
Chapter 13

Transforming Musical Notations for
Universal Access
S.S. Brown and P. Robinson

13.1 Introduction
Some disabilities can be assisted by using alternative notations and alternative
input methods. This chapter describes a system for transforming between different
musical notations, which can be customised to an individual's requirements, hence
supporting many unusual needs that did not specifically have to be accounted for in
the initial design. The customisation is brief, which encourages experimentation
because new ideas can be explored more quickly.

Musical notations are coded instructions for musicians to perform music. They
represent co-ordinated events in a stream of time. Internationally, several written
notations are in widespread use, such as Western staff notation, Chinese Jianpu
notation, sol-fa, many instrument-specific notations such as guitar tablature and
Japanese koto notation, and Braille music for the blind, which has numerous
different versions across the world. See Figure 13.4 for examples. It is often
possible to transcribe a piece of music from one notation into another in order to
make it accessible to a greater number of musicians. Software exists to effect such
transcriptions, such as the music-to-Braille projects MFB (Langolff et al., 2000)
and Goodfeel (McCann, 1997). Such software works by obtaining a semantic
(symbol-based) computer representation of the source notation, and algorithmically
transforming this into a representation of the desired notation which is then realised
by a suitable output device. However, existing systems are limited to dealing with
a few specific notations; if a highly unusual or customised notation is required, this
will often call for specialist programming or manual intervention.

13.1.1 Customised Notations

All of these notations can be customised for training purposes, or for particular
tasks such as rapid overview (this is particularly useful in Braille music). Printed



124 Brown and Robinson

notations can further be customised to address print disabilities such as low vision
or dyslexia, by using a modified set of symbols or a modified layout – for example,
a person with tunnel vision benefits if musical directions are moved closer to the
notes to which they apply, especially if the print is large. Ideally, software should
support such customisation in an open-ended way, to facilitate needs that the
designer did not originally anticipate.

13.1.2 Input

Musical composition and input presents another challenge. It is possible to enter
music into a computer by playing it on an electronic keyboard or other instrument,
but the results do not always match the user's intentions due to quantisation errors,
and many disabled users are excluded because of the dexterity required. A music
notation editor is frequently more appropriate. However, notations that are optimal
for reading are not necessarily optimal for writing or editing – conceptual
similarity between reading and writing is useful, but this can be overshadowed by a
disabled person's accessibility needs. For example, someone with typing
difficulties might prefer a terse input notation even if it means more training.
People with print disabilities often find direct manipulation music publishing
systems such as Sibelius (Finn and Finn, 2001) difficult to use, and prefer
character-based music languages that can be written in any text editor, including
any specialist or customised text editing environments they may have.

Several different character-based notations are in use by music typesetting
systems and online repositories, and it is possible to design new ones. The ideal
notation will vary with the style of music and the individual's method of
composing or editing, as well as their disability and input device. For this reason it
is useful to support flexibility in input (“write only”) as well as output (“read
only”) notations when supporting musical activities with software.

13.2 Related Work
Besides the specialist Braille transcription software that has already been
mentioned, and numerous music typesetting tools and other software that is
capable of dealing with more than one notation (e.g. recent versions of Sibelius can
convert between Western staff and guitar tablature), there are also some efforts to
generalise the problem of transcribing between musical notations so that new or
rarely-used notations can be supported as needed. In an earlier project (Brown,
2000), the first author represented musical scores as databases with each record
corresponding to an event in the music; a special reporting language was used to
generate various forms of Braille as well as data for music typesetting software.
The main limitations were the difficulty of supporting new input formats and the
verbosity of the languages used.

The problem can also be addressed by considering musical data as an example
of general structured data, and utilising a generalised transformation framework



Transforming Musical Notations 125

such as XSLT, the XML transformation system (W3C, 1999) or TXL (Cordy et al.,
1988) to effect the transcriptions. These languages are verbose, so customising
them involves considerable work, particularly for print-disabled people – those
with blindness, low vision, dyslexia or another impairment that restricts the use of
print.

There is no built-in support for multi-dimensional data, but music is inherently
multi-dimensional, and forcing it into a hierarchical structure introduces arbitrary
assumptions about its processing order and introduces difficulties when there are
exceptions to the structure (Castan et al., 2000). This increases verbosity.

13.3 Implementation
The authors' transformation framework 4DML (Brown and Robinson, 2002) has
been used as the basis of a transformation system for musical notations. The 4DML
framework consists of four main components:

1. an internal representation of structured data with multi-dimensional structures;
2. matrix mark-up language (MML), a generalised mark-up language designed to

facilitate the input of multi-dimensional data;
3. a transformation tool that takes XML or MML as input, uses the above

internal representation, and produces output in any text-based language by
following a model of the desired structure;

4. compact model language (CML) for representing the model (models may also
be represented using XML).

Reprocessing
(rarely needed)

Tools outside 4DML
Typesetting (5)

Input in XML
 or MML (1)

ProcessingData

4DML repre-
sentation (2) Transform

Model (3)

Key:

Parse Text-based
output (4)

Figure 13.1. Overview of the 4DML transformation framework.

As shown in Figure 13.1, data in XML or MML (1) is first converted into
4DML (2)―a process which needs no external information as XML and MML are
both self-describing formats – and then transformed into any text-based output
language (4) under the direction of a model (3). The entire process may be
surrounded by other transformations, such as the passing of the output through a
typesetting system (5).



126 Brown and Robinson

13.3.1 Matrix Markup Language (MML)

It can be cumbersome to hand-code multi-dimensional data in a hierarchical
markup language like XML, since the markup is very verbose and repetitive.

For example, in coding the lyrics of a song, one might have to enclose each
syllable in a <SYLLABLE>…</SYLLABLE> pair, whereas it would be easier to
define a separator (for example, hyphen) to stand for “next syllable” (other
separators can advance the word, verse number or translation).

In the general case, one can construct a parser for an arbitrary input language,
but this can be a significant amount of effort for an end-user. There is scope for a
markup language that provides for some simple re-definitions (such as “whitespace
means next syllable”) while not being as complex as a complete parser generator
tool.

Matrix Markup Language (MML) is a text-based language that can represent
structure in several ways. It consists of a mixture of directives and data. For
example, the !block directive begins a matrix-like block of data that starts with
directives such as

Have paragraph 1 newline 2 whitespace 3 - 4
as system 1 verse 2 word 3 syllable 4

which defines how the text is to be parsed – paragraphs represent “systems”,
lines represent “verses”, whitespace separates “words” and hyphens separate
“syllables” (the numbers are for illustrative purposes only and are not part of
MML). The have directive takes a list of input tokens, the word as and then a list of
the corresponding components in the structure being described. These tokens are
then referred to by the model (see below) during output. If desired, the lists may be
built up from several have…as directives. Punctuation and other arbitrary strings
may also be defined as separators, and there are facilities for representing
overlapping sets of independent markup via multiple have directives separated by
the word also. The data is also checked for consistency as it is processed, so any
errors such as missing data are reported.

A “system” is a unit of physical layout, and the layout will probably change
with the transformation. Nevertheless, representing the original layout (if any)
often facilitates error correction and cross-referencing.

13.3.2 Compact Model Language (CML)

4DML uses a “model” to outline the structure of the desired output, which
facilitates adjusting the output notation as needed. The data is automatically
rearranged into the structure given by the model – the model guides a complex
sorting operation, and also specifies any extra typesetting instructions in the
language of whatever typesetting system is to be used. This means there is very
weak coupling between the design of the input and that of the output; each can be
customised independently of the other.



Transforming Musical Notations 127

CML is a text-based language designed to facilitate the brief coding of models.
It consists of literal text to be output directly, interspersed with code that generates
output from the 4DML representation. In practice, most models have a repetitive
structure; they express such things as “for each song, for each verse, for each
syllable, …” which is expressed as song/verse/syllable. CML also has other
operators and can represent any hierarchical document, but its syntax is designed
for representing typical models concisely.

13.4 Evaluation
People with print disabilities should be able to program this transformation system
by themselves, to assist with their musical work. To demonstrate this, an individual
with low vision has used the system for the tasks described in this section. We
hope to find other interested individuals in the future.

Figure 13.2. Input in MML using a syntax designed by the user.

The individual arranged some music for the Japanese Koto and encoded in a
text editor using a notation that was invented for the purpose and appropriate to the
music.

This was achieved by means of MML and is shown in Figure 13.2 – notice that
the notation changes half way through the figure. Koto tablature was then produced
by using 4DML to drive the layout engine Lout (Kingston, 1993), which is a
general document preparation system that takes a description of page layout and
typesets it as PostScript or PDF. The Japanese characters were implemented as
images, as Lout does not support Unicode.



128 Brown and Robinson

Figure 13.3. 4DML model as CML embedded in Lout. The literal text is shown in roman
type, the code in bold sans serif type, and the comments in italics are added here for
explanatory purposes only and are not part of CML.

The model is shown in Figure 13.3, which is less “cluttered” when the comments
are removed. It consists of a translation table of notes to symbols, and then nested
loops over bars, hands, beats and notes – notice that the nesting order is different
from that of the input and its transposition is automatic. Other 4DML models
allowed the same music to be sent to Western music typesetting systems, Braille
printers using multiple versions of Braille, and other formats as shown in Figure
13.4. It is possible to implement models for new types of output as needed.



Transforming Musical Notations 129

Figure 13.4. Output in various notations.

Another experiment involved the use of “aspect-oriented” music encodings, in
imitation of aspect-oriented programming (Elrad et al., 2001). Different aspects of
the music, such as note letters, octaves, durations, enharmonics, ornaments, etc,
were coded on separate passes through the score (Figure 13.5), and the model
interleaved them when producing the typesetting instructions (Figure 13.6). This
facilitated the transcription of already-written music because the user need consider
only one aspect at a time, avoiding the need to switch rapidly between many
different features of a complex input language; the user was able to encode a
complex score that he had been unwilling to attempt using conventional methods.



130 Brown and Robinson

Figure 13.5. Part of a piece in an aspect-oriented encoding. Other aspects (not
shown) are octaves, enharmonics, dots, tuplets, phrasing, articulation, ornaments,
dynamics, text, time and key changes and typographic adjustments.

Figure 13.6. CML code to interleave Figure 13.5 into the format of M-Tx (a music
typesetter).

Another experiment involved the use of “aspect-oriented” music encodings, in
imitation of aspect-oriented programming (Elrad et al., 2001). Different aspects of
the music, such as note letters, octaves, durations, enharmonics, ornaments, etc,



Transforming Musical Notations 131

were coded on separate passes through the score (Figure 13.5), and the model
interleaved them when producing the typesetting instructions (Figure 13.6). This
facilitated the transcription of already-written music because the user need consider
only one aspect at a time, avoiding the need to switch rapidly between many
different features of a complex input language; the user was able to encode a
complex score which he had been unwilling to attempt using conventional
methods.

Aspect-oriented encoding also proved beneficial for original composition, the
different aspects of the composition being added at different times. In this case the
“aspects” were not always aspects of musical notation; they also included aspects
of the compositional framework defined by the user (such as “arpeggio type” and
“time distortion”) which were converted into musical notation by the user's model.

The system was also used to typeset a large number of Chinese songs in various
formats including an invented sol-fa like notation; in this case most of the work
was in arranging for the model to produce and typeset pronunciation aids in an
accessible form, and this is discussed elsewhere (Brown and Robinson, 2003).

13.5 Conclusion
A transformation system for musical notations has been constructed using the
4DML framework. This allows people with unusual accessibility needs to
customise both the presentation of musical notations and the means of inputting
them to their individual requirements, and allows music to be transformed between
different presentations for different people. This should increase the accessibility
of music as an educational subject, a vocation and an avocation. The aspect-
oriented method of encoding music that was introduced also holds potential for
music publishers and repositories, because it could be used to divide encoding
skills among several people.

4DML's primary contribution is the brief-but-readable nature of its models,
which aids in the rapid prototyping of transformations. It encourages a
consideration of the notations themselves rather than the algorithmic methods for
their transformation, hence allowing new notations to be experimented with more
easily. In future it could be used to assist in experimenting with completely new
ways of presenting music, such as via sign language, pictorially, or in tactile forms
other than Braille (some physical conditions preclude good Braille reading but
allow other tactile forms of communication). This would make music accessible to
an even greater number of individuals.

4DML has also been used for the transformation of other notations; a
forthcoming thesis will demonstrate its applicability to mathematics, diagrams,
web-sites, experimental data and personal notes. Virtually all information-society
applications involve notations, and the transformation of these between different
versions is a component part of universal access, since it can help to cater for
special needs and for differing tasks and environments. Tools that support the
programming of such transformations, such as 4DML, can make it easier to create
new notations on demand and to implement universal design.



132 Brown and Robinson

13.6 References
Brown SS (2000) An extensible system for conversion of musical-notation data to Braille

musical notation. Computing in Musicology 12: 45-74
Brown SS, Robinson P (2002) Automatically rearranging structured data for customised

special-needs presentations. In: Universal Access and Assistive Technology, Springer-
Verlag, London, UK

Brown SS, Robinson P (2003) Addressing print disabilities in adult foreign-language
acquisition. In: HCI 2003, Vol.4: Universal Access in HCI, Lawrence Erlbaum
Associates, Mahwah, NJ

Castan G, Good M, Roland P (2000) Extensible markup language (XML) for music
applications: An introduction. Computing in Musicology 12: 95-102

Cordy JR, Halpern CD, Promislow E (1988) TXL: A rapid prototyping system for
programming language dialects. In: Proceedings of the International Conference of
Computer Languages, Loyola University Chicago, USA

Elrad T, Filman RE, Bader A (2001) Aspect-oriented programming: Introduction.
Communications of the ACM 44(10): 29-32

Finn B, Finn J (2001) Sibelius: The Music Notation Software. Sibelius Software Ltd,
Cambridge. Available at: http://www.sibelius-software.com/

Kingston JH (1993) The design and implementation of the Lout document formatting
language. Software – Practice and Experience, 23: 1001-1041

Langolff D, Jessel N, Levy D (2000) MFB (music for the blind): A software able to
transcribe and create musical scores into Braille and to be used by blind persons. In:
Proceedings of the 6th ERCIM Workshop on “User Interfaces for All”, Florence, Italy

McCann B (1997) GOODFEEL Braille music translator. Dancing dots Braille music
technology. Available at: http://www.dancingdots.com/

World Wide Web Consortium (1999) XSL Transformations (XSLT) Version 1.0, W3C
Recommendation. Available at: http://www.w3.org/TR/1999/REC-xslt-19991116


