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ABSTRACT 
User modeling is widely used in HCI but there are very 
few systematic HCI modelling tools for people with 
disabilities. We are developing user models to help with 
the design and evaluation of interfaces for people with a 
wide range of abilities. We present a perception model 
that can work for some kinds of visually-impaired users 
as well as for able-bodied people. The model takes a list 
of mouse events, a sequence of bitmap images of an 
interface and locations of different objects in the 
interface as input, and produces a sequence of eye-
movements as output. Our model can predict the visual 
search time for two different visual search tasks with 
significant accuracy for both able-bodied and visually-
impaired people. 

Categories and Subject Descriptors 

D.2.2 [Software Engineering]: Design Tools and 
Techniques – user interfaces I.4.8 [Image Processing 
and Computer Vision]: Scene Analysis 

General Terms 
Algorithms, Experimentation, Human Factors, 
Measurement, 

Keywords 
Human Computer Interaction, Perception Model, Image 
Processing. 

1. INTRODUCTION 
 
Computer Scientists have studied theories of perception 
extensively for graphics and, more recently, for Human-
Computer Interaction (HCI). A good interface should 
contain unambiguous control objects (like buttons, 
menus, icons etc.) that are easily distinguishable from 
each other and reduce visual search time. In HCI, there 
are some guidelines for designing good interfaces (like 
colour selection rules and object arrangement rules 
[25]). However the guidelines are not always good 
enough. We take a different approach to compare 
different interfaces. We have developed a model of 

human visual perception for interaction with computer. 
Our model predicts visual search time for two search 
tasks and also shows the probable visual search path 
while searching a screen object for able-bodied as well 
as visually-impaired people. Different interfaces can 
then be compared using the predictions from the model.  

We developed the model by using image processing 
techniques to identify a set of features that differentiate 
screen objects. We then calibrated the model to estimate 
fixation durations and eye movement trajectories. We 
evaluated the model by comparing its predicted visual 
search time with actual time for different visual search 
tasks. 

In the next section we present a review of the state-of-
the art perception models. In the following sections we 
discuss the design, calibration and validation of our 
model. Finally we make a comparative analysis of our 
model with other approaches and conclude by exploring 
possibilities for further research. 

2. RELATED WORKS 
 
Human vision has been addressed in many ways over 
the years. The Gestalt psychologists in early 19th 
century pioneered an interpretation of the processing 
mechanisms for sensory information [11]. Later the 
Gestalt principle gave birth to the top-down or 
constructivist theories of visual perception. According 
to this theory, the processing of sensory information is 
governed by our existing knowledge and expectations. 
On the other hand, bottom-up theorists suggest that 
perception occurs by automatic and direct processing of 
stimuli [11]. Considering both approaches, present 
models of visual perception incorporate both top-down 
and bottom-up mechanisms [17]. This is also reflected 
in recent experimental results in neurophysiology [15 & 
22].  

Knowledge about theories of perception has helped 
researchers to develop computational models of visual 
perception. Marr’s model of perception is the pioneer in 
this field [16] and most of the other models follow its 
organization. In recent years, a plethora of models have 
been developed (e.g. ACRONYM, PARVO, CAMERA 
etc. [23]), which have also been implemented in 
computer systems. The working principles of these 
models are based on the general framework proposed in 
the analysis-by-synthesis model of Neisser [17] and 
also quite similar to the Feature Integration Theory of 
Triesman [27]. It mainly consists of the following three 
steps: 
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Feature extraction: As the name suggests, in this step 
the image is analysed to extract different features such 
as colour, edge, shape, curvature etc. This step mimics 
neural processing in the V1 region of the brain. 

Perceptual grouping: The extracted features are 
grouped together mainly based on different heuristics or 
rules (e.g. the proximity and containment rule in the 
CAMERA system, rules of collinearity, parallelism and 
terminations in the ACRONYM system [23]). Similar 
types of perceptual grouping occur in V2 and V3 
regions of the brain. 

Object recognition: The grouped features are 
compared to known objects and the closest match is 
chosen as the output. 

In these three steps, the first step models the bottom-up 
theory of attention while the last two steps are guided 
by top-down theories. All of these models aim to 
recognize objects from a background picture and some 
of them have been proved successful at recognizing 
simple objects (like mechanical instruments). However 
they have not demonstrated such good performance at 
recognizing arbitrary objects [23]. These early models 
do not operate at a detailed neurological level. Itti and 
Koch [13] present a review of computational models, 
which try to explain vision at the neurological level. 
Itti’s pure bottom-up model [13] even worked in some 
natural environments, but most of these models are used 
to explain the underlying phenomena of vision (mainly 
the bottom-up theories) rather than prediction.  The 
VDP model [6] uses image processing algorithms to 
model vision. The model predicts retinal sensitivity for 
different levels of luminance, contrast etc. Privitera and 
Stark [21] also used different image processing 
algorithms to identify points of fixations in natural 
scenes, however they do not have an explicit model to 
predict eye movement trajectory. 

In the field of Human Computer Interaction, the EPIC 
[14] and ACT-R [1] cognitive architectures have been 
used to develop perception models for menu searching 
and icon searching tasks. Both the EPIC and ACT-R 
models [12 & 5] are used to explain the results of 
Nielsen’s experiment on searching menu items [18], 
and found that users search through a menu list in both 
systematic and random ways. The ACT-R model has 
also been used to find out the characteristics of a good 
icon in the context of an icon-searching task [9 & 10]. 
However the cognitive architectures emphasize 
modeling human cognition and so the perception and 
motor modules in these systems are not as well 
developed as the remainder of the system. The working 
principles of the perception models in EPIC and ACT-
R/PM are simpler than the earlier general-purpose 
computational models of vision. These models do not 
use any image processing algorithms [9, 10 & 12]. The 
features of the target objects are manually fed into the 
system and they are manipulated by handcrafted rules in 
a rule-based system. As a result, these models do not 
scale well to general-purpose interaction tasks. It will 
be hard to model the basic features and perceptual 
similarities of complex screen objects using 
propositional clauses. Modelling of visual impairment 

is particularly difficult using these models. An object 
seems blurred in a continuous scale for different 
degrees of visual acuity loss and this continuous scale is 
hard to model using propositional clauses in ACT-R or 
EPIC. Shah et. al. [26] have proposed the use of image 
processing algorithms in a cognitive model, but they 
have not published any results about the predictive 
power of their model yet. 

In short, approaches based on image processing have 
concentrated on predicting points of fixations in 
complex scenes while researchers in HCI mainly try to 
predict the eye movement trajectories in simple and 
controlled tasks. There has been less work on using 
image processing algorithms to predict fixation 
durations and combining it with a suitable eye 
movement strategy in a single model. The EMMA 
model [24] is an attempt in that direction, but it does not 
use any image processing algorithm to quantify the 
perceptual similarities among objects. We have 
separately calibrated our model for predicting fixation 
duration based on perceptual similarities of objects and 
also calibrated it for predicting eye movements. The 
calibrated model can predict the visual search time for 
two different visual search tasks with significant 
accuracy for both able-bodied and visually-impaired 
people. 

3. DESIGN 
 
Our perception model takes a list of mouse events, a 
sequence of bitmap images of an interface and locations 
of different objects in the interface as input, and 
produces a sequence of eye-movements as output. The 
model is controlled by four free parameters: distance of 
the user from the screen, foveal angle, parafoveal angle 
and periphery angle (Figure 1). The default values of 
these parameters are set according to the EPIC 
architecture [14].  

 Our model follows the ‘spotlight’ metaphor of visual 
perception. We perceive something on a computer 
screen by focusing attention at a portion of the screen 
and then searching for the desired object within that 
area. If the target object is not found we look at other 
portions of the screen until the object is found or the 
whole screen is scanned. Our model simulates this 
process in three steps.  

1. Scanning the screen and decomposing it into 
primitive features. 

 

Figure 1. Foveal, parafoveal and peripheral vision 

495

P. Biswas et al.

HCI 2009 – People and Computers XXIII – Celebrating people and technology



2. Finding the probable points of attention 
fixation by evaluating the similarity of 
different regions of the screen to the one 
containing the target. 

3. Deducing a trajectory of eye movement. 

The perception model represents a user’s area of 
attention by defining a focus rectangle within a certain 
portion of the screen. The area of the focus rectangle is 
calculated from the distance of the user from the screen 
and the periphery angle (distance X tan(periphery angle 
/2), Figure 1). If the focus rectangle contains more than 
one probable target (whose locations are input to the 
system) then it shrinks in size to investigate each 
individual item. Similarly in a sparse area of the screen, 
the focus rectangle increases in size to reduce the 
number of attention shifts. 

The model scans the whole screen by dividing it into 
several focus rectangles, one of which should contain 
the actual target. The probable points of attention 
fixation are calculated by evaluating the similarity of 
other focus rectangles to the one containing the target. 
We know which focus rectangle contains the target 
from the list of mouse events that was input to the 
system. The similarity is measured by decomposing 
each focus rectangle into a set of features (colour, edge, 
shape etc.) and then comparing the values of these 
features. The focus rectangles are aligned with respect 
to the objects within them during comparison. Finally, 
the model shifts attention by combining different eye 
movement strategies (like Nearest [7, 8], Systematic, 
Cluster [9, 10] etc.), which are discussed later. 

The model can also simulate the effect of visual 
impairment on interaction by modifying the input 
bitmap images according to the nature of the 
impairment (like blurring for visual acuity loss, 
changing colours for colour blindness). We discussed 
the modelling of visual impairment in detail in a 
separate paper [4]. In this paper, we discuss the 
calibration and validation of the model using the 
following experiment. 

4.  EXPERIMENT TO COLLECT EYE TRACKING 
DATA 
 
In this experiment, we investigated how eyes move 
across a computer screen while searching for a 
particular target. We kept the searching task very 
simple to avoid any cognitive load. The eye gazes of 
users were tracked by using a Tobii X120 eye-tracker 
[28].  

4.1.  Design 
We conducted trials with two families of icons. The 
first consisted of geometric shapes with colours 
spanning a wide range of hues and luminances (Figure 
2). The second consisted of images from the system 
folder in Microsoft Windows to increase the external 
validity (Figure 3) of the experiment. 

 

 

Figure 2 Corpus of Shapes 

 
 
 
 

 
Figure 3. Corpus of Icons 

4.2. Participants 
We collected data from 8 visually impaired and 10 able 
bodied participants (Table 1). All were expert computer 
users and had no problem in using the experimental set 
up. 

Table 1. List of Participants 
Age Gender Impairment

 
C1 22 M 

Able-bodied 

C2 29 M 

C3 27 M 

C4 30 F 

C5 24 M 

C6 28 M 

C7 29 F 

C8 50 F 

C9 27 M 

C10 25 M 

   
P1 24 M Retinopathy 

P2 22 M 
Nystagmus and acuity loss due to 

Albinism 
P3 22 M Myopia (-3.5 Dioptre) 
P4 50 F Colour blindness - Protanopia 
P5 24 F Myopia (-4.5 Dioptre) 
P6 24 F Myopia (-5.5 Dioptre) 
P7 27 M Colour blindness - Protanopia 
P8 22 M Colour blindness - Protanopia 
 
4.3. Material 
We used a 1024 × 768 LCD colour display driven by a 
1.7 GHz Pentium 4 PC running the Microsoft Windows 
XP operating system. We also used a standard computer 
Mouse (Microsoft IntelliMouse® Optical Mouse) for 
clicking on the target and a Tobii X120 Eye Tracker for 
tracking eye gaze pattern, which has an accuracy of 0.5º 
of visual angle. The Tobii studio software was used to 
extract the points of fixation. We used the default 
fixation filter (Tobii fixation filter) and fixation radius 
(minimum distance to separate two fixations) of 35 
pixels. 
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4.4. Process 
The experimental task consisted of shape searching and 
icon searching tasks. The task was as follows 

1. A particular target (shape or icon) was shown. 

2. A set of 18 candidates was shown. 

3. Participants were asked to click on the 
candidate(s), which are same  as the target.  

4. The number of candidates similar to the target 
was randomly chosen between 1 and 8 to 
simulate both serial and parallel searching 
effects [27], the other candidates were 
distractors. 

5. The candidates were separated by 150 pixels 
horizontally and by 200 pixels vertically. 

6. Each participant did five shape searching and 
five icon searching tasks. 

4.5. Calibration for predicting fixation duration 
Initially we measured the drift of the eye tracker for 
each participant. The drift was smaller than half the 
separation between the candidates, so we could classify 
most of the fixations around the candidates. We 
calibrated the model to predict fixation duration by 
following two steps. 

Step 1: Calculation of image processing coefficients 
and relating them to the fixation duration 

We calculated the colour histogram [19] and shape 
context coefficients [2, 3] between the targets and 
distractors, and measured their correlation with the 
fixation durations (Table 1). The image processing 
coefficients correlate significantly with the fixation 
duration, though the significance is not indicative of 
their actual predictive power, as the number of data 
points is large. However, the colour histogram 
algorithm in YUV space is moderately correlated (0.51) 
with the fixation duration (Figure 4). 

We then used an SVM and a cross-validation test to 
identify the best feature set for predicting fixation 
duration for each participant as well as for all 
participants. We found that the Shape Context 
Similarity coefficient and the Colour Histogram 
coefficient in YUV space work best for all participants 
taken together. The combination also performs well 
enough (within the 5% limit of the best classifier) for 
individual participants. The classifier takes the Shape  
 

Table 1. Correlation between fixation duration and 
image processing algorithms 

Image 
Statistics 

Colour  
Histogram 
 (YUV) 

Colour  
Histogram 
 (RGB) 

Shape  
Context 

Edge  
Similarity 

Spearman’s 
 Rho 

0.507 0.444 0.383 0.363 

**All are significant at 0.01 level 

Figure 4. Relating colour histogram coefficients with 
fixation duration 

Context Similarity coefficient and Colour Histogram 
coefficient in YUV space of a target as input and 
predicts the fixation duration on it as output. 

Step 2: Number of fixations 

We found in the eye tracking data that users often fixed 
attention more than once on targets or distractors. We 
investigated the number of fixations with respect to the 
fixation durations (Figures 5 and 6). We assumed that in 
case of more than one attention fixation, the recognition 
took place during the fixation with the largest duration. 
Figure 6 shows the total number of fixations with 
respect to the maximum fixation duration for all able-
bodied users and each visually-impaired user.  

We found that visually impaired people fixed eye gaze 
a greater number of times than their able bodied 
counterparts. Participant P2 (who has nystagmus) has 
many fixations of duration less than 100 msec and only 
two fixations having duration more than 400 msec. 

It can be seen as the fixation duration increases, the 
number of fixations also decreases (Figures 5 and 6). 
This can be explained by the fact that when the fixation 
duration is higher, the users can recognize the target and 
do not need more long fixations on it. The number of 
fixations is smaller when the fixation duration is less 
than 100 msec, probably these are fixations where the 
distractors are very different from the targets and users 
quickly realize that they are not intended target.  In our 
model, we predict the maximum fixation duration using 
the image processing coefficients (as discussed in the 
previous section) and then decide the number of 
fixations based on the value of that duration. 

 

 

 

 

 

 

Figure 5. Total no. of fixations w.r.t. fixation duration 
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Average 
Levenshitin  
Distance 

 
 
 
 

Figure 6. Number of fixations w.r.t. fixation duration 
 
5.6. Calibration for predicting eye movement 
patterns 
We investigated different strategies to explain and 
predict the actual eye movement trajectory. We 
rearranged the points of fixation given by the eye 
tracker following different eye-movement strategies and 
then compared the rearrangements with the actual 
sequences (which signify the actual trajectory). 

We used the average Levenshtein distance between 
actual and predicted eye fixation sequences to compare 
different eye movement strategies. We converted each 
sequence of points of fixation into a string of characters 
by dividing the screen into 36 regions and replacing a 
point of fixation by a character according to its position 
in the screen [21]. The Levenshtein distance measures 
the minimum number of operations needed to transform 
one string into the other, where an operation is an 
insertion, deletion, or substitution of a single character. 
We considered the following eye movement strategies, 

Nearest strategy [9 and 10]:  At each instant, the 
model shifts attention to the nearest probable point of 
attention fixation from the current position. 

Systematic Strategy: Eyes move systematically from 
left to right and top to bottom. 

Random Strategy: Attention randomly shifts to any 
probable point of fixation. 

Cluster Strategy: The probable points of attention 
fixation are clustered according to their spatial position 
and attention shifts to the centre of one of these clusters. 
This strategy reflects the fact that a saccade tends to 
land at the centre of gravity of a set of possible targets 
[7, 8 & 20], which is particularly noticeable in eye 
tracking studies on reading tasks. 

Cluster Nearest (CN): The points of fixations are 
clustered and the first saccade launches at the centre of 
the biggest cluster (highest number of points of 
fixation). Then the strategy switches to the Nearest 
strategy. 

Figures 7 and 8 show the average Levenshtein distance 
for different eye movement strategies for able-bodied 

and visually-impaired participants respectively. 

 

The best strategy varies across participants. However 
one of the Cluster, Nearest and Cluster Nearest (CN) 
strategies comes as best for each participant 
individually. We did not find any difference in the eye 
movement pat-terns of able-bodied and visually 
impaired users. If we consider all participants together, 
the Cluster Nearest strategy is the best. It is also 
significantly better than the random strategy (Figure 9, 
paired T-test, t = 3.895, p<0.0005), which indicates that 
it actually captures the pattern of eye movement in most 
of the cases. 
 
 

 

 

 

 

 

Figure 7. Average Levenshtein Distance for different 
eye movement strategies for able bodied users 

 
 

 

 

 

 

 

 

Figure 8. Average Levenshtein Distance for different 
eye movement strategies for visually impaired users 

 

 

 

 

 

 

 

 

Figure 9. Comparing the best strategy against the 
Random strategy 
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5. VALIDATION 
 
Initially we have used a 10-fold cross-validation test on 
the classifiers to predict fixation durations. In this test 
we randomly select 90% of the data for training and test 
the prediction on the remaining 10%. The process is 
repeated 10 times and the prediction error is averaged. 
It can be seen that the prediction error is less than or 
equal to 40% for 12 out of 18 participants and 40% 
taking all participants together (Figure 10). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Cross validation test on the classifiers 
 
Then, we have used our model to predict the total 
fixation time (summation of all fixations, which is 
nearly same as the visual search time) for each 
individual search task by each participant. Table 2 
shows the correlation coefficient between actual and 
predicted time for each participant. Figure 11 shows a 
scatter plot of the actual and predicted times taking all 
able-bodied participants together and Figure 12 shows 
the scatter plot for each visually-impaired participant.  
 
 
Table 2. Correlation between actual and predicted total 

fixation time 
 Participants Correlation 

C1 0.740*  

C2 0.788** 

C3  0.784** 

C4 0.455 

C5 0.441 

C6 0.735* 

C7 0.530 

C8 -0.309 

C9 0.910** 

C10 0.655* 

  

P1 0.854** 

P2 0.449 

P3 0.625 

P4 0.666* 

P5 0.843** 

P6 0.761** 

P7 0.728** 

P8 0.527 

  

 
**  p< 0.01  
*   p< 0.05 

For able-bodied participants, the predicted time 
significantly correlates with the actual for 6 participants 
(each undertook 10 search tasks), correlates moderately 
for 3 participants and did not work for one participant 
(participant C8). For visually impaired participants, the 
predicted time significantly correlates with the actual 
for 5 participants (each undertook 10 search tasks), 
correlates moderately for 3 participants.  We are 
currently working to improve the accuracy further. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Scatter plot of actual and predicted time for 

able-bodied users 
 

 
 
 
 
 
 
 
 
  
 

 
 

Figure 12. Scatter plot of actual and predicted time for 
visually-impaired users 

 
We also validated the model using a Leave-1-out 
validation test. In this process we tested the model for 
each participant by training the classifiers using the data 
from the other participants. Figure 13 shows the scatter 
plot of actual and predicted time and Figure 14 shows 
the histogram of percent error.  The predicted and actual 
time correlates significantly (� = 0.5, p<0.01) while the 
average error in prediction is about 40%. 
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Figure 13. Scatter plot of predicted and actual time 
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Figure 14. Percent error in prediction 

Then we validated the model by taking data from some 
new participants (Table 3). We used a single classifier 
for all of them which was trained by our previous data 
set. We did not change the value of any parameter of 
the model for any participant. Table 3 shows the 
correlation coefficients between actual and predicted 
time for each participant. Figure 15 shows a scatter plot 
of the actual and predicted times for each participant. It 
can be seen our prediction significantly correlate with 
actual for 6 out of 7 participants.  

Table 4 shows the actual and predicted visual search 
paths for some sample tasks. The prediction is similar 
though not exactly same. Our model successfully 
detected most of the points of fixation. In the second 
picture of Table 3, we have only one target, which pops 
out from the background. Our model successfully 
captures this parallel searching effect while the serial 
searching is also captured in the other cases. In the last 
figure we show the prediction for a protanope (a type of 
colour-blindness) participant and so the right hand 
figure is different from the left hand one as we simulate 
the effect of protanopia on the input image. 

 

Table 3. New Participants 

Participants Age Gender Correlation Impairment 
     
V1 29 F 0.64* None 
V2 29 M 0.89** None 
V3 25 F 0.7* None 

V4 25 F 0.72* Myopia  
 -4.75/-4.5 

V5 25 F 0.69* 
Myopia     
-3.5 

V6 27 F 0.44 
Myopia     
-8/-7.5 

V7 26 M 0.7* None 
     
     
   *p<0.05  
   **p<0.01  
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Figure 15. Scatter plot of actual and predicted time for 

new users 
 

6. DISCUSSION 
 
The eye-tracking data shows that the eye movement 
patterns are different for different participants. The 
performance of the eye tracker (drift, fixation 
identification etc.) also differs across participants.  

We found that the visual search time is greater for 
visually-impaired users than for able-bodied users. 
However, the eye movement strategies of visually 
impaired users are not different from their able-bodied 
counterparts. This is due to the fact that the V4 region 
in the brain controls the visual scanning and our 
visually-impaired participants did not have any brain 
injury and so the V4 region worked the same as the 
able-bodied users.  However visually-impaired users 
had a greater number of attention fixations which made 
the search time longer. Additionally the difference 
between the numbers of fixations for able-bodied and 
visually impaired users is more prominent for shorter 
duration (less than 400 msec) fixations. Perhaps this 
means visually impaired users need many short duration 
fixations to confirm the recognition of target. From an 
interface designers’ point of view, these results 
indicates that the clarity and distinctiveness of targets 
are more important than the arrangement of the targets 
in a screen. Since the eye-movement patterns are almost 
same for all users, the arrangement of the targets need 
not be different to cater visually-impaired users. 
However clarity and distinctiveness of targets will 
reduce the visual search time by reducing recognition 
time and number of fixations as well. 

Regarding our model, we tried to keep it as general as 
possible by using the same feature set (Shape Context 
Similarity coefficient and Colour Histogram coefficient 
in YUV space) to predict fixation duration for all 
participants.  Additionally we also used the same eye 
move#ent strategy (Cluster Nearest) for all participants. 
The result demonstrates that 

o The model is robust and scalable. 
o The accuracy can be further increased by 

personalizing it for each individual user. 

The experimental task consisted of searching for both 
basic shapes and real life icons. We found that the  
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Table 4. Actual and predicted visual search path 
 

Actual Eye Gaze Pattern Predicted Eye Gaze Pattern 

  

 

  

 

 

  
Table 5. Comparative analysis of our model 

 

 ACT-R/PM or EPIC models Our Model Advantages of our 
model 

Storing Stimuli Propositional Clauses  Spatial Array  
Easy to use and 
Scalable 

Extracting 
Features 

Manually Automatically using Image Processing 
algorithms 

Matching 
Features 

Rules with binary outcome Image processing algorithms that give 
the minimum squared error 

More accurate 

Modelling top 
down knowledge 

Not relevant as applied to very 
specific domain. 

Considers the type of target (e.g. button, 
icon, combo box etc.). 

More detailed and 
practical 

Shifting 
Attention 

Systematic/ Random and 
Nearest strategy 

Clustering/ Nearest /Random strategy Not worse than previous, 
probably more accurate 
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fixation duration does not depend on the type of the 
target (icon/shape), hence, the model does not need to 
be tuned for a particular task and works for both types 
of search task. Table 5 presents a comparative analysis 
of our model with the ACT-R/PM and EPIC models. 
Our model seems to be more accurate, scalable and 
easier to use than the existing models. 

However, in real life situations the model fails to take 
account of the domain knowledge of users. This 
knowledge can be either application specific or 
application independent. There is no way to simulate 
application specific domain knowledge without 
knowing the application beforehand. However there are 
certain types of domain knowledge that are application 
independent and apply for almost all applications. For 
example, the appearance of a pop-up window 
immediately shifts attention in real life, however the 
model still looks for probable targets in the other parts 
of the screen. Similarly, when the target is a text box, 
users focus attention on the corresponding labels rather 
than other text boxes, which we do not yet model. There 
is also scope to model perceptual learning. For that 
purpose, we could incorporate a factor like the 
frequency factor of EMMA model [24] or consider 
some high level features like the caption of a widget, 
handle of the application etc. to remember the utility of 
a location for a certain application. These issues did not 
arise in most previous work since they considered very 
specific and simple domains.  
 
7. CONCLUSION 
 
In this work, we have developed a systematic model of 
visual perception which works for people with a wide 
range of abilities. We have used image processing 
algorithms to quantify the perceptual similarities among 
objects and predict the fixation duration based on that. 
We also calibrated our model by considering different 
eye movement strategies. Our model intended to be 
used by software engineers to design software 
interfaces. So we tried to make the model easy to use 
and comprehend. As a result it is not so detailed and 
accurate to explain the results of any psychological 
experiment on visual perception.  However, it is 
accurate enough to select the best interface among a 
pool of interfaces based on the visual search time. 
Additionally, it can be tuned to capture the individual 
differences among users and to give accurate prediction 
for any user.  
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