SFF, tested on SFI]

Feature Ear (left) Ear (right) Nose Eye (left) Eye (right)

AU AU1 AU2 AU3 AU1 AU2 AU3 AU4 AU5 AU6 AU7 AU8 AU9 AU7 AU8 AU9 Mean

Sample 96 8 13 102 7 8 24 77 16 80 33 4 91 20 6 -

size

SVM 0.65 0.63 0.62 0.77 0.43 0.63 0.54 0.65 0.31 0.60 0.39 0.00 0.37 0.10 0.67 0.49

LNR

The test results are shown in Table 9.4. The
detection rates of AUs 1, 2 and 3 show strong
correlation with their test results on the SFF set,
while the accuracies of AUs 4, 5, 6, 7, 8 and 9
are affected by the data distribution. This result
suggests that the ear is a strong pain indicator and
its classifier generalises well, whereas for noses
and eyes, more data is needed in order to achieve
better classification results.

The overall pain level estimation was also
tested on the SFI, and the confusion matrix is
shown in Table 9.5. We adopted the same rule-
based method as used in manual scoring: we
used five classifiers to predict five feature-wise
pain scores, and then those scores were averaged
and compared with two thresholds separating the
three pain levels. No extra error was introduced
during the estimation stage; therefore, the over-
all pain level is expected to be a fair measure
of our overall performance. An obvious trend
favouring higher pain levels can be seen from the
confusion matrix. It suggests that our automated
pain level estimation approach is able to detect,
though exaggerate, the pain level based on the
five features. The inherited softness in human
decision boundary is expected to be achieved by
adjusting the two thresholds of the three pain
levels.

Table 9.5 Cross-dataset testing, showing the confu-
sion matrix of the estimated overall pain level [trained
on SFF, tested on SFI]

Truth/label P = 0 P = 1 P = 2 Sample size Accuracy

P = 0 35 27 18 80 0.44

P = 1 3 12 11 26 0.46

P = 2 1 1 9 11 0.82

Concatenated Features

Finally, we tried an alternative approach to de-
tect pain level in sheep. Instead of training five
separate AU classifiers, we trained a single pain
level classifier. We concatenated all five feature
descriptors into a 3568 dimensional whole face
descriptor and labelled the training samples with
the overall pain levels. A 3-class pain level clas-
sifier was trained with linear SVM model on
the SFF dataset. The classifier was tested on
both the SFF and SFI datasets. The confusion
matrices are presented in Table 9.6. In the generic
dataset (SFF) test, the pain level classifier shows
high accuracy on low pain (Pain = 0′) and
high pain (′Pain = 2′) classes despite of the
small number of samples of the high pain class.
Yet, in the cross-dataset (SFI) test, the detection
rate approaches the majority vote accuracy. A
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Table 9.6 Confusion matrices of the pain level estimation (m.v.: majority vote accuracy) [trained on SFF, tested on
SFF & SFI]

Truth/label P = 0 P = 1 P = 2 Total M.V. Accuracy

Concatenated feature – trained on SFF, tested on SFF

P = 0 94 19 27 140 0.41 0.67

P = 1 30 67 53 150 0.44 0.45

P = 2 3 7 40 50 0.15 0.80

Concatenated feature – trained on SFF, tested on SFI

P = 0 43 43 5 80 − 0.54

P = 1 17 9 0 26 − 0.35

P = 2 5 4 2 11 − 0.18

Fig. 9.5 A screenshot of the sheep pain analyser inter-
face. Top-left: initial bounding box and four central land-
marks detected. Top-right: refined bounding box and eight
landmarks detected. Colour of a bounding box indicates
the overall pain level estimated (green, no pain; orange,
moderate pain; red, severe pain). Bottom-left: the sheep

of interest is shown with arrow buttons to move from
one sheep face to the next. Bottom-right: facial features
segmented with their HOG features extracted. Colour
indicates the pain level of each feature (green, orange or
red). Black indicated that pain level cannot be determined

larger balanced dataset is required for further
exploration of this method.

Pain Level Estimation Tool

As a proof of concept, we developed a tool that
implements the previously described pipeline and
estimates the pain levels of individual animals

in an image of a large number of sheep faces.
The simple user interface can automatically pro-
cess an image of sheep to recognise whether a
sheep is in pain and estimate the severity of that
pain based on changes in facial expressions. The
severity of the pain is indicated by the colour
of the displayed pounding box. The same colour
scheme is used for individual features on the face.
Figure 9.5 shows the system in use.
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Conclusions

In this chapter, we have presented a multilevel
approach to automatically estimate pain levels in
sheep. We have developed a preliminary sheep
facial AU taxonomy based on the SPFES. We
automated the assessment of facial expressions
in sheep by adopting the techniques for human
facial expression recognition. We have demon-
strated that our approach can successfully detect
facial AUs and assess pain levels of sheep. Our
experiments also show that our AU classifiers are
generalisable across different datasets.

For future work, we would like to explore
training the classifier with the concatenated fea-
ture descriptor to map facial feature directly to
pain levels. We would also like to add geometry
features – such as distances between facial land-
marks – as well as appearance features. This will
help our AU classifier to be more robust to head
pose deviation as well as breed variation. Larger
number of labelled data is needed to further
investigate data balancing and generalisation. Ul-
timately, we would like to test our automatic
pain assessment approach on different animals.
However, this will again require more efforts in
data collection and labelling.
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