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Abstract. This paper presents a new classification algorithm for real-
time inference of emotions from the non-verbal features of speech. It
identifies simultaneously occurring emotional states by recognising cor-
relations between emotions and features such as pitch, loudness and en-
ergy. Pairwise classifiers are constructed for nine classes from the Mind
Reading emotion corpus, yielding an average cross-validation accuracy
of 89% for the pairwise machines and 86% for the fused machine. The
paper also shows a novel application of the classifier for assessing public
speaking skills, achieving an average cross-validation accuracy of 81%.
Optimisation of support vector machine coefficients is shown to improve
the accuracy by up to 25%. The classifier outperforms previous research
on the same emotion corpus and achieves real-time performance.

1 Introduction

Emotions are fundamental for humans, impacting perception and everyday activ-
ities such as communication, learning and decision-making. They are expressed
through speech, facial expressions, gestures and other non-verbal clues.

Speech emotion analysis refers to analysing vocal behaviour as a marker of
affect, with focus on the non-verbal aspects of speech. Its basic assumption is
that there is a set of objectively measurable features in voice that reflect the
affective state of a person. This assumption is supported by the fact that most
affective states involve physiological reactions which modify the process by which
voice is produced. For example, anger often produces changes in respiration and
increases muscle tension, influencing the vibration of the vocal folds and vocal
tract shape, thus affecting the acoustic characteristics of the speech [1].

Discovering which features are indicative of emotional states and consecu-
tively capturing them can be a difficult task. Furthermore, features indicating
different states may be overlapping, and there may be multiple sets of features
expressing the same emotional state. One widely used strategy is to compute as
many features as possible. Optimisation algorithms can then be applied to select
the features contributing most to the discrimination while ignoring others. This
avoids making difficult a priori decisions about which features may be relevant.

Previous studies indicate that several emotions can occur simultaneously [2].
Examples of co-occurring emotions include being happy at the same time as



II

being tired, or feeling touched, surprised and excited when hearing good news.
Improving upon the inference solution for co-occurring emotions presented by
Sobol Shikler [3], the new system proposed in this paper is able to achieve real-
time performance and higher classification accuracy.

In this paper, we describe an approach for real-time classification of co-
occurring emotions. The classification output is a set of classes rather than a
single one, allowing nuances and mixtures of emotions to be detected. More-
over, rather than attempting to make difficult a priori decisions about which
features may be relevant, our strategy is to compute as many features as possi-
ble, and then select those offering the best discrimination. Finally, we present a
novel application of the classifier to virtual speech coaching for improving public
speaking skills.

2 Implementation Methodology

The design of the classifier considers three main factors: (i) the choice of a train-
ing corpus, (ii) the need for real-time performance, (iii) the ability to recognise
co-occurring emotions.

For emotion classification we choose the Mind Reading corpus [4] which pro-
vides a hierarchical structure between groups with a large number of emotion
concepts. It was developed by psychologists at University of Cambridge Autism
Research Centre, aiming to help autistic children and adults to recognise both
basic and complex emotions. The corpus consists of 2927 acted sentences, cover-
ing 442 different concepts of emotions, each with 5-7 sentences. The acting was
induced and the labelling was done by ten people in different age groups [5]. The
labelling of each sample in the corpus required the agreement of 8 members of a
panel of 10 expert assessors. Although the samples are acted, the large number
of samples makes the corpus suitable for training an emotion classifier.

The main emotion groups of Mind Reading are shown in Table 1. Each of
these is further divided into concepts, giving a total of 422 subgroups. For the
classifier, a subset of 9 categories representing a large variety of emotions is
chosen. Each category contains samples from the groups as shown in Table 1.
These are chosen to minimise the overlap between categories. The categories
and samples are the same as those used by Sobol Shikler [3, 6], allowing direct
comparison of results.

Achieving real-time performance required a careful choice of feature extrac-
tion and classification algorithms. Recognising co-occurring emotions needed a
method for ranking candidate emotions.

2.1 Support Vector Machines

Several potential classifiers were investigated. In previous work on emotion recog-
nition from speech [3], support vector machines (SVMs) and tree algorithms such
as C4.5 have been found to be effective. We also tried other methods such as the
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Table 1. The 24 emotion groups in the Mind Reading corpus [5]. The superscripts
indicate the main groups from which a subset of affective states is selected to al-
low comparison of the results to previous research [3]. These subsets are: absorbed1,
excited2, interested3, joyful4, opposed5, stressed6, sure7, thinking8 and unsure9.

afraid angry bored bothered1 disbelieving

disgusted excited2 fond happy3 hurt

interested4,5 kind liked romantic sad

sneaky sorry sure6 surprised think7

touched unfriendly8 unsure9 wanting

Naive Bayesian classifier and Perceptrons using the Weka data mining toolkit
[7], but SVMs gave the most promising results.

We create the model by constructing an N -dimensional hyperplane that op-
timally separates data into two categories. Each data instance i is a tuple (li, fi),
where li ∈ {1,−1} is a class label, with 1 and −1 indicating the class, and fi ∈ Rn
is a set of feature attributes. Optimality is taken to be the maximal separation
between the two classes. Any such hyperplane can be written as the set of points
x satisfying w · x− b = 0 where x = fi, w is the normal vector perpendicular to
the hyperplane, ‖w‖ is the Euclidean norm of w, and |b|

‖w‖ is the perpendicular
distance from the hyperplane to the origin.

We use a modified version of SVMs [8] that allows for mislabelled examples
by choosing a hyperplane as cleanly as possible even if there is no hyperplane
that can split the two classes. We measure this degree of misclassification by the
variable ξi and require the solution of the optimisation problem

min
w,b,ξ
{1

2
‖w‖2 + C

∑
i

ξi} (1)

under constraints

li(w · xi − b) ≥ 1− ξi 1 ≤ i ≤ n (2)

ξi ≥ 0. (3)

where C > 0 is the penalty for mislabelled examples and n is the number of
data instances in the corpus. This can be solved using Lagrange multipliers.

We use a non-linear classifier, replacing the linear dot product xi ·xj by a ker-
nel function that transforms the original input space into a higher-dimensional
feature space, allowing the SVM to potentially better separate the two classes.
After trialling several possible kernel function candidates, the Radial Basis Func-
tion (RBF) kernel

K(xi,xj) = exp(−γ‖xi − xj‖2) (4)

with γ > 0, was found to yield the most promising results.
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To generalise SVMs to more than two classes, pairwise classification is used.
A single multiclass problem is reduced into multiple binary problems by building
a classifier for each pair of classes, using only instances from two classes at a
time.

2.2 Training

The training system architecture is shown in Fig. 1. Its main components are
discussed below.

Input corpus with labels (l1, ..., ln)

Convert into pairwise corpora C =
{(l1, l2), ..., (l1, ln), ...(ln−1, ln)}

For all i, j.ci,j ∈ C extract feature
set F (ci,j)

Select best separating features
f(ci,j) ⊆ F (ci,j)

Grid search SVMi,j ’s RBF kernel
parameters (Ci,j , γi,j) that max-
imise cross-validation accuracy

Compute SVM model τi,j from op-
timal parameters (Ci,j , γi,j)

Output models τi,j

?

?

?

?

?

?

Fig. 1. The training system architecture. SVMi,j represents the support vector for
comparing label li with lj .

Feature Extraction For this work, the openSMILE [9] feature extraction
algorithms are used. OpenSMILE provides sound recording and playback via
the open-source PortAudio library, echo cancellation, windowing functions, fast
Fourier transforms and autocorrelation. Moreover, it is capable of extracting fea-
tures such as pitch, loudness, energy, mel-spectra, voice quality, mel-spectrum
frequency coefficients, and can calculate various functionals such as means, ex-
tremes, peaks, percentiles and deviations with a Real-Time Factor � 1.
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Feature Selection Since a large feature set will be extracted from the speech,
it is expected that there are some irrelevant and redundant data that will not
improve the SVM prediction performance. Classification algorithms are unable
to attain high classification accuracy if there is a large number of weakly relevant
and redundant features, a problem known as the curse of dimensionality [10].
Algorithms also suffer from computational load incurred by the high dimensional
data.

Our approach is to use the predefined openSMILE set emo large with 6552
features, and pick the most relevant ones using feature selection. For choosing
relevant features, the Correlation-based Feature Selection (CFS) algorithm [11]
is used. It uses a heuristic based on the assumption that good feature sets contain
features highly correlated with the class and uncorrelated with each other.

Grid Search When using the Radial Basis Function SVM kernel, it is important
to choose a suitable penalty for mislabelled examples C and the exponentiation
constant γ. Because the optimal values are model-specific, a search algorithm is
needed for finding a near-optimal set of values.

The goal is to identify good (C, γ) values so that the classifier can accurately
predict unseen testing data, rather than choosing them to maximise prediction
accuracy for the training data whose labelling is already known. In this work we
use v-fold cross-validation. The training set is divided into v equal-sized subsets,
with each subset sequentially tested used a classifier trained on the remaining
v − 1 subsets.

We use a Grid Search algorithm that sequentially tries pairs of (C, γ) in
a given range, and picks the one with the highest cross-validation accuracy.
Exponentially growing sequences worked well in practice, confirming findings in
previous research [12]. The algorithm is run recursively on a shrinking area.

2.3 Classification

The real-time classification system architecture is shown in Fig. 2. Its main
components are discussed below.

Segmentation Real-time analysis of speech requires segmenting the audio. Our
static threshold algorithm achieves this by defining three thresholds. First, the
silence threshold η defines the threshold for the energy E =

∑n
i |si|2 > η, for

signals si in frame of size n. Second, ρstart sets the number of frames with energy
above η that are required until a segment start is detected. Third, ρend defines
the number of frames below η until a segment end is detected. After the audio
is segmented, openSMILE is used to extract the features.

Pairwise Fusion Mechanism Once the audio is segmented and the features
are extracted, n(n − 1)/2 pairwise machines for n classes are run in parallel to
predict the class for a segment. In order to determine the most probable class,
the probabilities of the multiple binary classifiers are fused.
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Input live audio A

For all i, j.ci,j ∈ C read model τi,j
and selected features f(ci,j)

Segment A into utterances with
loudness above threshold

Extract selected features f(ci,j)

Run SVM1,2(f(c1,2))
and extract p1, p2

...
Run SVMn−1,n(f(cn−1,n))
and extract pn−1, pn

Calculate win count ωi and total
probability ψi

Output ψi
n

if ωi ≥ λ, where λ is
the threshold

?

?

?

? ? ?

? ? ?

?

Fig. 2. The real-time classifier architecture. SVMi,j computes the probabilities pi and
pj for labels i, j, using features f(ci,j).

We propose a fusion method for determining co-occurring emotions. Whereas
in traditional single-label classification a sample is associated with a single label
li from a set of disjoint labels L, multi-label classification associates each sample
with a set of labels L′ ⊆ L. A previous study concluded that the use of com-
plex non-linear fusion methods yielded only marginal benefits (0.3%) over linear
methods when used with SVMs [13]. Therefore, three linear fusion methods are
implemented:

1. Majority voting using wins from binary classifiers.
2. Maximum combined probability from binary classifiers.
3. Binary classification wins above a threshold.

In the first method we consider all n − 1 SVM outputs per class as votes
and select the class with most votes. Assuming that the classes are mutually
exclusive, the a posteriori probability for feature vector f is pi = P (f ∈ classi).
The classifier SVMi,j computes an estimate p̂i,j of the binary decision probability

pi,j = P (f ∈ classi|f ∈ classi ∪ classj) (5)

between classes i and j. The final classification decision D̂voting is the class
i for which
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D̂voting = arg max
1≤i≤n

∑
j 6=i

g(p̂i,j) (6)

where

g(p) =

{
1 for p ≥ 1

2

0 otherwise
. (7)

Ties are solved by declaring the class with higher probability to be the winner.
In the second method, the maximum probability ψi =

∑
p∈Si

p of the binary
SVMs is determined. The winner of decision D̂probability is i such that

D̂probability = arg max
1≤i≤n

∑
j 6=i

p̂i,j . (8)

Finally, for detecting co-occurring emotions, the classes are ranked according
to the number of wins. The classes with wins above a threshold λ are returned,
with the classification decision D̂threshold being the set of classes

D̂threshold = {i |
∑
j 6=i

g(p̂i,j) ≥ λ}. (9)

We set λ = b(µ + σ)nc where µ is the mean win count, σ is the standard
deviation and n is the class cardinality to allow comparison with Sobol Shikler [3].

3 Application for Public Speaking Skill Assessment

We present a novel application of the classifier for assessing the quality of public
speaking skills.

In persuasive communication, the non-verbal clues a speaker conveys require
special attention. Untrained speakers often come across as bland and lifeless.
Precisely analysing the voice is difficult for humans and is subjective. By using
a similar approach as for detecting emotions, our system enables more objective
assessment of public speaking skills.

We retrain our classifier using six labels describing public speaking skills
shown in Table 2. Following the requirements by Schuller et al. [14], we use non-
acted, non-prompted, realistic data with many speakers, using all obtained data.
An experienced speech coach was asked to label 124 one-minute-long samples of
natural audio from 31 people attending speech coaching sessions. The chosen six
labels are the ones that the professional is accustomed to using when assessing
the public speaking skills of clients. The samples are labelled on a scale 4–10 for
each class. We then divided the samples of classes into higher and lower halves
according to the score. The upper half represents a positive detection of the class
(e.g. clear), and the lower half represents a negative detection (e.g. not clear).

One binary SVM per class is used to derive a class-wise probability. If a
pairwise approach similar to that in emotion classification had been used, the
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same samples would have existed in several classes, making separating the classes
intractable. As a result, unlike in emotion detection where the most prominent
labels describing the speech are selected, for speech quality assessment all classes
are detected, each labelled with a probability. This allows users to attempt to
maximise all class probabilities, a goal which is more useful for speech coaching.

The results of public speaking skill assessment are shown in Table 2. All
classes can be accurately detected. The classes competent and dynamic present
slightly lower detection accuracies, perhaps due to the smaller variation in scores
resulting from a small corpus size. Overall, however, the speech quality assess-
ment accuracies are high (average 81%) and may provide useful feedback to
speakers. In future work, performance using alternative evaluation metrics such
as those specified by Schuller et al. [14] will be investigated.

Table 2. Detection accuracies in percentages for assessing public speaking skills.

Class 10-fold cross-validation Training samples

clear 80 66

competent 74 49

credible 80 42

dynamic 77 45

persuasive 82 79

pleasant 93 73

Mean 81 59

4 Evaluation

In this section we evaluate the overall classification results.
The result of applying grid search is shown in Table 3. The optimisation

is done on the training data, with the testing data kept unseen. A significant
improvement, between 10% and 25%, was observed. As the optimisation max-
imises the cross-validation accuracy of the training data instead of the training
data classification accuracy, the optimisation did not result in overfitting of the
model.

The average latency in milliseconds of the classification stage is shown in
Fig. 3. It was measured as the time between the detection of the end of a segment
and the output of the result. As shown in the figure, normal sentences (1–15 s)
are classified in 0.046–0.110 s, making the delay barely noticeable. Improving
upon Sobol Shikler’s inference solution [3], this allows real-time classification.

The ten-fold cross-validation results for the pairwise SVMs are shown in
Table 4. All accuracies are greater than the values obtained in previous research
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Table 3. Detection accuracies in percentages with a 70–30% training/testing split for
the three fusion methods, with and without grid search.

Type of data Threshold Max probability Max wins

Grid search 86 72 70

No grid search 76 47 48

Fig. 3. Average live classification latency in milliseconds on a dual-core 2.66 GHz PC
with 4 GB RAM.

using the same classes and corpus. The results are constantly above 80%, in
contrast to the lower bound 60% obtained previously.

A summary of the accuracies for the three different fusion methods is shown
in Table 5. The average accuracies are higher than or equal to the results achieved
previously on the same corpus [3]. Notably, the average accuracy of the maximum
probability fusion technique is higher than that achieved by majority voting
(72% vs 70%). However, for some classes the majority voting accuracy is higher
(e.g. stressed and interested). A higher average accuracy could be achieved by
combining these methods. In future work, more advanced fusion methods such
as the ensemble classification presented by Schuller et al. [15] and the tree-based
approach by Lee et al. [16] will be investigated.

Confusion matrices for fusion using thresholding and maximum probability
are shown in Tables 6 and 7 respectively. Inspection of the confusion matrices
reveals that some classes are better detected than others. The classes opposed
and sure present the lowest values using any method. This is reflected by the
lower number of training samples (38 and 53 samples, compared to the average of
61) resulting from the categorisation choice to allow comparison to Sobol Shikler
[3]. Similarly, the class with most samples (joyful, 94 samples) is most frequently
mistaken to be the correct class. In future work classes with equal numbers of
training samples could be used.
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Table 4. The 10-fold cross-validation accuracy for pairwise SVMs in percentages. The
average accuracy is 89%. For comparison, Sobol Shikler’s results [3] are in parentheses.
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absorbed 93 (81) 87 (82) 96 (82) 96 (78) 89 (87) 85 (84) 82 (73) 84 (64)

excited 90 (71) 84 (60) 81 (71) 80 (61) 94 (83) 90 (72) 87 (75)

interested 92 (77) 92 (75) 91 (66) 90 (78) 90 (84) 85 (72)

joyful 86 (71) 85 (61) 99 (83) 95 (72) 92 (75)

opposed 93 (84) 91 (72) 94 (81) 92 (79)

stressed 86 (84) 88 (75) 86 (78)

sure 94 (75) 88 (78)

thinking 90 (89)

Table 5. Accuracies in percentages for the three fusion methods. Sobol Shikler’s results
[3] are shown in parentheses. 2.5 classes were inferred on average with a threshold λ = 6.

Type of data Threshold Max probability Voting

70–30% training/ testing split 86 (79) 72 70

Training data 99 (81) 86 88

As expected, the thresholding fusion method for co-occurring emotion clas-
sification yields highest detection accuracies since several classes can be selected
at a time. This, however, also leads to much higher confusion values because of
the assumption that more than one emotion can be occurring simultaneously.
For example, as shown in Table 7, samples labelled excited are detected as joyful
in 35% of cases, compared to a correct detection rate of 85%. It is likely that
some high confusion rates are caused by the overrepresentation of certain classes.

5 Conclusion

We have presented a framework for real-time speech emotion classification whose
accuracy outperforms previous work using the same corpus [3]. We have also
shown that the novel application of the system for assessing public speaking
skills achieves high classification accuracies.

The framework consists of n(n− 1)/2 pairwise SVMs for n labels, each with
a differing set of features selected by a correlation-based feature selection algo-
rithm. We demonstrated a considerable improvement in classification accuracy
from optimising the misclassification and exponentiation coefficients (C, γ) in
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Table 6. Confusion matrix using maximum probability for pairwise fusion. The column
headings show the ground truth and the rows show inferences. Average accuracy is 72%.
A random choice would result in 11% accuracy.
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absorbed 74 0 2 0 0 1 2 1 1

excited 0 75 2 6 0 2 6 0 1

interested 4 0 69 0 0 2 2 3 1

joyful 4 10 6 79 16 11 4 3 4

opposed 0 2 0 2 62 1 2 0 0

stressed 4 8 6 3 8 67 9 1 8

sure 0 0 2 2 5 2 63 0 0

thinking 7 0 8 3 0 4 11 86 17

unsure 7 4 6 4 8 8 2 6 68

Table 7. Confusion matrix using thresholding for pairwise fusion. The column headings
show the ground truth and the rows show inferences. Average accuracy is 86%. A
random choice would result in 11% accuracy.
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absorbed 93 4 15 0 0 4 12 23 24

excited 15 85 10 29 27 46 24 6 14

interested 22 2 83 14 3 10 11 17 14

joyful 15 35 21 91 41 39 22 23 22

opposed 0 14 6 22 73 11 17 7 8

stressed 15 60 31 56 51 92 31 24 29

sure 11 19 6 4 16 9 74 11 9

thinking 48 15 42 19 24 19 28 93 56

unsure 48 8 52 24 22 31 26 56 91
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(1) and (4) using a grid search algorithm. Improvements between 10% and 25%
were observed.

Overall, this paper presented a high-accuracy training and classification frame-
work for emotion detection from speech, and shows that it can be successfully
applied for real-time assessment of public speaking skills.
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vector machines for fault classification. Control Engineering Practice 13 (2005)
759–769

14. Schuller, B., Steidl, S., Batliner, A.: The Interspeech 2009 emotion challenge. In:
Interspeech, Brighton, UK (2009)

15. Schuller, B., Reiter, S., Müller, R., Al-Hames, M., Lang, M., Rigoll, G.: Speaker
independent speech emotion recognition by ensemble classification. In: IEEE In-
ternational Conference on Multimedia and Expo. (2005)

16. Lee, C., Mower, E., Busso, C., Lee, S., Narayanan, S.: Emotion recognition using
a hierarchical binary decision tree approach. In: Interspeech, Brighton, UK (2009)


