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ABSTRACT
Many approaches to the analysis and synthesis of facial expressions
rely on automatically tracking landmark points on human faces.
However, this approach is usually chosen because of ease of track-
ing rather than its ability to convey affect. We have conducted an
experiment that evaluated the perceptual importance of 22 such au-
tomatically tracked feature points in a mental state recognition task.
The experiment compared mental state recognition rates of partici-
pants who viewed videos of human actors and synthetic characters
(physical android robot, virtual avatar, and virtual stick figure draw-
ings) enacting various facial expressions. All expressions made by
the synthetic characters were automatically generated using the 22
tracked facial feature points on the videos of the human actors. Our
results show no difference in accuracy across the three synthetic
representations, however, all three were less accurate than the orig-
inal human actor videos that generated them. Overall, facial ex-
pressions showing surprise were more easily identifiable than other
mental states, suggesting that a geometric approach to synthesis
may be better suited toward some mental states than others.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human factors

General Terms
Human Factors

Keywords
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1. INTRODUCTION
Humans express their inner emotional or affective states through

nonverbal expressive behaviour [3]. Facial expressions are of spe-
cial importance when communicating affect and thus have been
studied extensively. They have been investigated scientifically for
nearly 140 years and are generally well understood [14, 15]. Facial
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expressions not only signal the basic emotions but also affective
or mental states [6]. They also provide an important channel for
human-human interaction and can reveal intent, signal affection,
and help people regulate turn-taking during conversation.

People can discriminate facial expressions of emotion even when
the input signal is very limited. For example, Bassili [8] performed
a point-light experiment which showed that even when the only
available information available is the dynamics of a facial expres-
sion of emotion without any appearance cues people still perform
above chance in an emotion recognition task.

Perhaps this result inspired some of the first attempts in auto-
mated facial expression analysis, which used a geometry driven ap-
proach to recognition [21, 16]. While recent trends in the field have
led researchers toward using more appearance driven [7] or com-
bined geometry/appearance driven approaches [4].

One common approach of geometry driven facial expression anal-
ysis is the use of located facial features to detect Action Units (AU)
from the Facial Action Coding System (FACS) which are the build-
ing blocks of facial expressions [15]. AUs can then be used to infer
emotional displays and gestures, which can then be used to infer
mental states.

One advantage of a geometric approach is that it lends itself
extremely well to expression synthesis [26]. Probably the most
straightforward approach to facial expression synthesis is to use au-
tomatically tracked data and translate it to AUs or MPEG-4 facial
animation parameters (FAPS) [20]. Raouzaiou et al. [22] identified
possible mappings from FAPS to AUs. Bee et al. [9] amongst
others used AUs to synthesize animation on a virtual character.
MPEG-4 driven animation has been extensively used by several
researchers [1, 2, 22].

However, moving from expression recognition to interpretation
and ultimately to synthesis requires discrimination between con-
figurations of the face that are psychologically significant against
those which have only a morphological value [1, 11]. In particular,
it is necessary to understand how well people can extract emotional
information conveyed via geometry driven synthesis. In addition to
helping improve the synthesis, this understanding can also help to
improve automatic facial expression recognition.

In this work, we wanted to determine how much affective in-
formation automatically-tracked facial feature points convey when
synthesized via different representations. In particular, we won-
dered if more photo-realistic representations of synthetic characters
lead people to be more accurate in their ability to identify emotions.

Other similar experiments were carried out by Ahlberg et al. [2]
and Costantini et al. [12], who were interested in evaluating the
emotional expressivity of synthetic faces in comparison to real ac-
tor data that generated the synthetic expressions. Ahlberg et al.
used synthetic faces that were animated by 22 tracked facial feature
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points through head tracking equipment and IR-reflecting mark-
ers creating MPEG-4 FAPs and using them on two different facial
animation engines. They then used the two synthetic forms and
the videos of actors in an emotion judgement study. Their results
showed significant recognition differences between the synthetic
and real facial expressions, but no differences between synthetic
representations. Costantini et al. compared emotion recognition
of real and synthetic facial expressions. The synthetic expressions
were generated in two ways: a scripted approach (manual anima-
tion), and a data-driven one (generated from actor performances).
In absolute terms the scripted approach was more recognisable than
data-driven one, although the data-driven one was more similar to
that of the videos of real actors. One limitation of the mentioned
studies is that they only used basic emotions, which are not the ones
that are most common in day-to-day interaction [23].

Another relevant study was perfomed by Courgeon et al. [13]
who evaluated the importance of wrinkles in the perception of eight
emotions and found the perceived expressivity and preference of
avatars increases with the realism of wrinkles, but emotion recog-
nition rates do not.

Our experimental design was similar to that of Afzal et al. [1]
who compared emotion recognition accuracy across several ge-
ometry driven synthetic displays that varied in their photo-realism
(point-light, stick figure, and virtual avatar). Afzal et al. found that
people are better at recognizing emotions in stick-figure represen-
tations, followed by point-light displays, followed by avatars.

We postulated that their results may have been due to the fact
that their avatar representation was of low quality, and thus in our
experiment used a far more sophisticated graphical avatar, as well
as an extremely realistic android robot. Our results show no differ-
ence in participants’ emotion recognition accuracy across the three
synthetic representations, however, all three were less identifiable
than the original human actor videos that generated them. Overall,
facial expressions showing surprise were more easily identifiable
than other mental states, suggesting that a geometric approach to
synthesis may be better suited toward some mental states than oth-
ers.

2. METHODOLOGY
The purpose of our experiment was to determine how much af-

fective information automatically tracked facial feature points con-
vey when synthesized on different representations. The mental
states we used (boredom, confusion, interest, surprise, happiness)
were the same ones chosen by Afzal et al. [1] in order to compare
our results more readily. The selected mental sates were not bal-
anced in terms of Arousal, Pleasure, and Dominance dimensions
[24]: three with positive Pleasure (interested, happy, surprised),
four with positive Arousal (interested, happy, surprised, confused),
and two with positive Dominance (interested, happy). Videos of
actors enacting the selected mental states were used to generate
videos on three synthetic representations: a physical android robot
head, virtual avatar, and virtual stick figure animations. In order
to ensure adequate coverage of the various mental states, we chose
three actors to represent each one.

Our design was a 5 × 4 × 3, within subjects, video-based exper-
iment. The variables we manipulated were the five mental states,
four representations, and three actors. Thus, we had 60 video stim-
uli in total. (See Fig. 1 for examples).

We expected that expressions made by different synthetic expres-
sions would lead to different recognition rates, as they allow for bet-
ter expressivity. In addition, Garau et al. [17] hypothesise that, at
least with relation to eye gaze, consistency between visual appear-
ance of the avatar and the type of behaviour is exhibits seems to be

necessary: low realism appearance demands low realism behaviour
and high realism appearance requires high realism behaviour. Be-
cause the animation were created using acted data providing high
realism of behaviour the more realistic forms (avatar and robot)
were expected to perform better in the emotion recognition task.

2.1 Stimuli Creation

2.1.1 Stimuli Source
The videos of the five mental states used in our experiment were

taken from the Mind Reading DVD [5]. The DVD consists of
videos of actors expressing various mental states. Each video was
judged by a panel of ten judges, and was accepted into the DVD
only if eight of the ten judges agreed about the mental state label.
The DVD consists of 24 categories of mental states, with subcate-
gories showing different shades of each mental state. These videos
provided us with the ground-truth labels for our stimuli.

We chose to include complex mental states (boredom, interest,
and confusion) alongside basic ones (surprise and happiness). We
selected these for comparison with earlier results of Afzal et al. [1],
and those are the ones they used in their experiment due to their rel-
evance in learning contexts. Furthermore, while many researchers
in synthesis focus on representing the six basic mental states (anger,
joy, surprise, disgust, sadness, and fear), they comprise only a small
subset of the mental states that people can experience, and are ar-
guably not the most frequently occurring ones in day-to-day inter-
action [23]. Apart from bored, all mental states included in our
experiment are in the top ten of the most commonly occurring ex-
pressions in both symmetric and asymmetric interaction [23].

Because our android robot looks like an aged, caucasian male,
we needed to find actors on the DVD that were similar in appear-
ance, as it can influence perceived mental states [19]. We also
needed to provide sufficient coverage of the five selected mental
states (three each). Consequently, we selected three caucasian,
older male actors for our stimuli.

2.1.2 Extracting Facial Features
For feature point tracking we used the NevenVision (now Google)

facial feature tracker. The tracker uses a generic face template to
bootstrap the tracking process, initially locating the position of 22
facial landmarks (see Fig 2). It uses Gabor wavelet image trans-
formations and neural networks for the tracking of subsequent im-
ages in the video. It is fully automatic and requires no manual
labelling. The tracker deals with a wide range of physiognomies
and tracks users that wear glasses and/or have facial hair. It is
robust to a certain amount of out-of-plane head motion, and is
good at detecting head pose. When evaluated on Boston University
dataset [10] the NevenVision tracker the absolute errors of orien-
tation estimation are as follows: roll µ = 3.09◦, σ = 2.58◦, pitch
µ = 5.73◦, σ = 7.94◦, and yaw µ = 5.19◦, σ = 4.74◦. All tracked
points of visual sequences used in the experiment were visually
inspected to validate that the tracking was not giving wildly incor-
rect results, a formal validation would be desirable for future ex-
periments. In addition, it was used well-validated by other similar
uses, such as the MindReader software developed by el Kaliouby
and Robinson [16].

The problem with most facial expression recognition from video
approaches is that they rely on a neutral initial frame, or a known
neutral configuration of the face. Most of the video stimuli used in
our experiment do not start in a neutral pose and we do not have a
labelled neutral pose of the actor. This posed a significant challenge
when detecting and synthesising action units.

Thus, in order to make our system work with non-neutral ini-
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Figure 1: Still frames from eight of our 60 video stimuli. From left to right: the human actor, the physical android robot, the virtual
avatar, and the stick figure animation. The top four videos show surprised, and the bottom four show happy.

tial frames, we split the Mind Reading DVD videos based on ac-
tors. Then we ran the FaceTracker on every video of the same per-
son, which allowed us to determine their average facial appearance.
Some examples of facial appearance features are: distance between
inner eye corner to inner brow, mouth width, mouth height, distance
from the point between the eyes to the centre of the mouth, etc.

In addition to providing us with the information about the actor’s
facial configuration, this approach also provided us with informa-
tion about the way they can change their expression. We accom-
plished this by recording the maximum amount their mouth can
open, the highest their eyebrows can be raised, etc. This made it
easier to use the expressions to drive animations on our synthetic
representations.

2.1.3 Choosing Synthetic Representations
While we wanted to design our experiment to be comparable to

Afzal et al. [1], we also wanted to understand how photo-realistic
synthetic characters might affect people’s ability to extract affective
information. Thus, while three of our stimuli groups were the same
(human actor, stick figure drawing, and avatar), we used a photo-
realistic android robot instead of a point-light representation.

Stick figure drawings are the least photo-realistic of all our syn-
thetic representations, but remain the most true to the original geo-
metric facial-features upon which they are based.

Slightly more photo-realistic are the virtual avatars used in our
experiment, that are driven via Source SDK1. It supports animation
of characters based on FACS, allowing for rather realistic motion.

Our most photo-realistic representation was an android robot
head from Hanson Robotics2 made to the likeness of Charles Bab-
bage. The robot has 27 degrees of freedom in the face and neck,
is very lifelike and contains wrinkles on the skin. Thus, the robot
is able to enact very human-like expressions. For this experiment,
only 22 of the motors were used; corresponding to the tracked fa-
cial landmarks.

2.1.4 Generating Synthetic Representations
The stick figure animations used in the experiment were synthe-

sised using the same rules described in Afzal et al. [1]. Every

1 http://developer.valvesoftware.com/wiki/Facial_Expressions_Primer
2 http://hansonrobotics.wordpress.com/

Figure 2: The feature points tracked by FaceTracker.

tracked facial feature point was drawn on black background. In ad-
dition, the inner and outer eyebrows were connected, the outline of
the lips was added, and the outline of the eyes was drawn based on
the corners of the eyes. (See Fig. 1, last panel)

To synthesize movements on both the avatar and android, our
software first recognizes the activation of specific action units using
a rule-based approach similar to those used by Pantic et al. [21]
and el Kaliouby and Robinson [16]. In addition to AU activation
we incorporate the intensity of AU during each frame, so that the
onset, apex, and offset would all be visible. Knowing the facial
properties of the person whose video is used for synthesis allowed
us to model the intensity of AUs as well.

Our AU recognition approach was not limited to frontal images
of the face, which differs from other approaches presented in the
literature. This was possible because we knew the parameters for
each actor’s face a priori. Furthermore, our approach is able to deal
with out-of-plane head motion as features for each of the actors
were extracted at various orientations.

The extracted AUs were then used to animate the virtual avatar
directly using FacePoser from Source SDK. This was possible to do
without any translation because the animation system is AU-based.

For our android robot, motion was generated via a direct AU-
to-motor mapping. However, because the physical motion of the
robot was slightly slower than the real-time movement of the AUs,
we accelerated the timing of the final video slightly to be the exact
same length as video of the other representations.

Due to the importance of temporal information in perceiving
emotions [8] the avatar and stick figure representations were ani-
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Figure 3: The labelling interface used in our experiment.

mated with a frame by frame correspondence to the original videos,
due to technical limitations this was not possible on the robot.

2.2 Participants
Participants were recruited using a graduate e-mail list across

the university. In total 15 people took part in the experiment, ten
of them were female and five male. Their ages ranged from 21
to 34 (mean age 24.5, s.d.=3.4). All participants had normal or
corrected to normal vision, and all considered themselves fluent
English speakers. They were all given a £10 gift voucher for their
participation in the experiment. All of the participants except for
one were university students (both graduate and undergraduate).

2.3 Task
After seeing each video stimulus, participants had to choose one

out of five possible labels (see Fig. 3). Participants could not choose
a label before the video finished playing, and to move on to the next
video participants had to choose only one of the five mental state
labels, distractor labels were not present.

2.4 Procedure
Upon arrival, each participant was given a brief training labelling

task to learn and practice before participating in the main experi-
ment. The videos used in training did not appear in the main exper-
iment to avoid learning effects.

In order to ensure participants knew the meanings of the labels
they would be using in the experiment, each was given a sheet of
dictionary definitions of all labels. Participants could refer to this
sheet at any point during the trials.

The main experiment consisted of three trial blocks, each block
consisting of 20 videos randomly selected from the total of 60. For
a given stimulus, participants first saw a crosshair, then saw the
video played twice, and then were asked to select a label. Partici-
pants were not allowed to replay the video.

The experimenter left the room during the main trial, allowing
the participants to complete the task on their own.

2.5 Measures
Our dependent variable was label accuracy as measured via the

Baron-Cohen taxonomy [5] (i.e., “ground truth”). Our indepen-
dent variables were representation (actor, virtual stick figure, vir-
tual avatar, or android robot), emotion (bored, confused, surprised,
interested, and happy), and actor (actor 1, actor 2, actor 3).

3. RESULTS
Before conducting our overall analysis, we first checked to en-

sure actor choice did not influence overall labelling accuracy. We
ran a χ2 (chi-square) test, which showed a significant association
between actor and correct labelling of the stimulus material, χ2(2) =

7.15, p < .05. However, Cramer’s V was 0.089, indicating a weak
association between actors [18]. Because the association was weak,
in our subsequent analysis we feel confident not taking the actor
into account in our subsequent analysis.

A two-way, repeated measures ANOVA was performed with rep-
resentation and emotion as factors and the number of correct an-
swers as the dependent variable. Mauchly’s test indicated that the
assumption of sphericity had been violated for the main effects of
representation ∗ emotion, χ2(77) = 109.5, p < .05. Therefore de-
grees of freedom on this interaction were corrected using Greenhouse-
Geisser estimates of sphericity (ε = .42 for the main effect of rep-
resentation ∗ emotion).

The mean accuracy for representations over all emotions was as
follows: original 80%, robotic head 35%, avatar 36%, and stick
figures 48%. There was a significant main effect of the type of
representation on the number of correct answers F(3, 42) = 48.13,
p < .001. Contrasts revealed that number of correct answers for
original videos were significantly higher than those of robotic head,
F(1, 14) = 127.3, r = .95, p < .001, avatars, F(1, 14) = 132.3, r =

.95, p < .001, stick figures, F(1, 14) = 35.4, r = .85, p < .001. No
significant differences were found when comparing the synthetic
representations. All reported contrasts are Bonferroni corrected.

The mean accuracy for emotions across all representations were
as follows: bored 48%, confused 46%, happy 50%, interested 42%,
and surprised 62.8%. There was a significant main effect of the
type of emotion on the number of correct answers F(4, 56) = 5.05,
p < .05. Contrasts revealed that number of correct answers for sur-
prised was significantly higher than those for bored, F(1, 14) = 17.1,
r = .67, p < .05, confused, F(1, 14) = 33.3, r = .84, p < .001, and
interested, F(1, 14) = 18.8, r = .76 ,p < .001. No significant dif-
ferences were found between the other mental states. All reported
contrasts are Bonferroni corrected.

The data was inspected for outliers amongst the participants, no
participant stood out with either a very high or very low accuracy.

Accuracy of the labelling task was not affected by gender χ2(1) =

1.81, p > .05.

4. DISCUSSION
The purpose of our experiment was to investigate how much af-

fective information automatically tracked facial feature points con-
vey when synthesized across a range of synthetic representations
that differ in their photo-realism.

As expected, the video stimuli featuring human actors had better
labelling accuracy than stimuli featuring synthetic representations.
Contrary to our expectation more photo-realistic synthetic repre-
sentations did not lead to higher accuracy. Instead, we found no
significant difference between the synthetic representations.

This result may be due to several different factors. Firstly, ac-
cording to some of the participants, it was hard to tell the emotion
of the virtual avatar or the robotic head because of conflicting emo-
tional cues (i.e., the mouth region suggested one emotion while the
eye area suggested another). Participants were thus sometimes di-
verted to areas of the face that were not particularly well tracked by
our facial feature tracker, and thus poorly synthesised. In particu-
lar, the eye region was the most difficult, as our tracker has no way
to detect the squinting and widening of the eyes. Thus, it might be
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beneficial to have geometrically simpler avatars if it will be impos-
sible to properly animate more complex ones.

Our results are supported by Slater et al. [25] who argues that
higher realism in avatar’s appearance may lead to higher expecta-
tions for behavioural realism, which might not have been met in
our stimulus videos, especially in the eye region.

Additionally, some participants reported not paying attention to
the gaze of the stick figures, however, they were influenced by the
gaze cues conveyed by the virtual avatar and robotic head. This
was especially true for the confused and interested mental states.
This exposes one limitation of our facial feature tracking system as
it does not track iris locations very accurately.

An additional factor, at least for the virtual avatar and robotic
head representations, may have been the lack of head motion. With
the exception of orientation, out of plane head motion was not por-
trayed on the robotic head and the virtual avatar. This may have af-
fected accuracy, because according to Ekman and Oster [15], head
position can play a role in recognizing some mental states, such as
interest.

Our results support the fact that complex mental states are more
difficult to recognise than basic emotions, as this disparity was seen
across all representations. This suggests that while some emo-
tions, such as surprise, can be well recognised using just geomet-
rically tacked feature points, synthesizing more complex mental
states may require more complex algorithms which incorporate other
features, such as appearance, head position, and gaze information.

When comparing our results to those found by Afzal et al. [1],
we find a contradiction. Their results showed a statistically signifi-
cant difference in accuracy across representations (stick-figure was
best, followed by point-light, followed by avatars), whereas we did
not. This may be explained by the fact that their animation sys-
tem seemed somewhat limited by animation quality, thus leading
to lower accuracy rates.

One thing we found in common with the results of Afzal et al. [1]
was that participants were better at recognising surprise across all
representations, which suggests that geometric approach to facial
expression recognition and synthesis is better for some expressions
than others.

The results of this experiment have implications for facial ex-
pression synthesis, as they illustrate the importance of consistency
when representing expression. In particular, it is important to en-
sure that all parts of the face “tell the same story", including gaze,
head position, and orientation.

An interesting extension to the experiment might be the system-
atic manipulation of timing and intensities of expressions and see-
ing how they influence the perceived emotions or naturalness of
behaviour in avatars and robot head. In future studies it would be
beneficial to evaluate the perceptual realism of the synthetic forms
used.
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