
Towards an Intelligent Online Textbook for Discrete
Mathematics

William Billingsley
Peter Robinson

Rainbow Group, Computer Laboratory
University of Cambridge
15 JJ Thompson Avenue

Cambridge CB3 0FD, United Kingdom
Email: William.Billingsley@cl.cam.ac.uk

Abstract— We have developed a web-based homework tutor
for discrete mathematics that is a step of progress towards
building an intelligent adaptive textbook. The student works
on mathematical problems in a notation that is closely mapped
to the notation the student would be expected to write on an
exam paper. The tutor gives advice and feedback as the student
is working, in a co-operative manner rather than submission-
and-response. This feedback is linked into the topic structure of
the intelligent book, allowing the student to query for content
material relating to a piece of advice. More than one content
item is available on any topic, allowing server rules to choose
items the that are likely to be useful to the individual student,
while still allowing the student to reject the tutor’s selection and
choose a different content item.

I. INTRODUCTION

The Intelligent Book project is a joint project between the
University of Cambridge and the Massachusetts Institute of
Technology to develop online textbooks that:

1) automatically improve their own content
2) adapt their content to the individual student who is using

them
3) have example problems that are not static presentations,

but are tutorial questions that actively help the student
to work through them

4) allow students to add material into the book and annotate
existing material with their comments

The motivation for this project is the cost and difficulty
of providing individual human tutoring to students. The Uni-
versity of Cambridge aims to provide small group tutorials,
called supervisions, to its undergraduate students in each of
their lecture courses. Typically two or three undergraduates
meet with a faculty member or graduate student. For a 16
lecture course with 120 students, approximately 160 hours of
supervisions will take place in total. This does not take into
account preparation time or the time taken to mark students’
homework. This is very labour intensive. A further issue is
that many supervisors are graduate students with litte formal
training in tutoring, so there is some variation in their teaching
skills.

Various studies have shown that automated tutoring is an
effective technique, at least compared to classroom teaching
alone [6], [7], [8], and can sometimes be favourably compared

to tutoring with inexpert human tutors [4]. We believe that
providing automated individual tutoring, as a supplement to
human tutoring or as an eventual replacement, would help
reduce the need for very large numbers of supervisors and,
by being a common resource available to all students, would
help even out the quality of tutoring that each student receives.
However, it also appears sensible to combine the automated
tutoring with online content. If the tutor tells the student that
he or she didn’t take a particular concept into account, there
is a reasonable chance the student will want to ask for more
details on that concept, the reason why it matters, and how
it fits in with surrounding content material. This leads us to
the concept of an intelligent textbook where additional content
material can be added into the student’s textbook as he or she
works through the example problems, and existing content
can be substituted for explanations the student found more
helpful. Some of these aims are shared by the Living Book
project [1], which also aims to build an adaptive textbook with
interactive exercises, but takes a different approach to the both
the exercises and the content.

In this paper we describe the intelligent homework system
we have developed, which is a step of progress towards an
intelligent book for discrete mathematics.

II. MATHS TILES

One feature of intelligent books is that they should be
capable of asking many different questions on the full range
of topics that you would expect to find in a textbook. For
this reason, the intelligent books we are developing have a
very general structure which allows different content clients
and diagram domains to be included in different questions [2].
However, for the discrete mathematics book, a particular focus
is a mechanism for the student to interact with mathematical
expressions and proofs. Because it is a teaching interface, a
number of characteristics of this mechanism become particu-
larly important. These are described here using the Cognitive
Dimensions of Notations framework [3]:

1) Closeness of mapping. The notation used by the students
to enter and manipulate maths should look like the maths
they are expected to write on the exam paper. If the
maths entry notation is very different, for example a

0-7803-9035-0/05/$20.00 ©2005 IEEE 291

Fig. 1. Some maths tiles, loose and combined.

text-based formula language, then this adds a learning
burden which is not directly related to the material being
taught.

2) Low viscosity. We expect students to enter incorrect
expressions and proofs a lot of the time, otherwise they
would not need tutoring. So, it is important that students
can make changes to their expressions very easily.

3) Low premature commitment. We do not want the in-
terface to force the student to answer the question in a
particular order. While there are occasions where we do
want to teach students to use a particular methodology,
this should be enforced in the explicit teaching feedback,
rather than as an implicit by-product of the interface
design.

4) Low provisionality. It needs to be possible for students
to sketch out and play around with fragments of answers
without being committed to them. So, for example, if a
question expects a single expression as the answer, the
interface should still allow students to construct as many
answer fragments as they like in parallel just to see what
they look like.

5) Progressive evaluation. Sometimes, students will know
what part of the proof or expression needs to look like,
but get stuck on how to complete the structure. They
need to be able to ask for feedback from the tutor on an
incomplete answer fragment.

We have developed an interface called MathsTiles to meet
these criteria. It is based around graphical tiles containing
arbitrary pieces of mathematics. Students can drag these
tiles and drop them into sockets in other tiles to build up
expressions and proofs. In this way, the notation is kept closely
mapped to handwritten mathematics, but the students are made
aware of the structure of the maths they are building. Some
example tiles are shown in Figure 1.

The tiles are defined by XML which can be kept in tile
library documents. This makes it easy for a content author
to define different tiles for different questions. Tiles can
contain text, diagrammatic shapes, and sockets, and they can
be laid out either in a simple horizontal alignment along a text
baseline or in a two-dimensional layout defined by a sequence
of alignment steps in the tile’s XML definition.

Tiles can be put anywhere on a canvas, allowing students
to sketch out part-answers freely and to work equally well in

a top-down or bottom-up manner. They can be pulled out of
and dropped into sockets by holding control when pressing
or releasing the mouse over the tile or socket, so the effort
required to change a structure is low. When a student drops a
tile into a socket in another tile, the border of the contained tile
is removed so that the appearance of the constructed maths is
not interrupted. However, the tile border reappears when the
mouse is moved over the tile, highlighting the structure of
the tile. This can show cases where different structures may
appear similar but be mathematically quite different, as shown
in Figure 2. In practice, it would be better to use brackets
to distinguish these, and there is a mechanism for forcing
students to do so by defining priority tags on the tiles and
sockets.

Fig. 2. The two structures looks similar in written notation, but their structure
is different. This is apparent when the tile borders are highlighted.

One particular use for definable tiles is to teach students to
think more carefully about what they need to do to answer an
exam question fully. For example, what is needed to complete
an induction proof, or how to show some property of a set
relation. Tiles can be defined that include sockets for each
step that the student is expected to include. If students omit
a step, it is obvious because there is an empty socket in the
tile; if they only partially complete a step, this is also obvious
because there are empty sockets inside the tiles they have put
into the main socket. Figure 3 shows a tile for an induction
proof. Filling in the proofs for the base case and inductive
step involves using tiles for different kinds of proof, each of
which has its requirements laid out as a set of sockets. To
support working with proofs, MathsTiles includes numbered
statement tiles, variable tiles, and expanding socket lists for
lists of assumptions and proofs that involve a sequence of
steps.

Fig. 3. Tiles can be defined as “rubber stamps” for proofs, relations, and other
mathematical concepts, showing the student exactly what they are expected
to complete.

Typically, a question includes some fixed tiles into which the
student is expected to drop the answer. In a simple question,

292

this may be a single tile with the text “Answer” and a socket
for the assembled answer. For a more complex question, it
may be a partially built proof that students are expected to
complete. For early questions introducing the interface, the
tiles needed to build an answer start scattered on the canvas.
For later questions, the student can add tiles to the canvas using
a panel of buttons that are defined by XML in the question.
An example canvas is shown in Figure 4.

Fig. 4. A demonstration example showing the features used in a complex
question. The student is given part of a proof to complete. The tile selection
panel is also configured from XML in the question.

Some questions limit the number of tiles of a particular type
that students are allowed to use in constructing the answer.
This is a simple way of reducing the set of possible correct
answers the student might come up with, and can make the
server-side teaching script simpler to write.

III. CLIENT ORGANISATION

The client architecture of the intelligent book has been
described before in [2], but it is worth recapping it here.
A diagram of the architecture is shown in Figure 5 and an
example screenshot in Figure 6. The contents of an intelligent

Fig. 5. The client architecture of a question in an intelligent textbook. Text,
HTML and forms advice from the tutor is shown dynamically in the page.
Graphical editable content is shown in Java content applets. A hidden applet
communicates with the server over XML-RPC, interfaces to the change API
of the content applet, and updates the page’s HTML.

Fig. 6. A web page containing a question using MathsTiles.

book, including the questions, are shown in web pages. To
support interactive graphical process questions, these pages
can contain graphical content applets, such as MathsTiles.
These content applets can be thought of as a way for the
student to work diagrammatically on an XML document that
contains the current state of the problem. Changes the student
makes to the diagram are reported to the server as changes
to the XML document. The content applet also publishes an
XML change API, so that changes sent from the server or
from JavaScript controls in the webpage, can be applied to the
document in the content applet. The student’s progress through
the tutorial is characterised, then, by a stateful conversation of
document changes between the client and the server.

Comments and advice the server wishes to make to the
student are displayed in HTML on the web page. This HTML
can include forms controls and JavaScript. A small applet
handles communication with the server over XML-RPC, and
performing dynamic updates to the HTML of the web page.

The change messages are sent to the server in a separate
thread from the interface. This prevents the interface from
appearing to lock up while the tutor communicates with the
server. The student is shown that communication is happening
by a status indicator on the page, although this is kept
unobtrusive. Only changes which are considered significant
are sent to the server. So, for example, dragging a tile across

293

the canvas is not communicated to the server, but dropping the
tile into a socket is.

The tutor generally does not make structural changes to
the student’s work directly. Doing so might be jarring to the
student - a sudden unexpected and possibly unwanted change
being made - and it could also cause concurrency problems.
The student can continue working on the diagram while the
tutor is preparing a response, and if there is a very long latency,
it would be possible for the tutor’s change to no longer be
meaningful in the student’s copy of the work, but to have
already been applied to the tutor’s copy. Instead, the tutor
tends to highlight parts of the student’s work, and to provide
an explanation in the HTML on the page. This HTML can
contain JavaScript-backed controls which the student can use
to apply the tutor’s intended change at the client. A trivial
example of this is shown in Figure 7. It is still possible that
the advice will no longer be meaningful, but this should be
apparent to the student, and in any case the change has not
yet been applied on the server, so the student’s and tutor’s
documents will remain synchronised.

Fig. 7. The tutor generally does not make structural changes to the student’s
work directly. Instead, it tends to highlight parts of the student’s work and
provide a comment in HTML on the page. This HTML can contain JavaScript-
backed controls which the student can use to apply the tutor’s intended change
at the client.

IV. TEACHING SCRIPTS

In automating tutoring, two successful methods for
analysing students’ work have been Model Tracing [5] and
Constraint Based Tutoring [7]. Model Tracing focuses on
strategic feedback, identifying common procedural mistakes
that students make, and comparing the students’ working to
a set of production rules that represent an ideal strategy.
Constraint Based Tutors examine the errors students introduce
into the problem, and assess the students’ understanding of
the rules that determine whether the current problem state is
valid. Traditionally, a textbook should teach both the rules
of the subject matter and strategies for solving problems,
so the intelligent book needs to support both these analysis
techniques. Practically, it can also be useful to follow a mixed
approach. For example, a question might not contain a full

set of Model Tracing rules but only a few production rules to
warn the student away from a the most common procedural
mistakes.

In earlier work, we developed a tutorial client for electronic
circuits [2] where the XML changes sent from the client were
not actually applied to a document on the server, but translated
into settings to make in a constraint propagation system in
the Scheme language. For the discrete mathematics system,
however, the XML changes are applied to a document kept in
an XML database. This gives us three steps to processing a
student action, as shown in Figure 8.

Fig. 8. Processing a student’s action

In the first step, the teaching script looks at the change
the student is making and the current state of the student’s
work, and interprets what the student is trying to do. This
is the process analysing step that can be used to implement
Model Tracing or just to identify common tactical errors. In the
second step, the student’s change is applied to the document
in the database, giving a new current state of the problem. In
the third step, the new state is examined to see if it is a correct
state, or if the student has broken any rules or criteria from
the question.

Because the teaching strategy can vary from question to
question, the scripts take a loose approach to student mod-
elling. Rules that are written into the scripts record annotations
against the students in the database. These can be marking a
student’s understanding of a particular rule, but they can also
be indicate the approach the students tends to use, or track
floundering students by watching the number of changes they
make before they make any progress towards a solution.

Helpers

The intelligent book clients are very open in what they
permit the student to do, so if the teaching script had to cater
for every possible student action, it could become unmanage-
ably large. Instead, the system is designed so that scripts for
complex questions can use external helpers to perform most of
the checking. The teaching script itself does not fully examine
the problem state, but looks at the results that come back

294

fom these helpers instead. We have tested this using simple
XQueries as helpers, but the intention is to interface to third
party AI systems such as theorem provers as well. Calls out to
helpers can happen at both the process analysing step and the
state checking step. The returned data is stored in the database
so that when the teaching script is called for the next change
made by the student, the annotations made by the helper from
the previous change can be used in the process analysing step.

Writing a teaching script is a matter of filling in six slots,
any of which can be left empty:

1) Any initialisation needed by this script.
2) Call any AI helpers based on the current state and the

student’s change.
3) Generate any advice or response based on the current

state and the student’s change.
4) Call any AI helpers based on the new state.
5) Generate any advice or response based on the new state.
6) Any clean-up needed by this script.
Additionally, teaching scripts can include other public func-

tions to expose to the client as XML-RPC methods, and
functions that are to be exposed to the adaptive advice function
system described in Section V. The public functions can be
used to provide question-specific help or to let the teaching
script dynamically ask the student forms-based questions as
hints or to make the students explain their working. Hyperlinks
and forms are shown on the question’s HTML page, and
backed with a line of JavaScript that calls the XML-RPC in the
teaching script via a forwarding method in the tutorial client
applet.

Teaching scripts can be written in Java, or compatible
languages such as Jython and Groovy, and are implemented
as subclasses of an abstract teaching servlet superclass.

V. ADVICE TOPICS AND THE CONTENT MODEL

As described in the introduction, if the tutor tells a student
they have failed to take a concept into account, then the
student is likely to want to know more about that concept.
When the teaching script sends comments and advice to the
client, it can also ask the client to show topic links. These
link into the intelligent textbook’s content model and request
the most suitable entry matching a topic string and, optionally,
an explanation type such as “summary” or “example”. Where
topic links appear depends on the layout and organisation of
the HTML page, but an example is shown in Figure 9.

Fig. 9. Topic links appear that are relevant to the advice being given. The
student can also type a topic into the box.

The tutor often has more than one piece of content covering
a topic, so rules on the server choose which one to deliver to
the student. This allows the textbook to adapt to the individual
student. Each content entry is a URI. Too keep a consistency

of look within an intelligent book, URIs should normally point
to internal content, but external materials can be included.
Additionally, there is a “last resort” entry which runs a search
on a popular search engine. Content entries can also point to
pages of a wiki, allowing the students to edit and improve the
explanation. To guard against poor edits, the original version
of the page should also be included as a topic entry. We are
also investigating using systems that allow students to annotate
contents page with pop-up comments and links, but not edit
the text directly.

The server uses metadata on each content entry to choose
which one to show to a given student. At the moment, the
rules which do the choosing are delegated to a set of XQuery
scripts. Some experimentation is still needed to determine
good algorithms for choosing appropriate entries for individual
students, but generally the scripts work by preferring content
this student has seen and not rejected before, and then pre-
ferring content that has been recommended by students with
similar metadata to this student.

The content entries always pop up in a new window that is
divided into two frames. The main frame shows the content
itself, and a smaller header frame contains a number of
feedback buttons and links. A screenshot of this header frame
is shown in Figure 10. In the top left corner, the frame shows

Fig. 10. A header frame is attached to content explanations when they are
shown. This shows the type of explanation being shown, and links to request
other types of explanation for this topic. The buttons on the right allow the
student to recommend this explanation, ask to replace it with a better entry
from the database, or just close it.

the type of explanation that is currently being shown. Next to
this, it shows links for all the other types of explanation the
database has for this topic. This makes it easy, for instance, for
a student to read a summary and then ask for an example on the
same topic. When clicked, these links call the content selection
scripts on the server for the same topic string and the specified
explanation type, and also pass in the URI of the currently
displayed content entry so that entries that are marked as being
related to it can be preferred. On the right hand side of the
header frame are a number of feedback buttons, each of which
can be used to close the window. From left to right, these are:

• “Recommend” - closes this entry, and records that this
student recommended it. If the student has already rec-
ommended this content item, this is replaced by an “un-
recommend” button.

• “Replace” - closes this entry and brings up a list of the
entries for this topic so that the student can choose an
alternative. This also records that this student declined

295

this entry.
• “Close” - just closes this entry.

Over time, the recommendations should cause better content
to be offered more often, and explanations that students do
not understand to remain idle. This could then be used by a
content author to replace poor explanations, and improve the
textbook from year to year. Recording the fact that a student
declined or recommended a particular entry also allows the
choice scripts to increase or reduce the likelihood that they
will offer similarly marked content to this student in the future.

Advice functions in the teaching script can also be made
adaptive. This works by keeping a structure in the script
linking the function to a relevance function that determines
when it should be considered, and an advice topic key.
Metadata on each function is stored in a small XML document
in the database. When the student requests advice matching
the advice topic key, the selection script chooses from the
relevant functions based on the metadata they have built up,
and again gives the student the option of accepting or rejecting
the advice. The purpose of this is for strategic advice that is
not a key part of the question itself, but that may be useful to
some students.

Potentially, we would also like to allow students who
have completed the question to leave hints for students in
subsequent years, although there is currently no mechanism
for a student to enter these hints.

VI. CONCLUSIONS

The intelligent textbook for discrete mathematics is a work
in progress, and at the time of writing the question scripts and
content are still being written. The system is being prepared
to be deployed to students in Cambridge in October 2005.

Future work for the book includes working with students
and supervisors to see how the use of an intelligent book as
a homework system affects student learning and also how it
affects the human-tutored supervisions. On the one hand, the
system may reduce the workload on the supervision system
by reducing the time needed to explain homework corrections,

but on the other hand it may remove a tool supervisors use
for getting to know the student’s abilities.

We are also looking to give the system a more book-like
structure in parallel to the topic queries. While the student
should be able to easily access content by topic and by advice
given during example questions, ideally the student would also
be able to “open the book to page one” and be shown the
material in a pedagogically useful order.

ACKNOWLEDGEMENTS

The authors acknowledge the advice and assistance of their
project partners Hal Abelson, Gerald Sussman and Chris
Hanson from the Massachusetts Institute of Technology, and
of Mark Ashdown and Kasim Rehman from the University
of Cambridge. The project is funded by the Cambridge MIT
Institute.

REFERENCES

[1] P. Baumgartner, M. Gross-Hardt, and A. B. Simon. Living book - an
interactive and personalized book. In V. Milutinovic, editor, SSGRR 2002s
- International Conference on Advances in Infrastructure for e-Business,
e-Education, e-Science, and e-Medicine on the Internet, 2002.

[2] W. Billingsley, P. Robinson, M. Ashdown, and C. Hanson. Intelligent
tutoring and supervised problem solving in the browser. In Proceedings of
the IADIS International Conference WWW/Internet 2004, Madrid, Spain,
pages 806 – 811, 2004.

[3] A. Blackwell and T. Green. Notational systems - the cognitive dimensions
of notations framework. In J. M. Carroll, editor, HCI Models, Theories
and Frameworks, pages 103 – 133, Amsterdam, 2003. Morgan Kaufmann.

[4] A. Corbett. Cognitive computer tutors: Solving the two- sigma prob-
lem. In User Modeling 2001: 8th International Conference, UM 2001,
Sonthofen, Germany, pages 137 – 147, 2001.

[5] K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A. Mark.
Intelligent tutoring goes to school in the big city. International Journal
of Artificial Intelligence in Education, 8:30 – 43, 1997.

[6] C. C. Kulik and J. A. Kulik. Effectiveness of computer based instruction:
An updated analysis. Computers in Human Behaviour, 7:75 – 94, 1991.

[7] A. Mitrovic, M. Mayo, P. Suraweera, and B. Martin. Constraint-Based
Tutors: A success story. In Engineering of Intelligent Systems : 14th
International Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems, IEA/AIE 2001, Budapest,
Hungary, 2001.

[8] R. Shelby, K. Schulze, D. Treacy, M. Wintersgill, K. VanLehn, and
A. Weinstein. An assessment of the Andes tutor. In Proceedings of
the Physics Education Research Conference, July 21-25, Rochester, NY,
2001.

296

