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Abstract—Automatic analysis of affect from facial expressions
has been extensively studied, but most work has considered
only a small set of discrete emotions, typically Ekman’s six
basic emotions, or a small number of continuous measures,
typically valence and arousal. We have developed a system that
accommodates a much larger vocabulary of discrete emotions and
links them with continuous measures that have been aggregated
over a few seconds. The approach has a sound theoretical
basis in multi-dimensional statistics, making it both principled
and robust, while a graphical presentation makes it easy to
understand.
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I. INTRODUCTION

The face is one of the clearest channels for communication
of human emotion. People routinely express their mental
states through their facial expressions. Inference of emotion
from facial expressions has been studied for many years,
using a variety of techniques – rule-based classifiers, neural
networks, support vector machines, and Bayesian classifiers[1]
– but often only considering Ekman’s six basic emotions or
a couple of continuous measures. Recognising the complex,
cognitive mental states that arise in everyday life is more
difficult, but probably more useful as part of general interac-
tion with computer systems [2], [3]. We have been exploring
the relationship between complex, cognitive mental states and
continuous measures of valence and arousal.

Categorical descriptions of mental states are part of our
everyday language, which gives them the advantage of being
commonly understood and easy to interpret. On the other
hand, continuous measures arise naturally when applying
computational techniques to the analysis of affect, and have
the advantage of precision. Resolving this tension between
intuition and precision is difficult [4]. Our statistical analysis
has revealed two problems with a naı̈ve translation between
categorical and continuous classifications of emotion. The
continuous valence and arousal classifications for valid videos
of a single emotion vary considerably, and the range of values
for distinct emotions overlap considerably.

We have devised a new approach using statistical tech-
niques. We consider continuous measures of affect as distri-
butions in a multi-dimensional space. The multi-dimensional
means and variances of continuous measurements taken at
video frame rates provide a way of aggregating information
about facial expressions over a few seconds, and comparing
them with other aggregates for the same or different emotions.

TABLE I
THE 24 HIGH-LEVEL CATEGORIES IN BARON-COHEN’S TAXONOMY [8]

Afraid Angry Bored Bothered
Disbelieving Disgusted Excited Fond

Happy Hurt Interested Kind
Liked Romantic Sad Sneaky
Sorry Sure Surprised Thinking

Touched Unfriendly Unsure Wanting

We believe that this gives a principled and practical approach
to analysing continuous measures of affect.

The remainder of this paper gives a brief summary of
these two models of affect. Then Section III present the
mathematical basis of our statistical measures for continuous
affect in two or more dimensions. Section IV presents the
EU-Emotion Stimulus Set used for our empirical analysis
and Section V presents an analysis using the new statistical
measures. Finally Section VI discusses the implications of this
approach.

II. MODELS OF AFFECT

Charles Darwin considered seven categories of emotion in
his seminal work on The expression of the emotions in man
and animals [5]. A century later, Paul Ekman refined this into
a classification of six basic emotions – anger, disgust, fear, joy,
sadness and surprise [6]. The six basic emotions and Ekman’s
Facial Action Coding System (FACS) [7] have been widely
used in the study of emotions over the past 35 years, and par-
ticularly for work on affective computing in the past 15 years.
However, they are not particularly representative of people’s
everyday experiences. Affective computing needs to consider
the more common but subtler mental states experienced in
everyday life.

A broader taxonomy of human emotions has been developed
by Simon Baron-Cohen based on a linguistic analysis [8]. 412
distinct emotion concepts are identified and grouped into 24
disjoint categories. These include Ekman’s six basic emotions
and a further 18 further groups that cover complex mental
states reflecting cognitive activity. Table I shows the 24 high-
level categories, including Ekman’s basic emotions in bold
type. The 18 additional complex mental states seem to require
a second or two of continuous observation to be recognised
by humans, rather than the single image that suffices for basic
emotions [9].
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Fig. 1. Russell’s circumplex showing two principal components of 28 affect
words [10]

James Russell took a different approach by deriving a con-
tinuous, dimensional classification in his Circumplex model of
affect [10]. This was formulated in the light of an experiment
in which participants arranged 28 emotion words around a
circle, with similar affects located close to each other and
inverses on opposite sides of the circle. Principal Component
Analysis was then used to identify various dimensions in the
data. The first two components accounted for 46% of the
total variance, and the next three only an additional 13%.
The locations determined by the two principal components
are shown in Figure 1. These measures are continuous in two
senses. The coordinates are quantified on a continuous scale,
often between −1 and +1, and they are measured continuously
in time, or at least at a rate approximating to video frame rates.

The horizontal axis is usually referred to as valence and
the vertical axis as arousal. Further axes have been given
names like dominance, expectation, intensity and tendency.
This has led to a popular belief that emotions can be measured
precisely by coordinates in a suitably high-dimensional space.
Unfortunately, our experiments show that analysis is more
complicated in practice. One obvious reason is that the ex-
pression of an emotion will move through phases from neutral
through onset to apex, and then back through offset to neutral
again. Indeed, spontaneous expressions may move between ap-
pearances without returning to neutral. It makes more sense to
consider a trajectory traced over time in the multi-dimensional
space, or simply a set of coordinates following some statistical
distribution.

III. VARIANCE IN DIMENSIONAL AFFECT

Given a set of videos representing an emotion, we can
compute (valence, arousal) coordinates either continuously at
regular intervals through each video or as averages for each
video. In general, we can compute k separate metrics Xi

for i = 1 . . . k in this way, and treat them as k-dimensional
samples from a multivariate normal distribution. We can then
calculate the k-dimensional mean µ and covariance matrix
Σ = Cov(Xi, Xj). The prediction interval for the distribution
is the set of vectors x satisfying

(x− µ)T Σ−1(x− µ) ≤ χ2
k(p) (1)

where χ2
k(p) is the quantile function for probability p of

the chi-squared distribution with k degrees of freedom. This
interval consists of points in the k-dimensional space that lie
within the square of a given Mahalanobis distance of the mean.

The actual calculations can be implemented efficiently by
deriving a Cholesky decomposition of the covariance matrix.
This corresponds to a Principal Component Analysis with
the eigenvectors giving the principal axes of a k-dimensional
ellipsoid and the eigenvalues indicating the variance along
them.

In the simple case where we are only considering valence
and arousal, k = 2 and the prediction interval limits x to
the interior of an ellipse. If these ellipses are scaled so that
the axes have a length equal to twice the square root of
the corresponding eigenvalues, they will extend two standard
deviations from their means and encompass about 86% of the
probability mass. This gives a useful visualisation of the two-
dimensional mean and variance in (valence, arousal) space.

IV. THE EU-EMOTION STIMULUS SET

Our analysis has used a database collected and validated
for the European ASC-Inclusion project [11], [12]. The over-
all project built and evaluated an internet-based game plat-
form, intended for children with Autism Spectrum Conditions
(ASCs) and their carers. The platform combines several state-
of-the art technologies in one comprehensive virtual world pro-
viding training through games, and including feedback from
analysis of the player’s gestures, facial and vocal expressions
using a standard web-cam and microphone. The game also
includes text communication with peers and smart agents,
animation, video and audio clips.

A major component in the ASC-Inclusion game is a collec-
tion of model depictions of the mental states being taught. The
Autism Research Centre (ARC) and the Computer Laboratory
at the University of Cambridge collected various media of
actors displaying 20 different emotions plus neutral as part of
this content. This is high quality material, carefully recorded,
carefully validated and carefully labelled. It is a really useful
resource and has proved valuable for the teaching aspects
of the ASC-Inclusion game. However, it also indicates some
limitations on the use of valence and arousal as indicators in
feedback to game players.

The ARC recorded 496 videos of faces. These were then
validated on-line, collecting a total of 54,097 assessments, an
average of 109 for each video clip. The validation involved a
six-way forced choice between the correct label, four foils and
‘other’. Clips were deemed to be a reasonable representation of
the emotion if at least 50% of labels are correct and no foil is
chosen by more than 25% of the assessors. The latter condition
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TABLE II
EMOTION CATEGORIES IN THE EU-EMOTION STIMULUS SET

Category # videos # ratings # accepted Duration/s

Afraid 17 2 113 17 139
Angry 17 1 997 10 88
Ashamed (Sorry) 8 829 5 46
Bored 8 895 7 67
Disappointed (Sad) 10 1 260 6 55
Disgusted 18 2 025 14 111
Excited 9 985 9 75
Frustrated (Angry) 12 2 017 11 89
Happy 14 1 498 11 84
Hurt 10 1 106 8 72
Interested 11 1 360 8 63
Jealous (Wanting) 7 774 0
Joking (Happy) 9 1 083 9 80
Kind 9 969 0
Neutral 17 1 927 17 95
Proud (Happy) 11 1 348 7 54
Sad 14 1 506 13 103
Sneaky 11 1 221 8 71
Surprised 18 2 249 16 71
Unfriendly 9 1 156 0
Worried (Afraid) 8 759 5 46

Total 247 29 077 181 1 407

turned out to be redundant – no video that achieved 50%
correct labels had any foil rated more than 25%. 337 videos
passed this qualification, just over two thirds of the total.

A subset of the videos has been published as the EU-
Emotion Stimulus Set (EESS) [13]. This includes 181 videos
encompassing 18 of the emotions, with a total duration of
almost 24 minutes. Some of these correspond directly to
high-level categories in the Baron-Cohen taxonomy, and some
consider only subsets. Table II shows the number of videos
considered as candidates for each emotion and also the number
actually included in the corpus. The parent categories of
subsets are shown in parentheses. The final column shows the
total duration of the validated videos (in seconds).

V. ANALYSIS OF VARIANCE IN EESS

The Cambridge Facetracker [14], [15] was used to de-
termine continuous ratings of valence and arousal for the
validated videos in the EU-Emotion Stimulus Set. This was
trained using the Denver Intensity of Spontaneous Facial
Action (DISFA) database [16] to infer action units, and then
the SEMAINE database [17] to infer valence and arousal. The
videos were analysed at their original 30fps frame rate, giving
a total of 42 216 classifications.

The first experiment calculated aggregate means and pre-
diction intervals for each for the 247 videos taken separately.
Figures 2, 3 and 4 show the means and 2σ prediction intervals
in (valence, arousal) space for six instances each of Neu-
tral, Happy and Sad. The graphical presentation immediately
reveals several interesting features. First, there is substantial
variance within each single video, and this is mainly in the
vertical, arousal axis. Arousal and intensity of expression are
correlated, so this can be explained by the aggregation of
measurements over the onset and offset of the expressions as

Fig. 2. 2σ prediction intervals for six instances of Neutral

Fig. 3. 2σ prediction intervals for six instances of Happy

well as the peak intensity. It also confirms other observations
that the face indicates valence while the voice indicates arousal
[1].

Secondly, the analyses of videos for Happy show variation
in valence as well as arousal. This can be explained by the
brevity of the apex period for the distinctive smile indicating
happiness.

The second experiment calculated aggregate means and
prediction intervals for all the videos representing each
emotion. Figure 5 shows the 2σ prediction intervals in
(valence, arousal) space for all 18 of the emotions in EESS,
together with the means for each individual video. Again, the
variance within each emotion is considerable, demonstrating
that there is no simple mapping between discrete emotions and
continuous measures.

Even the locations of the means differ considerably from
Russell’s original circumplex in Figure 1. This is confirmed by
the mean (valence, arousal) coordinates shown in Table III.
Indeed, some of these are very different, although a lot of the
difference is in the measurement of arousal. The classification
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Fig. 5. 2σ prediction intervals in (valence, arousal) space for 18 emotions

Fig. 4. 2σ prediction intervals for six instances of Sad

of the mean arousal for Neutral at −0.10 suggests that there
may be a negative bias in the training data.

Assessors validating EESS were also asked to rate valence,
arousal and intensity for each video on a five-point Likert
scale. These were averaged for each emotion and converted to
a [−1,+1] range, and are shown in the final two columns of
Table III and as distributions in Figure 6 [18]. These means
also differ from both Russell’s original circumplex and the
means calculated by the automatic classification.

TABLE III
MEAN (valence, arousal) COORDINATES FOR THE EU-EMOTION

STIMULUS SET

Category Valence Arousal Valence Arousal
Facetracker Validation

Afraid 0.00 -0.18 -0.40 0.15
Angry -0.11 -0.06 -0.49 0.15
Ashamed 0.04 -0.10 -0.34 0.09
Bored -0.01 -0.28 -0.39 0.03
Disappointed -0.14 -0.18 -0.40 0.13
Disgusted -0.13 -0.02 -0.50 0.22
Excited 0.36 -0.03 0.66 0.37
Frustrated -0.10 0.00 -0.41 0.15
Happy 0.24 -0.06 0.69 0.32
Hurt -0.03 -0.06 -0.45 0.17
Interested -0.01 -0.10 0.29 -0.01
Joking 0.24 0.08 0.62 0.33
Neutral 0.00 -0.10 -0.06 -0.41
Proud 0.15 0.04 0.45 0.16
Sad -0.13 -0.17 -0.45 0.12
Sneaky 0.06 -0.17 -0.11 0.01
Surprised 0.01 -0.08 0.20 0.06
Worried -0.12 -0.20 -0.42 0.13

To some extent this is explained by scaling of the values.
Figure 7 shows scatter diagrams for the automatic classifica-
tions of valence and arousal against the human assessments.
The two sets of figures for valence have a Pearson R2

correlation coefficient of 0.78, but those for arousal only
0.15. Again, this reflects the observation that the face is a
clearer indicator of valence than arousal, and there is good
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Fig. 6. 2σ prediction intervals in (valence, arousal) space from manual assessment [18]

correspondence between the automatic and human assessments
of arousal. The difference in magnitude can be attributed
to human assessors recording the maximum valence during
the expression’s apex while the automatic classification is
averaged over the whole video. A Pearson product-moment
correlation test shows that the rank orderings of valence are
strongly correlated (p� 0.001), but that those for arousal are
not (p > 0.05).

This reveals a major problem with much research into
affective computing. The results are only as good as the
training data. The SEMAINE database used for training
was carefully collected and validated, with multiple ratings
achieving high levels of agreement, but still only achieving
Pearson R2 correlations around 0.5, although this can be
attributed partly to timing errors in the annotation [19]. Any
human translation from qualitative examination of videos into
quantitative measurements in continuous time is fraught with
difficulty.

VI. DISCUSSION

Our statistical analysis has revealed two problems with a
naı̈ve translation between categorical and continuous clas-
sifications of emotion. The continuous valence and arousal
classifications for valid videos of a single emotion vary con-
siderably, and the range of values for distinct emotions overlap
considerably. Figure 5 illustrates both of these difficulties.

These results indicate that attempts to make a universal
“emotion meter” are unlikely to succeed. It is necessary to
identify a particular application domain and then design a
classifier that operates well in a single, specialised context.

For example, affective monitoring is particularly challenging
when trying to provide feedback in an adaptive e-learning
system that is trying to teach emotions. However, there are
general implications for all computer applications that feature
social interactions. This analysis of the EESS videos recorded
for the ASC-Inclusion game suggests a possible solution.

One component of the game monitors the player’s face
while he or she is acting a particular emotion. Computer vision
and machine learning are then used to infer the emotion de-
picted and report back, both assessing the player’s performance
and also suggesting changes to make it resemble a canonical
performance more closely. This is an extremely challenging
test for automatic analysis of emotions and has more general
implications for the use of affective feedback to guide social
interactions in adaptive e-learning systems.

In preliminary trials of the ASC-Inclusion game the clinical
partners observed that participants found it hard to identify a
facial expression that would steer their valence and arousal
inferences into a target area. The same was also true of
the vocal expressions and body gestures. Indeed, this was
sufficiently difficult that it would be unhelpful to expect
children to do it as part of the game. These plots help us
understand why. Even well recorded, well validated videos
exhibit such a wide range of valence and arousal values that
it is virtually impossible to separate some mental states, still
less to locate them accurately in a dimensional space.

However, it is reasonable to assess an example piece of
acting as acceptable if its prediction interval adequately over-
laps that of the aggregate representatives of the intended
emotion. We simply check that the two distributions are
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Fig. 7. Scatter diagrams of mean automatic classifications of valence and
arousal plotted against human assessments.

sufficiently similar. Our statistical analysis provides the basis
for a quantitative measurement of this overlap using statistical
tests for change detection in multi-dimensional data [20].

VII. CONCLUSION

Problems arise if it is assumed that an emotion can be
represented by a single point in (valence, arousal) space.
Instead, it is necessary to accommodate the variation shown
in Figure 5. One principled way to achieve this is to regard
each emotion as a distribution in two (or more) dimensions.
We have developed a statistical measure that is principled
and robust, but still easy to understand. This can form the
basis of a system for interpreting classifications in a wide
variety of applications as long as the context of each individual
application is clearly established.

The work also poses interesting questions for future work.
While basic emotions can be inferred from still images,
complex mental states require continuous video evidence for
a second or two to be understood [9]. Analysing these gives
trajectories in a dimensional space which require temporal
models with dynamics to achieve reasonable recognition. Pre-
vious work has used Dynamic Bayesian Networks for this [2],

but more recent approaches such as recurrent neural networks
or Continuous Conditional Neural Fields [14] look promising.
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