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Abstract

This paper presents a system for inferring complex mental
states from video of facial expressions and head gestures
in real-time. The system is based on a multi-level dynamic
Bayesian network classifier which models complex mental
states as a number of interacting facial and head displays,
identified from component-based facial features. Experi-
mental results for 6 mental states groups– agreement, con-
centrating, disagreement, interested, thinking and unsure
are reported. Real-time performance, unobtrusiveness and
lack of preprocessing make our system particularly suitable
for user-independent human computer interaction.

1. Introduction

The human face provides an important, spontaneous chan-
nel for the communication of a wide array of mental
states. Enabling man-machine interfaces to recognise and
use the information conferred by this rich modality has
gained significant research interest over the last few years.
Facial expressions are used as conversation enhancers, to
communicate feelings, show empathy and acknowledge
the actions of other people [9]. Facial expressions also
communicate cognitive mental states– often referred to as
complex mental states– such as confused, thinking, and
interested [2, 3]. These cognitive mental states occur
more frequently in everyday interactions than their basic
counterparts [18].

Despite the importance of complex mental states in
interpreting and predicting the actions of others [20], facial
expressions are almost always studied as a manifestation
of basic emotions. The majority of existing automated
facial expression analysis systems either attempt to identify
basic units of muscular activity in the human face (action
units or AUs) based on the Facial Action Coding System
(FACS) [10], or only go as far as recognising the set of basic
emotions [14, 6, 19, 8, 17, 7].

This paper describes a system for inferring complex

mental states from video of facial expressions and head
gestures in real-time. The challenge in automatically read-
ing complex mental states from the face, stems from 3 key
characteristics that make them essentially different from
the simpler basic emotions. First, while basic emotions
are arguably identifiable solely from facial action units,
complex mental states additionally involve asynchronous
information sources such as purposeful head gestures and
eye-gaze direction [1]. Secondly, whereas basic emotions
are identifiable from a small number of frames or even
stills, complex mental states can only be reliably discerned
by analysing the temporal dependencies across consecutive
facial and head displays. Displays indicate different mental
states when perceived with respect to preceding ones versus
in isolation [11]. Thus modelling complex mental states
involves multi-level temporal abstractions: at the highest
level, mental states typically last between 6-8 seconds [3].
Head and facial displays can last up to 2 seconds, while at
the lowest level, action units last tenths of seconds. Finally,
whereas basic emotions have distinct facial expressions that
are exploited by automated classifiers, finding facial and
head displays relevant to complex mental states continues
to be an active and challenging research problem [18, 1].

Based on those characteristics, we identify a number
of requirements for the feature extraction and classifier
methodology that we adopt. The classifier should: 1) be
dynamic 2) deal with multiple interacting processes and 3)
be able to model multi-level temporal abstractions. The
feature extraction approach should be resilient to substantial
rigid head motion, whilst being able to identify purposeful
facial expressions and head gestures. In addition, because
expert domain knowledge is not available, feature selection
is needed to find optimal facial and head displays relevant
to each mental state.

We describe two principle contributions: a system for
inferring complex mental states from facial expressions
and head gestures in real-time, as well as the optimal
subset of facial and head displays that are most relevant in
identifying the different mental states. Our system is built
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around a multi-level dynamic Bayesian network (DBN)
classifier which models complex mental states as a number
of interacting facial and head displays, identified from
component-based facial features. Real-time performance,
unobtrusiveness and lack of preprocessing make our system
particularly suitable for spontaneous user-independent man-
machine contexts.

The rest of the paper is organised as follows: in the
next section we summarise related work, followed by an
overview of our system (Section 3). Feature extraction,
facial and head display recognition is discussed in Section
4, while Section 5 presents the dynamic Bayesian network
models for complex mental states. Section 6 reports exper-
imental results, before Section 7 concludes the paper.

2. Related work

We begin our review of related work with Garg et al’s
approach to multimodal speaker detection [4, 12] as this
provides the inspiration for our present work. In their work,
asynchronous audio and visual cues are fused along with
contextual information and expert knowledge within a DBN
framework. DBNs are a class of graphical probabilistic
models which encode dependencies among sets of random
variables evolving in time, with efficient algorithms for
inference and learning. DBNs have also been used in
unsupervised learning and clustering of facial displays [13].
Hidden Markov models (HMMs), the simplest kind of
DBNs, are used by Lien et. al [14] to recognise facial AUs.
Cohen et. al [5] use hierarchical HMMs to automatically
segment an arbitrary long video sequence into different
expression segments. Other classifier methodologies that
have been applied to facial expression analysis include
static ones such as Bayesian network classifiers that classify
single frames into an emotion class (e.g. Cohen et. al
[6]). Likewise, support vector machines have been used to
classify feature point displacements compared to a neutral
frame, into an emotion class [15].

While numerous approaches to feature extraction exist,
those meeting the real-time constraints required for man-
machine contexts are of particular interest. Methods such
as principal component analysis and linear discriminant
analysis of 2D face models (e.g. Padgett and Cottrell
[16]), can potentially run in real-time but require initial
pre-processing to put images in correspondence. Features
based on facial point displacements are also common and
and have shown validity when compared to manual FACS
coding (e.g. Cohn et al. [7], the authors [15], and Pantic
and Rothkrantz [17]). Tian et al. [19] use a combination of
motion, shape and color descriptors to describe a number of
face components such as the mouth and eyebrows.
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Figure 1: Overview of the multi-level system for inference
of complex mental states from facial expressions and head
gestures in real-time.

3. Overview

Our system (Fig. 1) involves three levels on progressively
longer time scales: action unit analysis, facial and head
display recognition, and mental state inference. A real-time
facial feature tracker locates and tracks 24 facial features
from video. The feature points define motion, color and
shape descriptors for various face components (e.g. mouth).
The descriptors are first normalised against head motion and
then mapped to corresponding head or facial actions. HMM
filters classify unseen sequences of actions into head and
facial displays in real-time. The output likelihoods from the
HMM classifiers are quantised and used as input to the DBN
to infer the underlying complex mental state. The decision
to model the HMM level separately rather than part of the
DBN was taken to make the system more modular. For our
purposes the two approaches have the same computational
complexity.

Commodity hardware is used, such as a commercial dig-
ital camcorder placed near the user’s monitor and connected
to a standard PC. We assume a full frontal view of the face,
but take into account variations in head pose inherent in
video-based interaction. Videos are captured at 30 frames
per second. While learning is done offline, inference is
done in real-time by temporally abstracting each level of the
system such that a classification per frame is not necessary.
For example, based on empirical observations, head and
facial actions occur over 200 millisecond intervals, while
displays span between 0.6 to 1.2 seconds. Each level is
implemented as a sliding window to make it possible to run
the system for an indefinite duration.
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Figure 2: The “anchor” point in initial and subsequent
frame of a video.

4. Facial and head action analysis

Twenty four facial landmarks are detected using a face
template in the initial frame, and their positions tracked
across the video. Head actions are identified from pose
estimation points. Head pitch (up or down) is determined
from the vertical displacement of the nose tip. Head yaw
(turn) is given by the ratio of left to right eye widths, while
a head roll (tilt) is given by the slope of the two inner eye
corners. The sequences on which we tested include yaw,
roll and pitch as large as 50, 30 and 50 degrees respectively.

To identify facial actions, we extract component-based
facial features based on motion, geometry and color de-
scriptors such as those in Tian et al. [19]. Component-based
facial features are particularly suitable for a real-time video
system, in which motion is inherent and places a strict upper
bound on the computational complexity of methods used in
order to meet time constraints.

We modify the components to account for out-of-plane
head motion as follows: We imagine that the initial frame
in the sequence is a reference frame attached to the head
of the user. On that frame, let (Xp, Yp) be an “anchor”
point around which the head rotates. The point is the
2D projection corresponding to the imaginary point around
which the head rotates in 3D space. As shown in Fig. 2,
the anchor point is initially defined as the midpoint between
the two mouth corners when the mouth is at rest, and is at
a distance d from the line joining the two inner eye corners
l. In subsequent frames the point is measured at distance d
from l, after accounting for head turns. The anchor point
is resilient to head rotations along the three axes, and is
normalised against the distance between the two eye corners
to account for scale variations.

The mouth is represented by a polygon connecting eight
feature points. For every frame, the polar distance and angle
are calculated with respect to the anchor point. Probability
distribution functions based on luminance represent aper-
ture and teeth pixels inside the mouth polygon. To remove

Table 1: List of mouth facial actions supported

Facial Action Feature Description

Lip Pull Polar distances 
     (dl, dr)

Anchor
point

(dlt+drt )−(dl0+dr0 )

(dl0+dr0 ) ≥ k

Lip Pucker Polar distances 
     (dl, dr)

Anchor
point

(dlt+drt )−(dl0+dr0 )

(dl0+dr0 ) ≤ −k

Lips Part aperture + teeth � 0

Mouth Stretch teeth ≥ t

Jaws drop aperture ≥ a

k, a and t are empirically determined

the effects of variation in scale between image sequences
in face size, all parameters are computed as ratios of the
current values to that in the initial frame. In the case
of a non-neutral initial frame, the polar angle is used to
approximate the initial mouth state. The facial actions
described by the mouth components are listed in Table 1.
The lip corner pull and puckered are determined by the
magnitude and direction of change of the polar distance
and angle. The lips part, jaw drop and mouth stretch are
discerned by the ratio of aperture (shown in red in Table
1) to teeth (shown in green) pixels. In addition, eyebrow
components given by inner, center and outer feature points
depict upper facial actions such as an eyebrow raise.

Facial and head actions are converted into symbol se-
quences and input into left-to-right HMM classifiers to
identify facial expressions and head gestures. Each HMM
is modelled as a temporal sequence of action units. For
instance, a head nod display is a series of alternating
head up (AU53), head down (AU54) movements, while a
persistent, unidirectional head tilt display is a sequence of
tilt actions (AU55 and/or AU56). A smile consists of an
onset, peak, offset of lip corner pull (AU12, AU6+12). Each
HMM is implemented as one of three topologies: 4-state,
3-symbol HMMs are used with head nods, head shakes and
mouth displays, 2-state, 7-symbol HMMs represent tilt and
turn displays, while a 2-state, 2-symbol HMM models an
eyebrow raise.



Figure 3: Discriminative ability of facial and head displays
for 6 complex mental states. Display Ids are as follows,
1:nod, 2:jaw drop, 3:pucker, 4:raise, 5:shake, 6:lip pull,
7:mouth stretch, 8:tilt, 9:turn.

5. DBNs for complex mental states

We first analyse the discriminative power of head and facial
displays for various complex mental states as there is little
documentation in the literature on the facial “signatures”
of such states. The discriminative power of display d for
mental state m is determined by the difference in P (d|m)
and P (d̄|m). It follows that if d were a strong discriminator
of m, the power function would approach 1. Fig. 3 sum-
marises the results of analysing the discriminative power of
9 head and facial displays for 6 different complex mental
states. The strongest discriminator was an eyebrow raise
for interested (0.404) followed by a head nod in agreement
(0.345). The analysis verifies that, on their own, facial
expressions and head gestures are weak classifiers that do
not capture underlying complex mental states. Bayesian
networks, including DBNs have successfully been used as
an ensemble of classifiers, where the combined classifier
performs much better than any individual one in the set [12].

Each mental state is modelled as a separate DBN, al-
lowing the system to be in more than one mental state at a
time. This is particularly useful for mental states that are not
mutually exclusive (e.g. thinking and concentrating). In our
initial attempt at the DBN structure, all supported head and
facial displays were included, making no assumptions about
which displays contribute the most (or least) to particular
mental states. We then implemented sequential backward
selection that finds for each mental state the optimal subset
of observation nodes {d0, d1, ...dK} from N supported
displays, such that the discriminative ability F of the DBN
model m, given by

F =
K∑

n=1

(
∣∣P (d̄n|m) − P (dn|m)

∣∣), (1)

is maximised. Using these optimal subsets we build a
DBN model specific to each mental state. The advantages
of using only the most relevant features for the DBN
model structure include: 1) reducing model dimensions
without impeding performance of the learning algorithm,
and 2) improving the generalisation power of each class by
filtering irrelevant features.

Figure 4: DBN model for unsure at consecutive instances.

Figure 4 illustrates the DBN model for unsure. Each
node is a variable. The hidden (shaded) mental state node
equals 1 whenever the user is unsure, and 0 otherwise.
It influences four observation nodes (unshaded), which
describe whether the user is nodding or not, smiling or not,
puckering the lips or not, and has his/her mouth open or
not. The arcs between the nodes are parameterised by con-
ditional probability distributions that model dependencies
between variables at time t. The arc between the two binary
variables unsure and nod, for example, stores the two-by-
two conditional probability table (CPT), P (nod|unsure).
We let Bφ denote the total set of CPT parameters. An
additional arc has been placed between the hidden node
unsure at consecutive times to encode temporal dependency
between the variable in two slices of the network. The
probability distribution is defined by a matrix of transition
probabilities A and an initial state distribution π.

The set of network parameters θ=(Bφ, A, π) can be
learned from a training data set using maximum likelihood
training. Let e denote the hidden state and y denote the
four observation nodes. Let ET = {e1, e2, . . . , eT } be
the sequence of T hidden states and YT the corresponding
sequence of observations. Then we have:

P (ET , YT , θ) = P (YT |ET , Bφ)P (ET |A, π) (2)

When all the nodes are observed, the parameters Bφ can
be determined by counting how often particular combina-
tions of hidden state and observation values occur. The
transition matrix A can be viewed as a second histogram
which counts the number of transitions between the hidden



state values over time. Inference is carried out using the
classic forward-backward algorithm.

6. Experimental evaluation
We evaluate our system by considering classification per-
formance for six complex mental state groups: agreement,
concentrating, disagreement, interested, thinking and un-
sure. We use 106 videos from Mind Reading (MR), a
computer-based guide to emotions [3]. Video durations
vary between 5 to 8 seconds (SD=.45), recorded at 30fps.
There are no restrictions on the head or body movement
of actors in the video. To our knowledge MR is the only
available, labelled resource with such a rich collection of
mental states and emotions, albeit posed.
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Figure 5: The likelihood of each mental state for a video of
baffled plotted against time (inference instance).

Leave-5-out cross validation was used to split the 106
videos picked for evaluation into training and test sets. For
each video, head and component-based facial actions are
automatically extracted and input to the display HMMs.
Six consecutive HMM likelihoods are quantised then input
as evidence to the DBN classifiers. Each DBN classifier
outputs the probability of the hidden mental state being
true (i.e. 6 probability values per inference instance).
Approximately 20 inferences are made in a video 6 seconds
long, enabling the system to run in real-time. Since each
level in the system is implemented using a sliding window,
the 106 videos in effect, generate a total of 15738 and 2623
HMM and DBN samples respectively. Fig. 5 shows the
likelihood of each mental state for a video of baffled plotted
over time (inference instance). To determine if a video of T
inference instances has been correctly classified, the most
likely mental state m for the entire video is given by a
minimisation error function E,

E = min
m

T∑

t=1

(1 − P (m)), (3)

Table 2: Breakdown of results for the mental state groups

Group Mental State #videos %Correct

Agreement

Assertive 3 66.7
Committed 5 100
Convinced 4 100
Decided 4 50
Encouraging 3 100
Sure 4 100
Willing 2 100
Total 25 88.1

Concentrating
Absorbed 4 100
Concentrating 6 100
Total 10 100

Disagreement

Contradictory 3 100
Disapproving 5 40
Discouraging 5 100
Total 13 80.0

Interested

Asking 5 80
Interested 5 100
Total 10 90.0

Thinking

Brooding 3 66.7
Calculating 4 75.0
Choosing 5 100.0
Fantasising 4 100
Thinking 2 100
Total 18 88.9

Unsure

Baffled 6 100
Confused 6 83.3
Puzzled 6 83.3
Undecided 6 83.3
Unsure 6 100
Total 30 90

Overall Recognition Rate 106 89.5

An overall average classification rate of 89.5% was
obtained. Table 6 summarises the breakdown of results for
each of the mental state groups. In addition, a false positive
rate Fm for mental state m (Table 6) is given by,

Fm =
Total number of videos falsely classified as m

Total number of videos not m
(4)

A closer look at the results reveals a number of in-
teresting points. First, onset frames occasionally portray
a different mental state than the rest of the video. For
example, the onset of disapproving videos were classified
as unsure. Although this incorrectly biased the overall
classification to unsure, one could argue that this result is
not entirely incorrect and that the videos do indeed start
off as unsure. Second, subclasses that do not clearly
exhibit the class signature were easily misclassified. For
example, assertive and decided videos in agreement were



Table 3: False positive rates for each mental state group

Group #non-class #false %
Agreement 81 4 4.9
Concentrating 96 2 2.08
Disagreement 103 1 0.97
Interested 96 1 1.04
Thinking 88 0 0
Unsure 76 4 5.2

misclassified as concentrating, as they do not exhibit nods
or smiles. Finally, we found that some mental states were
“closer” to each other and could co-occur. For example, a
majority of the unsure files scored high for thinking too.
Further research is needed 1) to test the generalisation
power of the system by evaluating a larger sample, which
requires substantial investment in building a corpus of
videos, and 2) to explore the relationship between complex
mental states.

7. Conclusion
The two principle contributions of this paper are: 1) a multi-
level DBN classifier for inferring complex mental states
from videos of facial expressions and head gestures in real-
time, and 2) insight into the optimal subset of facial and
head displays most relevant in identifying different mental
states. Those were used to drive the DBN structure. We
reported promising results for 6 complex mental states.
This paper serves as an important step towards integrating
real-time facial affect inference in mainstream computing
applications.
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