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Abstract— During everyday interaction people display var-
ious non-verbal signals that convey emotions. These signals
are multi-modal and range from facial expressions, shifts in
posture, head pose, and non-verbal speech. They are subtle,
continuous and complex. Our work concentrates on the prob-
lem of automatic recognition of emotions from such multi-
modal signals. Most of the previous work has concentrated
on classifying emotions as belonging to a set of categories, or
by discretising the continuous dimensional space. We propose
the use of Continuous Conditional Random Fields (CCRF)
in combination with Support Vector Machines for Regression
(SVR) for modeling continuous emotion in dimensional space.
Our Correlation Aware Continuous Conditional Random Field
(CA-CCRF) exploits the non-orthogonality of emotion dimen-
sions. By using visual features based on geometric shape and
appearance, and a carefully selected subset of audio features we
show that our CCRF and CA-CCRF approaches outperform
previously published baselines for all four affective dimensions
of valence, arousal, power and expectancy.

I. INTRODUCTION

Reliable automated recognition of human emotions is
crucial before the development of affect sensitive systems
is possible [17]. Humans display affective behavior that
is multi-modal, subtle and complex. People are adept at
expressing themselves and interpreting others through the use
of non-verbal cues such as vocal prosody, facial expressions,
eye gaze, various hand gestures, head motion and posture. All
of these modalities contain important affective information
that can be used to infer the emotional state of a person
automatically [8], [21], [32].

Most work in automated emotion recognition so far [32]
has focused on analysis of the six discrete basic emotions [4]
(happiness, sadness, surprise, fear, anger and disgust). How-
ever, a single label (or multiple discrete labels from a small
set) might not describe the complexity of an affective state
very well. There has been a move to analyse emotional
signals along a set of small number of latent dimensions,
providing a continuous rather than a categorical view of
emotions. Examples of such affective dimensions are power
(sense of control); valence (pleasant vs. unpleasant); acti-
vation (relaxed vs. aroused); and expectancy (anticipation).
Fontaine et al. [6] argue that these four dimensions account
for most of the distinctions between everyday emotion cate-
gories, and hence form a good set for automatic analysis.

Affective computing researchers have started exploring the
dimensional representation of emotion [8]. The problem of
dimensional affect recognition is often posed as a binary

classification problem [8], [27] (active vs. passive etc.) or
even as a four-class one (classification into quadrants of a
2D space). In our work, however, we represent the problem
of dimensional affect recognition as a regression one.

In addition, most of the work so far has concentrated on
analysing different modalities in isolation rather than looking
for ways to fuse them [8], [32]. This is partly due to the
limited availability of suitably labeled multi-modal datasets
and the difficulty of fusion itself, as the optimal level at
which the features should be fused is still an open research
question [8], [32]. Our approach can fuse multiple modalities
effectively, outperforming early SVR fusion.

Conditional Random Fields [10] (CRF) and various ex-
tensions have proven very useful for emotion recognition
tasks [20], [30]. However, conventional CRF cannot be
directly applied to continuous emotion prediction, as they
model the output as being discrete rather than continuous.
In our work, we propose the use of Continuous Conditional
Random Fields [18] (CCRF) in combination with SVRs for
the task of continuous emotion recognition.

We apply our CCRF model for the task of continuous
dimensional emotion prediction on the AVEC 2012 subset of
SEMAINE dataset [26]. We show the benefits of using this
approach for emotion recognition by outperforming the SVR
baseline. Furthermore, we present our Correlation Aware
Continuous Conditional Random Field (CA-CCRF) model
which exploits the correlations between the emotion dimen-
sions, further improving the emotion prediction accuracy for
some of the dimensions.

In our work we also demonstrate the benefit of using
facial geometry/shape deformations of face for spontaneous
affect recognition from video sequences. Such features are
often ignored in favour of appearance based features, thus
losing useful emotional information [9]. This is due to the
difficulty of acquiring a neutral expression from which facial
shape deformation can be measured. Our work shows how
to extract a neutral expression and demonstrates the utility
of geometry alongside appearance for emotion prediction.

The main contributions of our research are as follows:
• A fully continuous CCRF emotion prediction model that

exploits temporal properties of the emotion signal
• Exploiting the correlations between the emotional di-

mensions using our CA-CCRF model
• A novel way to fuse multi-modal emotional data
• A demonstration of the utility of facial geometry for



continuous affect recognition
• Freely available implementation of CCRF1

II. BACKGROUND

As this paper concentrates on the recognition of emotion
in a dimensional space we present the previous work on
this specific task. For recent surveys of dimensional and
categorical affect recognition see Zeng et al. [32], Gunes
and Pantic [8], and Gunes et al. [7].

Nicolaou et al. [11] present experiments for classification
of spontaneous affect based on Audio-Visual features using
coupled Hidden Markov Models which allow them to model
temporal correlations between different cues and modalities.
They also show the benefits of using the likelihoods produced
from separate (C)HMMs as input to another classifier as
a fusion approach, rather than picking the label with a
maximum likelihood. In contrast with our work, they perform
classification rather than regression.

Nicolaou et al. [12] propose the use of Output-Associative
Relevance Vector Machine (OA-RVM) for dimensional and
continuous prediction of emotions based on automatically
tracked facial feature points. Their proposed regression
framework exploits the inter-correlation between the valence
and arousal dimensions by including in their mode the
initial output estimation together with their input features.
In addition, OA-RVM regression attempts to capture the
temporal dynamics of output by employing a window that
covers a set of past and future outputs. Our approach also
captures temporal dynamics, is a regression one, and exploits
correlations between dimensions.

Of special relevance to our work is the work done by
Wöllmer et al. [30] which uses Conditional Random Fields
(CRF) for discrete emotion recognition by quantising the
continuous labels for valence and arousal based on a se-
lection of acoustic features. In addition, they use Long
Short-Term Memory Recurrent Neural Networks to perform
regression analysis on these two dimensions. Both of the
approaches demonstrate the benefits of including temporal
information when predicting emotion.

More recently Ramirez et al. [20] proposed the use of
Latent Dynamic Conditional Random Fields (LDCRF). Their
approach attempts to learn the hidden dynamics between
input features by incorporating hidden state variables that
can model the sub-structure of gesture sequences. Their ap-
proach was particularly successful in predicting dimensional
emotions from the visual signal. However, the LDCRF model
can model only discrete output variables, hence the problem
was posed as a classification one.

III. CONTINUOUS CRF

We want to model the affect continuously rather than
turning this problem into a classification one by discretising
the signal as done by many previous approaches [8]. Further-
more, we want to model the temporal relationships between
each time step, since emotion has temporal properties and

1http://www.cl.cam.ac.uk/research/rainbow/
projects/ccrf/

is not instantaneous. A recent and promising approach that
would allow us to model such temporal relationships is the
Continuous Conditional Random Fields [18] (CCRF). It is
an extension of the classic Conditional Random Fields [10]
(CRF) to the continuous case. We extend the original CCRF
model so it can be used for continuous emotion prediction.

A. Model definition

CCRF is an undirected graphical model where conditional
probability P (y|x) is modeled explicitly. It is a discrim-
inative approach, which has shown promising results for
sequence labeling and segmentation [29]. This is in contrast
to generative models where a joint distribution P (y, x) is
modeled instead. The graphical model that represents our
CCRF for emotion prediction is shown in Figure 1.

In our discussion we will use the following notation:
{x(q)

1 ,x
(q)
2 , . . . ,x

(q)
n } is a set of observed input variables

{y(q)1 , y
(q)
2 , . . . , y

(q)
n } is a set of output variables that we wish

to predict, x
(q)
i ∈ Rm and y

(q)
i ∈ R, n is the number

of frames/time-steps in a sequence, m is the number of
predictors used, q indicates the qth sequence of interest.
When there is no ambiguity, q is omitted for clarity.

Our CCRF model for a particular sequence is a conditional
probability distribution with the probability density function:

P (y|X) =
exp(Ψ)∫∞

−∞ exp(Ψ)dy
(1)

Ψ =
∑
i

K1∑
k=1

αkfk(yi,X) +
∑
i,j

K2∑
k=1

βkgk(yi, yj ,X) (2)

Above X = {x1,x2, . . . ,xn} is the set of input feature
vectors (can be represented as a matrix with per frame
observations as rows), y = {y1, y2, . . . , yn} is the unob-
served variable.

∫∞
−∞ exp(Ψ)dy is the normalisation (par-

tition) function which makes the probability distribution a
valid one (by making it sum to 1). Following the convention
of Qin et al. [18] we call fk vertex features, and gk edge
features. The model parameters α = {α1, α2, . . . αK1}, and
β = {β1, β2, . . . βK2} would be provided for inference and
need to be estimated during learning.

B. Feature functions

We define two types of features for our CCRF model,
vertex features fk and edge features gk.

fk(yi,X) = −(yi −Xi,k)2, (3)

gk(yi, yj ,X) = −1

2
S
(k)
i,j (yi − yj)2. (4)

Vertex features fk represent the dependency between the
Xi,k and yk, for example dependency between a static
emotion prediction from a regressor and the actual emotion
label. Intuitively, the corresponding αk for vertex feature
fk represents the reliability of the kth predictor. This is
particularly useful for multimodal fusion, as it models the
reliability of a particular signal for a particular emotion,

http://www.cl.cam.ac.uk/research/rainbow/projects/ccrf/
http://www.cl.cam.ac.uk/research/rainbow/projects/ccrf/


Fig. 1. Graphical representation of the CCRF model. xi,k represents the
kth feature of the jth observation (corresponding to the ith observation
of the sequence), and yi is the unobserved variable we want to predict.
Dashed lines represent the connection of observed to unobserved variables
(fk vertex features), so the first predictor is connected using f1, whilst
the kth predictor is connected using fk . The solid lines show connections
between the unobserved variables (edge features), the first connection is
controlled by g1, the kth connection is controlled by gk . In our model
all the output variables yi are connected to each other (edge functions can
break the connections by setting the appropriate Si,j to 0)

for example the CCRF model could learn that the facial
appearance might be more important in predicting valence
than the audio signal.

Edge features gk represent the dependencies between ob-
servations yi and yj , for example how related is the emotion
prediction at time step j to the one at time step i. This is
also affected by the similarity measure S(k). Because we are
using a fully connected model, the similarities S(k) allow us
to control the strength or existence of such connections. We
define two types of similarities in our work:

S
(neighbor)
i,j =

{
1, |i− j| = n
0, otherwise

(5)

S
(distance)
i,j = exp(−||xi − xj ||

σ
) (6)

By varying n for neighbor similarity we can construct a
family of similarities, this allows us to connect the obser-
vation yi not only to yi−1, but also to yi−2 and so on. By
varying σ for the distance similarity we create another set
of similarities that control how related are the y terms based
on how similar the x terms are. Our framework allows for
easy creation of different similarity measures which could
be appropriate for other applications.

The learning phase of CCRF will determine which of the
similarities is important for the dataset of interest. For ex-
ample, it can learn that for one emotion neighbor similarities
are more important than for others.

Similarly to Radosavljevic et al. [19] and Qin et al. [18],
our feature functions model the square error between predic-
tion and a feature. Therefore, each element of the feature vec-
tor xi should be already predicting the unobserved variable
yi. This can be achieved using Support Vector Regression
(used in our work), linear regression, neural networks etc.

C. Learning

In this section we describe how to estimate the parameters
{α, β} of a CCRF with quadratic vertex and edge functions.

We are given training data {x(q),y(q)}Mq=1 of M sequences,
where each x(q) = {x(q)

1 ,x
(q)
2 , . . . ,x

(q)
n } is a sequence of

inputs and each y(q) = {y(q)1 , y
(q)
2 , . . . , y

(q)
n } is a sequence

of real valued outputs. We also use the matrix X to denote
the concatenated sequence of inputs.

In learning we want to pick the α and β values that
optimise the conditional log-likelihood of the CCRF on the
training sequences:

L(α, β) =

M∑
q=1

logP (y(q)|x(q)) (7)

(ᾱ, β̄) = arg max
α,β

(L(α, β)) (8)

As the problem is convex [18], the optimal parameter val-
ues can be determined using standard techniques such as
stochastic gradient ascent.

It helps with the derivation of the partial derivatives of
Eq.(7) and with explanation of inference to convert the
Eq.(1) into multivariate Gaussian form (see Appendix A in
supplementary material for a detailed derivation).

P (y|X) =
1

(2π)
n
2 |Σ| 12

exp(−1

2
(y− µ)TΣ−1(y− µ)), (9)

Σ−1 = 2(A+B) (10)

The diagonal matrix A represents the contribution of α terms
(vertex features) to the covariance matrix, and the symmetric
B represents the contribution of the β terms (edge features).

Ai,j =

{ ∑K1
k=1 αk, i = j

0, i 6= j
(11)

Bi,j =

{
(
∑K2
k=1 βk

∑n
r=1 S

k
i,r)− (

∑K2
k=1 βkS

k
i,j), i = j

−
∑K2
k=1 βkS

k
i,j , i 6= j

(12)
We also define a further vector b, that describes the linear
terms in the distribution, and a helpful variable µ which is
the mean value of the Gaussian CCRF distribution.

bi = 2

K1∑
k=1

αkXi,k (13)

µ = Σb (14)

We can now write down the partial derivatives of the
logP (y|X). Please refer to Appendix B in supplementary
material for details.
∂ log(P (y|X))

∂αk
= −yTy+2yTXT

∗,k−2X∗,kµ+µTµ+tr(Σ)

(15)
∂ log(P (y|X))

∂βk
= −yTB(k)y+µTB(k)µ+Vec(Σ)TVec(B(k))

(16)

B(k) =

{
(
∑n
r=1 S

(k)
i,r )− S(k)

i,j , i = j

−S(k)
i,j , i 6= j

(17)

In order to guarantee that our partition function is inte-
grable we constrain αk > 0 and βk > 0 [18], [19]. Such



constrained optimisation can be achieved by using partial
derivatives with respect to logαk and log βk instead of just
αk and βk. We also add a regularisation term in order to
avoid overfitting. The regularisation is controlled by λα and
λβ hyper-parameters (determined during cross-validation).

∂ log(P (y|X))

∂ logαk
= αk(

∂ log(P (y|X))

∂αk
− λααk) (18)

∂ log(P (y|X))

∂ log βk
= βk(

∂ log(P (y|X))

∂βk
− λββk) (19)

Using these partial derivatives we can write down the
CCRF learning algorithm that uses stochastic gradient ascent.

Algorithm 1 Our CCRF learning algorithm

Require: {X(q),y(q), S
(1)
q , S

(2)
q , . . . , S

(K)
q }Mq=1

Params: number of iterations T, learning rate ν, λα, λβ
Initialise parameters {α, β}
for r = 1 to T do

for i = 1 to N do
Compute gradients of current query (Eqs.(18),(19))
logαk = logαk + ν ∂ log(P (y|X))

∂ logαk

log βk = log βk + ν ∂ log(P (y|x))
∂ log βk

Update {α, β}
end for

end for
return {ᾱ, β̄} = {α, β}

D. Inference

Because our CCRF model can be viewed as a multivari-
ate Gaussian, inferring y values that maximise P (y|x) is
straightforward. The prediction is the mean value of the
distribution.

y′ = arg max
y

(P (y|X)) = µ = Σb (20)

As a practical note, depending on the regularisation terms
when training, and the types of similarity functions chosen,
and especially if the input variables x are very noisy, the
learning algorithm can sometimes oversmooth the data, as
CCRF learns to trust temporal consistency much more than
the x observations. An effect of this is inference producing
a dampened signal. To combat this, one could use very
high λβ values to force the training to rely on the α
predictions more than on temporal elements controlled by
β, this would, however, be at a cost of retaining a noisy
signal. Alternatively, we recommend learning a scaling term
s from the same training data (after the CCRF training is
finished). Then the inference becomes y = s · µ, leading to
a correctly scaled signal.

Furthermore, if multiple CCRF models are to be trained
(as is the case for dimensional emotions), we recommend
using the Z-score of both input x and output y variables.
Then the same learning rate can be used on all of them.
This also helps if we want to use predictions from other
dimensions in a single CCRF, as is done in our CA-CCRF.

IV. VIDEO FEATURES

In order to analyse the geometry of the face, in addition to
knowing where to analyse the appearance features, we need
to track landmark points on the face together with the head
pose. For tracking faces we use a modified version of the
CLM-GAVAM tracker [2] for facial expression tracking.

A. CLM Tracker

The CLM tracker is combined with a Generalised Adaptive
View Based Appearance Model to help with pose esti-
mation [2]. In addition, we extend the CLM tracker to
handle identity/morphology and expressions separately. This
is needed in order to decouple shape deformations due to
identity from deformations due to expression.

The CLM model we use can be described by parameters
p = [s,R,qm,qe, t] that can be varied to acquire various
instances of the model: the scale factor s; object rotation R
(first two rows of a 3D rotation matrix); 2D translation t;
a vector describing non-rigid variation of the identity shape
qm; and expression shape qe (similar to a model used by
Amberg et al. [1]). Our point distribution model (PDM) is:

xi = s ·R(xi + Φiqm + Ψiqe) + t. (21)

Here xi = (x, y) denotes the 2D location of the ith feature
point in an image, xi = (X,Y, Z) is the mean value of the
ith element of the PDM in the 3D reference frame, and the
vector Φi is the ith eigenvector obtained from the training
set that describes the linear variations of non-rigid shape
of this feature point in morphology space (constructed from
the Basel 3DMM dataset [15]), and the vector Ψi is the
ith eigenvector obtained from the training set that describes
the linear variations of non-rigid shape in expression space
(constructed from BU-4DFE [31]).

In CLM we estimate the maximum a posteriori probability
(MAP) of the face model parameters p:

p(p|{li=1}ni=1, I) ∝ p(p)

n∏
i=1

p(li=1|xi, I), (22)

where li ∈ {1,−1} is a discrete random variable indicating
if the ith feature point is aligned or misaligned, p(p) is the
prior probability of the model parameters p, and

∏n
i=1 p(li =

1|xi, I) is the joint probability of the feature points x being
aligned at a particular point xi, given an intensity image I.

Patch experts are used to calculate p(li = 1|xi, I), which
is the probability of a feature being aligned at point xi
(Eq. 21). As a probabilistic patch expert we use an SVM
classifier combined with a logistic regressor.

p(li|xi, I) =
1

1 + edCi(xi;I)+c
(23)

Here Ci is the output of the SVM classifier, for the
ith feature, c is the logistic regressor intercept, and d the
regression coefficient. The classifier is thus:

Ci(xi; I) = wT
i P(W(xi; I)) + bi, (24)

where {wi, bi} are the weights and biases associated with a
particular SVM. Here W(xi; I) is a vectorised version of a



local n × n image patch centered around xi. P normalises
the vectorised patch to zero mean and unit variance.

We employ a common two step CLM fitting strategy [3],
[22]; performing an exhaustive local search around the
current estimate of feature points leading to a response map
around every feature point, and then iteratively updating the
model parameters to maximise Eq.(22) until a convergence
metric is reached. For fitting we use Regularised Landmark
Mean-Shift (RLMS) [22].

In order to fit CLM using our split PDM we first optimise
with respect to the morphology parameters qm, followed
by expression parameters qe. After a frame is successfully
tracked in a video sequence the morphology parameters are
fixed, and only expression parameters are optimised.

As a prior p(p) for parameters p, we assume that the
non-rigid shape parameters qm, qe and vary according to a
Gaussian distribution with the variance of the ith parameter
corresponding to the eigenvalue of the ith mode of non-rigid
deformation; the rigid parameters s,R, and t follow a non-
informative uniform distribution.

We use Baltrušaitis et al.’s freely available CLM im-
plementation [2] that is based on Saragih et al.’s RLMS
algorithm [22]. There are several differences between the
available implementation and the algorithm described in
Saragih et al. [22]: the model is trained using face images
at various orientations in addition to frontal ones, secondly,
CLM is coupled with a GAVAM head-pose tracker for more
accurate estimates of head-pose. For more details on fitting
see Baltrušaitis et al. [2] and Saragih et al. [22].

B. Geometric features
In order to extract the geometry features of facial expres-

sions one needs to establish the neutral facial expression
from which the expression is measured. We cannot rely on
the geometric configuration of the initial frame, as not all
of them start with neutral expressions. In order to extract
a neutral expression we use our PDM from Eq.(21) which
separates the expression and morphology subspaces.

After the fitting has been performed we can use the
expression parameters qe for describing the deformations due
to expression. In our PDM qe has 27 dimensions, this feature
vector can be used with SVR to predict emotion.

C. Appearance-based features
We augment the geometric features with appearance-based

ones, specifically local binary patterns (LBPs) which have
been widely used in facial analysis tasks due to their toler-
ance against illumination variations, and their computational
simplicity [28]. The original LBP operator introduced by
Ojala et al. [13] is formulated as follows:

The local binary code for each pixel, which assumes centre
position (xc, yc) with respect to its neighbours, is

LBPP (xc, yc) =

P−1∑
n=0

s(in − ic)2n,

s(x) =

{
1 x >= 0
0 x < 0

(25)

where P represents the number of neighbouring pixels, in
the intensity value of a neighbour pixel and ic the intensity
value of the centre pixel.

We employ an extension of the LBP operator which
seeks to combine motion features with appearance features
thus incorporating the temporal dynamics of an image se-
quence [33]. This is achieved by concatenating local binary
pattens on three orthogonal planes (LBP-TOP): XY, XT and
YT. The operator is expressed as:

LBP − TOPPXY ,PXT ,PY T ,RX ,RY ,RT

where the notation (PXY , PXT , PY T , RX , RY , RT ) de-
notes a neighbourhood of P points equally sampled on a
circle of radius R on XY, XT and YT planes respectively.
An LBP code is extracted from the XY, XT and YT planes
for all pixels, and statistics of the three different planes are
obtained and then concatenated into a single histogram. This
is demonstrated in Figure 2. This technique incorporates
spatial domain information through the XY plane, and spatio-
temporal co-occurrence statistics through the XT and YT
planes. We refer the reader to Zhao et al.’s [33] article for
derivation of the LBP-TOP descriptor.

Fig. 2. (a) Three planes from which spatio-temporal local features are
extracted (b) LBP histogram from each plane (c) Concatenated feature
histogram. [33]

In our approach, we use the facial feature points from the
CLM-GAVAM tracker to extract frontal faces from an image
sequence. In order to extract a frontal face we use perspective
warping from the current tracked points to the neutral refer-
ence frame, this also ensures size uniformity. The extracted
faces are divided into a 3x3 non-overlapping grid, and LBP-
TOP features are extracted for each block in the grid. We
apply uniform patterns which produce P (P − 1) + 3 output
labels (instead of 2P ) resulting in a significant dimension
reduction to a 59-dimensional histogram per image block
(for P = 8, R = 3). A complete feature vector is obtained by
concatenating the block histograms for each plane resulting
in a 1593-dimensional vector.

D. Motion features

Head gestures are an integral part of human communi-
cation as they convey a range of meanings and emotion.
They involve a range of dynamics such as head orientation,
rhythmic patterns, amplitude and speed of movement which
act as indicators of affective states.



TABLE I
DESCRIPTION OF THE AUDIO FEATURES USED IN THIS WORK.

Feature Description Motivation
Energy (in dB) reflects the perceived loudness of the speech signal has been found to have a high, positive correlation

with arousal [16], with increased intensity correlating
well with valence [25]

Articulation rate is calculated by identifying the number of syllables
per second

has been found to be positively correlated with
arousal [25]

Fundamental frequency (f0) is the base frequency of the speech signal (that is,
the frequency the vocal folds are vibrating at during
voiced speech segments)

has been found to have a high, positive correlation
with arousal [16]; and a positive correlation between
lower f0 and power [25]

Peak slope is a measure suitable for the identification of breathy
to tense voice qualities

there is evidence of a positive correlation between
warm voice quality and valence [25]

Spectral stationarity captures the fluctuations and changes in the voice
signal; a measure of the speech monotonicity

monotonicity in speech is associated with low activity
and negative valence [24]

The CLM-GAVAM tracker estimates 6 degrees-of-freedom
of head pose corresponding to head rotation and transla-
tion. We track the intensity variation of rigid head motion
by calculating the standard deviation of the rotational and
translational parameters, a measure which takes into account
the amplitude range and speed of change in head motion.
In addition to these statistics, the Euclidean norm of all
rotational parameters and that of translational parameters are
added to describe the overall head movement. This results
in the following 8-dimensional feature vector:[

σrx , σry , σrz , σtx , σty , σtz , σrxyz
, σtxyz

]
where r corresponds to rotation parameters and t to transla-
tion parameters.

V. AUDIO FEATURES

Vocal affect recognition analyses how things are said by
extracting non-verbal information from speech. Scherer [23]
states that emotion may produce changes in respiration,
phonation and articulation, which in turn affect the acoustic
features of the signal. It is therefore the variations in the
acoustic measures that makes it possible to discriminate be-
tween different emotional states. We adopt prosodic features
used in [14]. Table I lists the adopted features and provides
motivations for their choice. Details of their extraction algo-
rithms can be found in [14].

VI. FINAL SYSTEM

The final emotion prediction system proposed in our work
can be seen in Figure 3. Our model depends on the per time
step predictions from the previous layer. We use SVR, but
this could be replaced by any other continuous predictor,
such as linear regression, artificial neural networks or others.
The features that are used with each SVR are explained in
more detail in the Sections IV and V. The CCRF model used
is explained in Section III.

CCRF can use any number of SVR predictors, and we ex-
plore various combinations of them in our evaluation section.
First, we have a system that just uses a prediction from an
audio-visual SVR as its input (K = 1). Secondly, we use four
SVR predictors (audio, shape, appearance, pose) of the same
dimension (K = 4). Finally, as the emotional dimensions
do not form an orthogonal set, we exploit the correlations

Fig. 3. Final continuous emotion recognition system, that combines support
vector regressors with continuous conditional random fields. The number of
SVRs used can be varied, and depends on the experiment.

between them using our Correlation Aware CCRF (CA-
CCRF). We do this by including SVR predictions from other
dimensions alongside the corresponding SVRs. We include
both the original and negated SVR predictions from valence,
arousal, expectancy and power dimensions when training the
four CA-CCRFs (K = 32 for each). This allows us to exploit
both positive and negative correlations. In order to account
for the fact that the dimensions have different scalings and
different offsets, we used the Z-scores of the X

(q)
∗,k and y(q)

instead of raw values for training and inference.

VII. EVALUATION

A. Database

The proposed CCRF framework was evaluated using
the dataset distributed through the AVEC 2012 Emotion
Challenge [26]. This dataset forms part of the Solid SAL
section of SEMAINE database, which contains naturalistic
dialogues between two human participants, with one of the
participants simulating an artificial listener agent. The dataset
was, however, partitioned differently from the challenge. The
recordings were split into three partitions: training set I (for
SVR training), training set II (for CCRF training) and a test
set (for evaluation) with 21, 20 and 18 video sessions in
each partition, respectively. The interactions were annotated
by at least two raters along the dimensions arousal, valence,
power and expectancy.

B. Methodology

The video features used in the experiments were extracted
at a frame rate of 50 frames per second and downsampled by
employing the block averaging technique with a block size of



25 frames. The audio features were computed at 100Hz and
downsampled for alignment purposes. We used linear kernel
L2 loss ε-SVRs with L2 regularisation. The training was
performed using the Liblinear package [5]. The SVR hyper-
parameters were optimized using five-fold cross validation
on training set I. Prediction labels were generated from each
feature-type SVR model for the remaining two partitions for
further CCRF training and inference. The training set II was
used to determine the CCRF and CA-CCRF parameters (ᾱ,
β̄) and to cross-validate the regularization hyper-parameters
λα and λβ (ranging in [10−2, 100, 102, 104, 106]). Ten edge
features (gk) were used for all experiments; 5 neighbour
n = {1, 2, · · · , 5} and 5 distance σ = {2−6, 2−7, · · · , 2−11}
similarities. The learned β̄ weights that model the temporal
and spatial similarities of the signals, together with the
channel reliability measures ᾱ and SVR predictions were
used to predict unseen data (test set). The continuous emotion
label predictions were then up-sampled to the original video
frame rate through linear interpolation. An example of a
CCRF prediction is shown in Figure 4.

Fig. 4. A plot of a standardized CCRF valence prediction against the
ground truth from the test partition

Baseline SVR models were trained using both training sets
I and II to ensure that the baseline and the CCRF models have
been exposed to the same training data. We trained unimodal
SVR models and a multimodal SVR model (through early
fusion) for comparison with the CCRF framework.

C. Results

We measure performance using Pearson’s correlation co-
efficient (r) following the AVEC2012 emotion challenge
evaluation strategy. The results are obtained by computing
the correlation coefficient between the predicted labels and
ground truth labels per character interaction and per dimen-
sion, and calculating the average over all sessions. In the
following sections we present the results of experiments
conducted in this work.

1) Feature-type analysis: Figure 5 illustrates the perfor-
mance of the feature SVR models for each dimensional
emotion. The plots suggest that the appearance based fea-
tures (temporal LBPs) are a better estimator of valence and
arousal, and that audio features provide better predictions for
power and expectancy. Apart from the arousal dimension, the
shape (geometry) features do not perform much worse than
the appearance ones, highlighting their potential as compa-
rable estimators of emotion. The generally low correlation
results are indicative of the challenging task of working with

Fig. 5. Comparison of the correlation results for each feature SVR model
per dimensional affect

TABLE II
CORRELATION RESULTS OF BASELINE SVR AND CCRF MODELS

EVALUATED ON THE TEST PARTITION

VAL. AROUS. POW. EXPECT. MEAN

video features
SVR 0.176 0.234 0.100 0.120 0.158
CCRF 0.311 0.294 0.171 0.214 0.248
audio features
SVR 0.062 0.053 0.103 0.104 0.081
CCRF 0.064 0.166 0.297 0.277 0.201
audio-visual features
SVR 0.170 0.241 0.132 0.127 0.168
CCRF 0.326 0.341 0.273 0.248 0.297

naturalistic data due to the variety of expressions that can be
associated with an affective state.

2) Model and modality comparisons: Three types of
modalities were investigated for both the baseline SVR
and CCRF models: audio, video and audio-visual. Table II
presents a comparative view of the three modalities for
each model type. The results show that the CCRF model
significantly outperforms the baseline SVR in all modalities
and dimensions. This attests to the importance of temporal
data in the analysis and recognition of emotion, and the
success of the CCRF model in capturing these dynamics.

Consistent with other studies ([12], [14]), we found that
visual features are better predictors of valence and that audio
features perform better for the power dimension. However,
in contrast to previous findings the arousal state was better
predicted by visual rather than audio features.

Furthermore, our CCRF model succeeded in fusing va-
lence and arousal dimension; with overall results of the
audio-visual CCRF outperforming the individual CCRFs.

3) Fusion strength of CCRF: Table III contrasts the use
of a fused audio-visual SVR (K = 1) over the use of several
SVR predictors (K = 4) as input to the CCRF model. The
results show that fusing within the CCRF framework is better
than providing fused predictors, therefore highlighting one of
the strengths of the CCRF model: the information gain from
using signal dynamics for fusion.

4) Correlations between dimensions: With reference to
Table IV, it can be seen that our CA-CCRF model outper-
forms the regular CCRF for some dimensions. The effect
of using CA-CCRF is especially beneficial for power di-
mension. This is not suprising as in the dataset used, power



TABLE III
INVESTIGATING THE FUSION ABILITY OF CCRF WITH FUSED AND

NON-FUSED PREDICTOR INPUTS

CCRF INPUTS VAL. AROUS. POW. EXPECT. MEAN

1 fused SVR 0.305 0.239 0.110 0.275 0.232
4 feature SVRs 0.326 0.341 0.273 0.248 0.297

TABLE IV
COMPARISON OF CCRF AND CA-CCRF MODEL PERFORMANCES ON

TEST PARTITION

VAL. AROUS. POW. EXPECT. MEAN

CCRF 0.326 0.341 0.273 0.248 0.297
CA-CCRF 0.343 0.333 0.309 0.218 0.301

correlates with other dimensions (r = 0.25 with valence,
r = 0.43 with arousal and r = −0.46 with expectancy).

VIII. CONCLUSION

We presented a CCRF model that can be used to model
continuous dimensional emotion. The model can easily in-
corporate multiple simple predictors and exploits temporal
correlations between time steps and different modalities.
The model can be easily extended to include various other
similarity functions that capture the dynamic nature of the
signals. It also allows for high-order paths to be defined,
exploiting long and short range dependencies of time series.
During learning it determines the reliability of the different
channels and reflects this knowledge through the learned
weights allowing for an insight into what is happening in the
system. The resulting model has shown significant improve-
ment over the baseline SVR results. We also demonstrate
how to useour model to exploit the correlations between
emotional dimensions leading to better prediction for some
dimensions. The compact and simple CCRF design allows
for applications in other domains with dynamic properties.
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